
Supplement

Supplementary Tables

Supplementary Table 1: Validation of the DFA, PSD, ApEn and PRSA functions. μ: mean; σ:

standard deviation; RMSE: root mean square error; RMSE: normalized root mean square error.

For DFA, the values estimated at each scale (4-64) were used for comparison.

 pobm Benchmark

 μ σ μ σ RMSE NRMSE

DFA 3.42 3.38 3.35 3.26 0.22 0.06

PSD_total 93.62 325.23 93.58 325.26 6.35 0.06

PSD_band 5.63 7.26 5.48 7.05 0.23 0.04

PSD_ratio 0.07 6.52 0.06 6.89 3.5E-3 0.05

PSD_peak 0.06 3.24 0.06 3.24 1.2E-3 0.02

ApEn 0.39 0.09 0.39 0.09 3.5E-10 9.0E-10

Supplementary Table 2: Comparison of some biomarkers with results from other papers.

Name This work Published results

DDmaxμ 4.93 4 61

 AODmax

0.06 0.05 28

PODx

1.72 1.8 28

∆I

x

0.36 0.14 37

CTMx

0.92 0.71 37

AV

95.90 96.00 50

Min

79.00 79.00 50

SD

1.42 2.40 50

Supplementary Table 3: Variables definition.

Symbol Definition Unit

NSpO2 Number of samples of the SpO2 time series nu

n

x

Number of patients nu

p

Number of nights recording nu

f

Frequency of the signal Hz

SpO2i Element 𝑖𝑡ℎ of the SpO2 time series %

Nwindow Number of windows in the SpO2 time series nu

SpO2_windowi Average of the 𝑖𝑡ℎ window of the SpO2 time series %

Ndesat Number of desaturations in the signal nu

TRT Total recording time.

sec

τi Duration of the 𝑖𝑡ℎ oxygen desaturation event. sec

maxi Maximum value of desaturation 𝑖 %

mini Minimum value of desaturation 𝑖 %

Slopei Slope of desaturation number 𝑖 %/sec

/

Smaxi Area of the specific desaturation event integrated from max

value of the event

% ∗ sec

S100i Area of the specific desaturation event integrated from 100% % ∗ sec

∆ti Time elapsed between desaturation 𝑖 and desaturation 𝑖 − 1 sec

NFFT Number of points in the PSD signal nu

r2 Adjusted R-square score nu

Supplementary Methods

Code quality control

The SHHS1 database was used to benchmark our implementations of DFA, PSD, ApEn and PRSA

against established implementations of these functions. For that purpose, each recording of the

SHHS1 was split into 1-hour window. The mean (μ) and the standard deviation (σ) for the

evaluated functions were computed. The root means square error (RMSE) and normalized root

means square error (NRMSE) between the mean of the pobm and benchmark functions were

computed. The pobm DFA and PSD implementations were compared against the MATLAB DFA

and PSD implementation available in PhysioZoo HRV. The ApEn function was compared against

the ApEn implementation in MATLAB available from PhysioNet1. The PRSA window

computation was benchmarked against the implementation of PRSA available in the PhysioNet

cardiovascular signal toolbox2. For PRSA the RMSE between the windows was zero. For the other

functions the results are reported in Table S2. The residual error for the DFA function may be due

to the difference of languages: built-in functions for the line regression are used, Python in the

case of the pobm toolbox and MATLAB in the case of the PhysioZoo toolbox. Similarly, for the

PSD residual error where built-in functions for PSD estimation are used in different languages.

For other OBM for which no reference open source benchmark code exists, we compared the

estimated values of these biomarkers against their values reported in original research.

