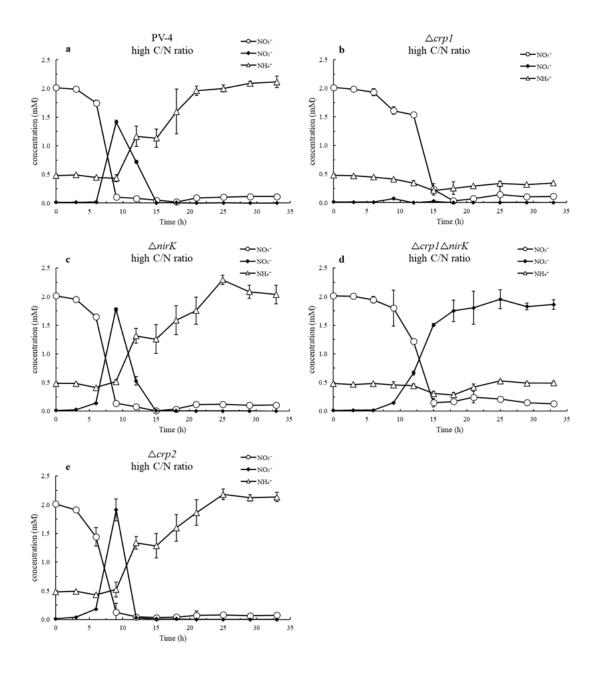
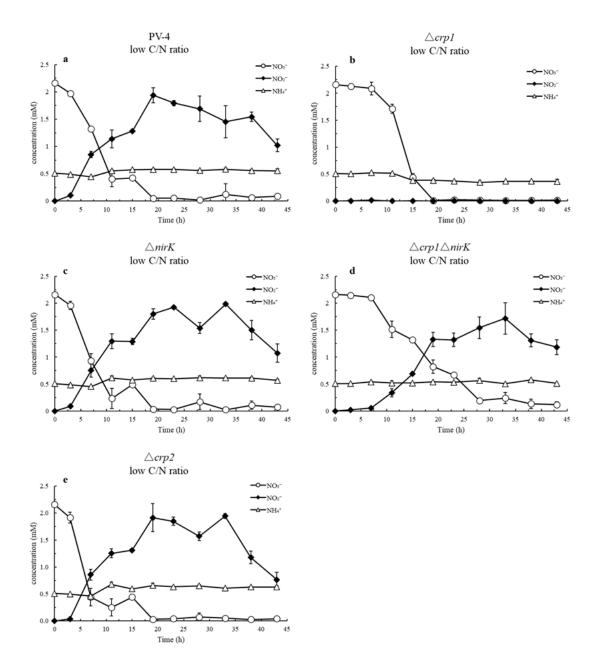

Supplemental Tables and Figures

Strains	Genes						
	napAB	nrfAH/nirBD	nirK	norBC	nosZ		
S. oneidensis	SO_0845	SO_3980					
	SO_0848						
S. denitrificans	Sden_1497	Sden_3715	Sden_3482	Sden_1980	Sden_2219		
	Sden_1498	Sden_3716		Sden_1981			
S. frigidimarina	Sfri_0552	Sfri_0622		Sfri_3253			
	Sfri_0553	Sfri_3036					
	Sfri_2552	Sfri_1509					
	Sfri_2553	Sfri_1510					
S. amazonensis	Sama_1622	Sama_0648	Sama_2681	Sama_0728			
	Sama_1623						
	Sama_2983						
	Sama_2986						
S. baltica OS155	Sbal175_0854	Sbal175_3632					
	Sbal175_0855						
	Sbal175_2442						
	Sbal175_2443						
S. loihica	Shew_1770	Shew_0505	Shew_3335	Shew_0657	Shew_3400		
	Shew_1771	Shew_0844					
	Shew_3206						
	Shew_3209						
S. putrefaciens	Sputcn32_1903	Sputcn32_0685		Sputcn32_3072			
CN-32	Sputcn32_1904	Sputcn32_3604					
	Sputcn32_3148						
	Sputcn32_3151						
S. putrefaciens 200	Sput200_2087	Sput200_0617		Sput200_3181			
	Sput200_2088	Sput200_2562					
	Sput200_3259	Sput200_3617					
	Sput200_3262						
S. sp. ANA-3	Shewana3_1900	Shewana3_0658		Shewana3_0846			
	Shewana3_1901	Shewana3_2363					
	Shewana3_3430						
	Shewana3_3433						
S. sp. W3-18-1	Sputw3181_0792	Sputw3181_3486		Sputw3181_0873			
	Sputw3181_0795	Sputw3181_3743					
	Sputw3181_2104						
	Sputw3181_2105						

