Supporting Information

Steering the Methane Dry Reforming Reactivity of Ni/La₂O₃ Catalysts by Controlled *In Situ* Decomposition of doped La₂NiO₄ Precursor Structures

Maged F. Bekheet,¹ Parastoo Delir Kheyrollahi Nezhad,^{2,3} Nicolas Bonmassar³, Lukas

Schlicker¹, Albert Gili¹, Sebastian Praetz,⁴ Aleksander Gurlo¹, Andrew Doran⁵, Yuanxu Gao⁶,

Marc Heggen⁶, Aligholi Niaei,² Ali Farzi,² Sabine Schwarz,⁷ Johannes Bernardi⁷, Bernhard

Klötzer³ and Simon Penner^{3,*}

¹Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany

²Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz, Iran

³Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria

⁴ Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

⁵Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California

94720, USA

⁶Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen Forschungszentrum Jülich GmbH52425 Jülich, Germany ⁷University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria *Corresponding Author: simon.penner@uibk.ac.at, Tel: 004351250758003, Fax: 004351250758199

Section A: BET analysis

Table S1: BET surface area (m^2g^{-1}) of the four catalysts before and after catalytic DRM at 800 °C for 90 min, obtained from 5 point measurements recorded at 77 K after degassing the samples under vacuum for 10 h at 200 °C.

Sample	Before DRM	After DRM
La ₂ Ni _{0.9} Cu _{0.1} O ₄	3.252	4.241
$La_2Ni_{0.8}Cu_{0.2}O_4$	2.218	3.896
La _{1.8} Ba _{0.2} Ni _{0.9} Cu _{0.1} O ₄	3.695	4.748
La _{1.8} Ba _{0.2} NiO ₄	4.549	3.021

Section B: Electron microscopy analysis of $La_{1.8}Ba_{0.2}NiO_4$ and $La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O_4$ in the states before and after DRM at 800 °C.

Figure S1: Electron microscopy analysis of $La_{1.8}Ba_{0.2}NiO_4$ in the initial and DRM-spent state at 800 °C. Panels A and C: HAADF images, Panels B and D: EDX analysis of the O-K, Ba-L, La-L and Ni-K.

Figure S2: Electron microscopy analysis of La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O₄ in the initial and DRM-spent state at 800 °C. Panels A and C: HAADF images, Panels B and D: EDX analysis of the O-K, Ba-L, La-L, Cu-K and Ni-K.

Figure S3: Transmission electron microscopy overview images of $La_{1.8}Ba_{0.2}NiO_4$ and $La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O_4$ in the initial (Panels A and C, respectively) and the DRM-spent state (Panels B and D, respectively).

Figure S4: Selected area electron diffraction patterns of $La_{1.8}Ba_{0.2}NiO_4$ and $La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O_4$ in the initial (Panels A and C, respectively) and the DRM-spent state (Panels B and D, respectively).

Figure S5: Aberration-corrected high-resolution electron microscopy images of $La_2Ni_{0.9}Cu_{0.1}O_4$ (Panel A) and $La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O_4$ (Panel B) in the initial state.

Representative lattice fringes of the orthorhombic La_2NiO_4 structure have been Fourier-filtered and accordingly color-coded to highlight the presence of individual grains.

Section C: Additional XRD analysis

Figure S6: Panel A: *In situ* collected XRD patterns of $La_{1.8}Ba_{0.2}NiO_4$ during heating up to 800 °C under DRM conditions. Panels B focus on a narrower 20 window for closer analysis. The lower panel indicates the phase assignment to the respective reference structures. Panel C: *In situ* collected XRD patterns of $La_{1.8}Ba_{0.2}NiO_4$ during holding at 800 °C for 60 min under DRM

conditions. Panels D focus on a narrower 2θ window for closer analysis. The lower panel indicates the phase assignment to the respective reference structures.

Figure S7: Weight fractions of different crystalline phases formed during DRM as a function of temperature (A) and time at 800 °C (B) obtained by Rietveld refinement of the *in situ* collected XRD patterns of $La_{1.8}Ba_{0.2}NiO_4$.

Figure S8: *In situ* collected XRD patterns of $La_2Ni_{0.9}Cu_{0.1}O_4$ during heating up to 800 °C under DRM conditions. Panels B focus on a narrower 20 window for closer analysis. The lower panel indicates the phase assignment to the respective reference structures.

Figure S9: Weight fractions of different crystalline phases formed during DRM as a function of temperature obtained by Rietveld refinement of the in situ collected XRD patterns of $La_2Ni_{0.9}Cu_{0.1}O_4$.

Figure S10: Evolution of the unit cell volume of pure and doped La_2NiO_4 samples as a function of temperature in the DRM mixture.

Figure S11: *Ex situ* collected PXRD patterns of La₂Ni_{0.8}Cu_{0.2}O₄ (A), La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O₄ (B), La₂Ni_{0.9}Cu_{0.1}O₄ (C), and La_{1.8}Ba_{0.2}NiO₄ (D) Ruddlesden-Popper materials before and after a catalytic DRM (CO₂:CH₄:He = 1:1:3) runs in a total gas flow of 100 mL min⁻¹ at different conditions.

Section D: Additional XANES analysis

Figure S12: Normalized Ni *K*-edge X-ray absorption fine structure (XANES) of pure and doped La₂NiO₄ Ruddlesden-Popper materials as well of reference materials (NiO and LaNiO₃).

Figure S13: Linear combination fitting (LCF) of normalized Ni K-edge XANES spectra of $La_2Ni_{0.8}Cu_{0.2}O_4$ and $La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O_4$ with those of reference materials (NiO and La_2NiO_4).

Figure S14: Full set of Ni 3p species of La_{1.8}Ba_{0.2}Ni_{0.9}Cu_{0.1}O₄ (Panel A), La_{1.8}Ba_{0.2}NiO₄ (Panel

B) and $La_2Ni_{0.8}Cu_{0.2}O_4$ (Panel C) after selected DRM treatments.