1 URL: https://archive.physionet.org/physiotools/ApEn/
2 URL: https://physionet.org/content/pcst/1.0.0/Tools/ECG_Analysis_Tools/

https://physionet.org/content/pcst/1.0.0/Tools/ECG_Analysis_Tools/

Algorithms pseudo-code:

𝐴𝑝𝐸𝑛:

1) Do the following for m = M and m = M + 1:

a. Divide the signal x(n) into N − m + 1 vectors: X[i] = [x(i), x(i + 1), . . , x(i + m −

1)], where x is the 𝑆𝑝𝑂2 signal to analyze.

b. Define d(X(i), X(j)) as the maximum absolute difference between respective scalar

components of the two vectors.

d(X(i), X(j)) = max
1≤k≤m

|x(i + k − 1) − x(j + k − 1)|

c. Compute Nm(i), Cm(i) for each vector X(i) defined as:

Nm(i) = num{ X(j)|d(X(i), X(j)) ≤ r}

Cm(i) = Nm(i)
(N − m + 1)⁄

d. Compute φm(r) =
1

N−m+1
∑ ln(Cm(i))N−m+1

i=1

2) Compute 𝐴𝑝𝐸𝑛 = 𝜑𝑚(𝑟) − 𝜑𝑚+1(𝑟)

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟):

1) Define Xm(i) = {x(i), … , x(i + m − 1)}, where x is the 𝑆𝑝𝑂2 signal to analyze.

2) Define d[Xm(i), Xm(j)] as any distance function. In this case, the Euclidian function has

been chosen.

3) Compute:

A: number of vector pair observing d[Xm+1(i), Xm+1(j)] < r

B: number of vector pair observing d[Xm(i), Xm(j)] < r

4) Return −ln (
A

B
)

𝐷𝐹𝐴:

1) First integrate the signal:

y(k) = ∑ x(i) − xavg

k

i=0

where xavg is the average of the signal, x is the 𝑆𝑝𝑂2 signal to analyze.

2) Divide the obtained signal y(k) into windows of length 𝑛. Let w be the number of

windows obtained.

yi = [y(i), y(i + 1), . . , y(i + n − 1)], i = 0,1, . . , w − 1

3) For each window yi, fit a least square line to the data, denoted yi̅, of size 𝑛 too.

4) Compute

DFA(n) =
1

N
√∑ ∑(yi(k) − yi̅(k))2

n−1

k=0

w−1

i=0

𝑃𝑅𝑆𝐴:

1) Define anchor point x(i) as decreasing points in the signal: x(i) > x(i − 1). Note that

decreasing points can also be used. Let 𝑀 be the number of anchor points obtained.

2) For each anchor point xi, i = 1, . . , M, define a window of length 2𝐿 around the point. Let

Xi be the window around the anchor point 𝑥𝑖.

Note that anchor points for which such a window cannot be computed are discarded.

Furthermore, windows may overlap.

3) Average over the windows: x̅(k) =
1

M
∑ Xi[k], for − L ≤ k < LM

i=1 . The result of the

algorithm is a PRSA window of length 2L.

𝐿𝑍:

1) Define the signal 𝑃 = {𝑠(1), 𝑠(2), … , 𝑠(𝑛)}, where

𝑠(𝑖) = {
0 𝑖𝑓 𝑆𝑝𝑂2𝑖 < 𝑀𝐸𝐷

1 𝑒𝑙𝑠𝑒

2) Let’s denote 𝑆𝑄 as the concatenation of sequences 𝑆 and 𝑄, 𝑆𝑄𝜋 as the sequence 𝑆𝑄

without the last character, 𝑉(𝑆) as the vocabulary of all different subsequences of 𝑆

3) Initialize 𝑐(𝑛) = 1, 𝑆 = 𝑠(1), 𝑄 = 𝑠(2).

4) Until 𝑄 is the last character of P, do the following steps, starting with 𝑟 = 1:

a. Add 𝑠(𝑟 + 2) to 𝑄 and judge if 𝑄 ∈ 𝑉(𝑆𝑄𝜋).

b. If not, increment 𝑟 and return to previous step.

c. Increment 𝑐(𝑛).

d. Renew 𝑆 = {𝑠(1), 𝑠(2), … , 𝑠(𝑟)}, 𝑄 = 𝑠(𝑟 + 1).

5) Return 𝑐(𝑛).