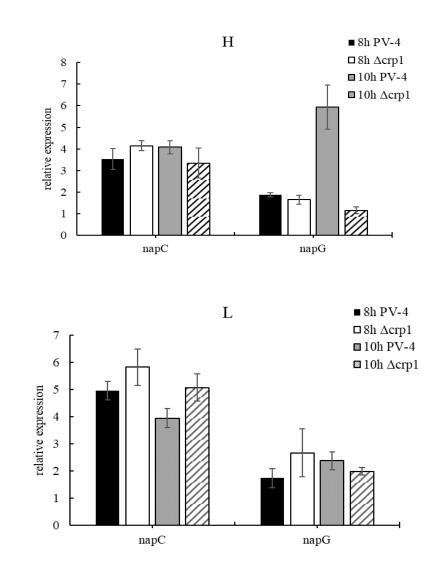
Supplemental Table S1 The presence of *napAB*, *nrfAH/nirBD*, *nirK*, *norBC* and *nosZ* orthologs in sequenced *Shewanella* genomes

Table S2. CRP/FNR homologues in in Shewanella loihica PV-4, Escherichia coli K-12, Shewanella oneidensis MR-1, Shewanella sp. W3-18-1, Shewanella denitrificans, Shewanella amazonensis, Marinobacter psychrophilus, Marinobacter sp. BSs20148, Pseudomonas sp. CCOS 191 and Pseudomonas aeruginosa LESB58

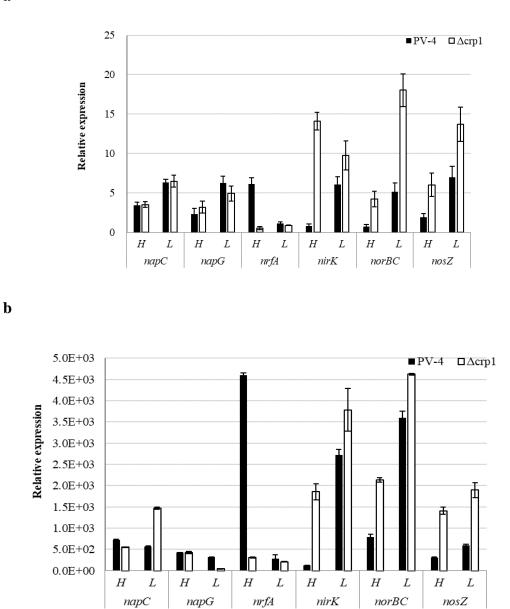

	crp1	crp2	crp3	crp4	nirK/nirS
Shewanella loihica PV-4	Shew_0585	Shew_3331	Shew_1993	Shew_3233	Shew_3335
Shewanella oneidensis MR-1	SO_0624	-	SO_2356	-	-
Shewanella sp. W3-18-1	Sputw3181_3522	-	Sputw3181_ 2054	-	-
Escherichia coli K-12	b3357	-	b1334	-	-
Pseudomonas aeruginosa LESB58	PLES_06311	PLES_0524 1	PLES_3784 1	-	PLES_05161
Pseudomonas sp. CCOS 191	CCOS191_4899	CCOS191_4 267	CCOS191_3 685	-	CCOS191_0 291
Marinobacter sp. BSs20148	MRBBS_3547	MRBBS_31 32	MRBBS_08 30	-	MRBBS_101 3
Marinobacter psychrophilus	ABA45_16645	ABA45_148 55	ABA45_043 40	-	ABA45_0524 5
Shewanella denitrificans	Sden_3190	Sden_3444	Sden_1843	-	Sden_3482
Shewanella amazonensis	Sama_3004	Sama_2685	Sama_1799	-	Sama_2681


Supplemental Figure S1 (a), Distance tree of CRP paralogues in different *Shewanella* species based on protein sequences similarity. *E. coli* CRP1 used as reference. (b), Distance tree of NirK in different *Shewanella* species based on protein sequences similarity. Bootstrap values (expressed as percentages of 1000 replications) \geq 50% are shown at branch points.

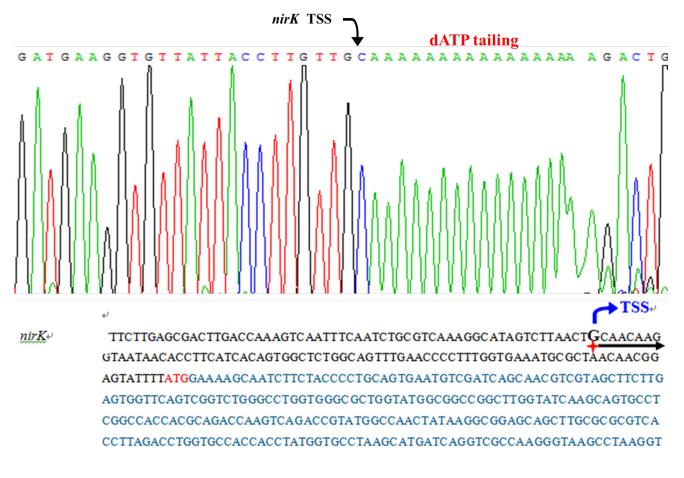
A. nri	A			
MR-1	AAGTGTGAAGAAGAAGAGTATTAC-A	ATT <u>TTGAT</u> CTAGCG <mark>CAA</mark> ACTT	CGT-TTCAGATACCCCC	TA : : : 23: : : TA ACT T
SB2B	AAATGTGAA GAADAA OACCTTTAC-A	ATTTTGATCTAGCGCAAACTT	CAA-CCCAGATACCCCOTAAGAG	TA : : : 23: : : TA ACT T
SMAV	AAATGTGACGAAGAAGACATTCAC-A	ACTATGATCTGCCTCAAGTTT	TAC-CCCGGATACCCCATAAGGG	TA: : : 23: : : TA ACT T
PV-4	AAATGTGACCAADAACACATTCAC-A	ATTATGATCTGCCTCAAGTTT	TGA-CCCGGA <mark>TACCCC</mark> ATAAGGG	GTA: : : 23: : : TAACTT
B. nap	D			
MR-1	AAOTGAGAGTTAGATCAOGCGTAAAA	CTTTGATCCCGATCGACTAT	ICCC-CTTCAATACCTCTTGTGAG	GTA: : : 22: : : TAGACT
SB2B	AAOTGA GAAGOAGA TOAO GOTCAAAA	ACATGATCTCTGTCTACAAA	ACCT-CTCTGATACCTCCTAGTGG	TA: : : 22: : : TA G A C T
SMAV	AAOTGAGAGTTAGGTCAOACGAAAAA	CTTTGATCTCGATCTACAAA	AGC-GCCAGTTACCOCTCAAGAG	TA: : : 22: : : TA GAC T
PV-4		CTTTGATCTCGATCTACAAA	AGC-TCCAGTTACCTCTCAAGAG	ETA : : : 22: : : TA G A C T
C. cyr	nA			
, MR-1	AAATGTCGOOTTGATCACATTTTTG	АТТСТААААТСАТТСАТТ	GCCTTAGCTACTTAAGGTGGTAC	ТТ ТАТАА А
SB2B	GATATTGATTTTACTCACAAACCCGC			
SMAV	GAGTTAGAGOTAGCTOTCATITTACC			
PV-4	TATTATCA GOAATT TOATAA A A TCTI			
D. nir				
SB2B	GACGTTAACGGAAAGTTTTTTTCGCC			
PV-4	TTAGCCAATTTGAAATTTCTTGAGCC			
SMAV	TTTGCTCATTGCACATTTTTTAGCG			
Sden	AAGCTTTTGCTAATTCGACTCCCACC	CACTTGATCTAGGTCAATTG	TGATTTTCATAACCCC	T G TA TG
E. naj	ρE			
MR-1	TGATCTAACTAAATCTATCGCCAAAT	TGATGATCTGGATCAAGCAT	CCA-AGGGTTTACCGATTTGGAGC	TTA : : : 24: : : TAT G AT
SB2B	TGACCCCCCTAAAAATACATAGAAAT	AGATGATCTGGATCAAGCG	GCAA-TCTTTTTTACCGATTTAGGGC	TA : : : 24: : : TAT GAT
SMAV	TGATCTGGGTTTTATCTGCGACAAAA	AGGATGATCCAGATCAAACCI	GCATAGAATTTACCGATTTAGGGG	ETA : : : 24: : : TA CC AT
PV-4	TGATCCGGGTTTTATCTGCTTCAAAA	GGATGATCCAGATCAAACCI	GCATAGAATT <u>TACCGATTTAGGG</u>	ETA: : : 24: : : TA CC AT
- · •	aaaTGTGAtctagaTCACAttt CRP	TTGAT ATCAA FNR	TACYYMTWWAKRRO NarP	GTA TATAAT -10


Supplemental Figure S2. Multiple sequence alignment of the 5'-upstream regions of *nap-alpha*, *nir*K, nap beta, *cym*A and *nrf*A genes. Sequence motifs recognized by CRP1, FNR and NarP are indicated below the alignment, with the most conserved sequences indicated in capital letters and others in small letters. Y, C or T; M, A or C; K, G or T; W, A or T; and R, G or A. The motifs in the upstream regions are shaded; in white for the capital letters and in black for the small letters. MR1, *Shewanella oneidensis*; SB2B, *Shewanella amazonensis*; SMAV, *Shewanella marisflavi*; PV4, *Shewanella loihica*. (1)

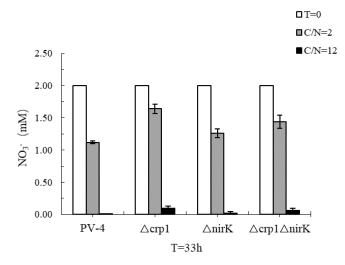
Supplemental Figure S3. The nitrate reduction of wild type strain of *S. loihica* PV-4 (a), in-frame deletion mutants $\Delta crp1$ (b), $\Delta nirK$ (c), $\Delta crp1 \Delta nirK$ double mutant (d) and in-frame deletion mutants $\Delta crp2$ (e) under high carbon/nitrogen ratios. The concentration of NO₃⁻, NO₂⁻, NH₄⁺ in the medium was measured under high carbon/nitrogen ratio (C/N=12), respectively. Lactate (10 mM) and nitrate (2 mM) were added to phosphate-buffered basal salt medium supplemented with 0.5 mM of ammonium chloride as nitrogen source. Results are the mean of three replicates and error bars indicates standard deviation.

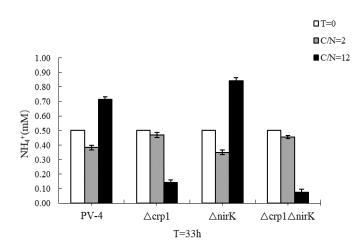


Supplemental Figure S4. The nitrate reduction of wild type strain of *S. loihica* PV-4 (a), in-frame deletion mutants $\Delta crp1$ (b), $\Delta nirK$ (c), $\Delta crp1 \Delta nirK$ double mutant (d) and in-frame deletion mutants $\Delta crp2$ (e) under low carbon/nitrogen ratios. The concentration of NO₃⁻, NO₂⁻, NH₄⁺ in the medium was measured under low carbon/nitrogen ratio (C/N=2), respectively. Lactate (1.66 mM) and nitrate (2 mM) were added to phosphate-buffered basal salt medium supplemented with 0.5 mM of ammonium chloride as nitrogen source. Results are the mean of three replicates and error bars indicates standard deviation.

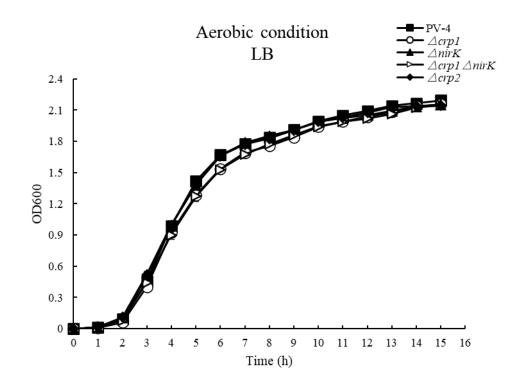


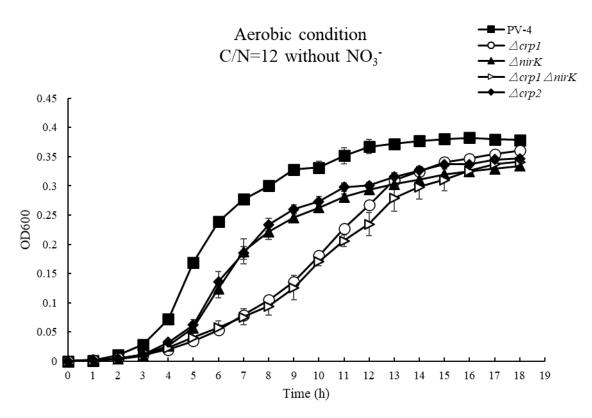
Supplemental Figure S5. The quantitative PCR analyses on transcriptional profile of nitrate reduction genes *napC* (CRP-independent *nap-alpha* gene cluster) and *napG* (CRP1-dependent *nap-beta* gene cluster) in the wild type strain *S. loihica* PV-4 and in-frame deletion mutant $\Delta crp1$ under high carbon/nitrogen ratios (a) and low carbon/nitrogen ratios (b) at 8 and 10 hours after anaerobic cultivation. H represents C/N=55, L represents C/N=4. Gene expression was normalized against the 16S rRNA gene using the $2^{-\Delta CT}$ calculation: $\Delta C_T = C_{Tgene of interest} - C_{T16S rRNA} (C_T, threshold cycle). Results are the mean of three replicates and error bars indicate standard deviation.$

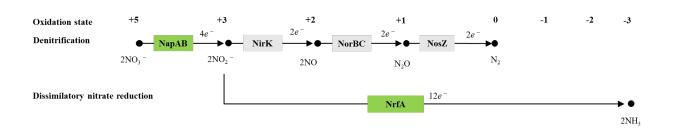

b

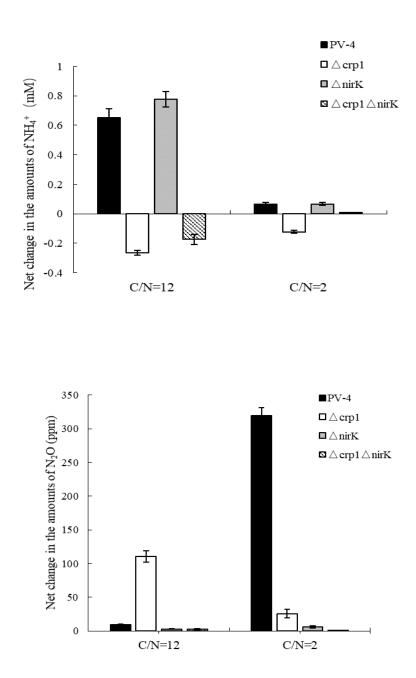

Supplemental Figure S6. The quantitative PCR analyses on transcriptional profile of nitrate reduction genes in the wild type strain *S. loihica* PV-4 and in-frame deletion mutant $\Delta crp1$ under different carbon/nitrogen ratios at 14 hours after anaerobic cultivation. The tests were repeated twice (a and b). Gene expression was normalized against the 16S rRNA gene using the $2^{-\Delta CT}$ calculation: $\Delta C_T = C_{Tgene of interest} - C_{T16S}$ rRNA (C_T , threshold cycle). H represents high carbon/nitrogen ratio, L represents low carbon/nitrogen ratio. Results are the mean of three replicates and error bars indicate standard deviation.

Supplemental Figure S7. Primer extension analysis of transcriptional start site (TSS) of the *nirK*.


b


□T=0 ■C/N=2 1.80 ■C/N=12 1.60 1.40 $\underbrace{ \underbrace{ \left(\underbrace{ \begin{matrix} 1.20 \\ 1.00 \\ 0 \\ 0 \end{matrix} \right)}_{, \ \ 0.60 }^{\mathbb{C}} } }_{ 0.60 }$ 0.40 0.20 0.00 _ PV-4 ∆nirK ∆crp1∆nirK ∆crp1 T=33h


Supplemental Figure S8. The nitrate (a), ammonium (b) and nitrite (c) concentrations of the *S. loihica* PV-4, in-frame deletion mutants $\Delta crp1$, $\Delta nirK$, and $\Delta crp1 \Delta nirK$ double mutant grown under different carbon/nitrogen ratios.


Supplemental Figure S9. Bacterial growth (optical density at 600 nm $[OD_{600}]$) of the *S. loihica* PV-4, in-frame deletion mutants $\Delta crp1$, $\Delta crp2$, $\Delta nirK$, and $\Delta crp1\Delta nirK$ double mutant in the rich medium (LB broth) under aerobic condition.

Supplemental Figure S10. Bacterial growth (optical density at 600 nm $[OD_{600}]$) of the *S. loihica* PV-4, in-frame deletion mutants $\Delta crp1$, $\Delta crp2$, $\Delta nirK$, and $\Delta crp1\Delta nirK$ double mutant under aerobic condition and high carbon/nitrogen ratio. Lactate (10 mM) was added to phosphate-buffered basal salt medium supplemented with 0.5 mM of ammonium chloride as nitrogen source without nitrate.

Supplemental Figure S11. Schematic diagram of electron transport and chemical valence change of the nitrate reduction (DNRA and denitrification) in *S. loihica* PV-4.

Supplemental Figure S12. Comparison of the degree change magnitude of ammonium (a) and nitric oxide (b) levels in the cultures of the wild type strain of *Shewanella loihica* PV-4, in-frame deletion mutants $\Delta crp1$, $\Delta nirK$, and $\Delta crp1\Delta nirK$ double mutant grown under different carbon/nitrogen ratios.

b

References:

 Stewart V, Bledsoe PJ, Chen L-L, Cai A. 2009. Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in *Escherichia coli* K-12. J Bacteriol 191:996-1005.