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Figure S1. Comparison of total runtime required to analyze each simulated dataset. The 

number of cells of these simulated datasets are 1,000, 5,000, 10,000, 20,000 and 30,000.  
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Figure S2. Comparison of integration performance of scMC with LIGER, Seurat V3 and 

Harmony on PBMC dataset with all cells. UMAP visualization of the uncorrected data, and the 

corrected data by LIGER, Seurat V3, Harmony and scMC. Cells are colored by experimental 

conditions (top panels). Red and blue represent control and stimulated conditions. In the bottom 

panels, cells are colored based on the published cell labels.  
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Figure S3. scMC aligns and preserves condition-specific cell subpopulations on perturbed 

PBMC datasets. (A) UMAP visualization of the corrected data from LIGER, Seurat V3, Harmony 

and scMC across the control and stimulated conditions in the perturbed PBMC datasets. Each 

row represents the results from one method, and each column represents one perturbed dataset 

in which only one cell subpopulation was retained in the control condition (indicated on the top). 
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Cells that are retained in the control condition were colored by green, cells from the corresponding 

same cell subpopulation in the stimulated condition are colored by blue, and other cells in the 

stimulated condition are colored by grey.  (B) UMAP visualization of the corrected data from 

LIGER, Seurat V3, Harmony and scMC across the control and stimulated conditions. Each 

column represents one perturbed dataset, where the cell subpopulation removed in the control 

condition is labeled on the top, and CD14 Mono and DC cell subpopulations are also removed in 

the stimulated condition for all cases. CD14 Mono and DC cells from the control condition are 

colored by green, and other cells from the control condition are colored by red. The cell 

subpopulation removed from the control condition is specific in the stimulated condition, which 

are colored by blue. Other cells in the stimulated condition are colored by purple.  
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Figure S4. Comparison of integration performance by evaluating the trade-off between 

bLISI and cLISI on the perturbed PBMC dataset, related to Figure 3a. Each panel shows the 

results of one perturbed dataset in which only one cell subpopulation was retained in the control 

condition (indicated on the top). Each dot plot shows the computed bLISI (x-axis) and 1-cLISI (y-

axis) of each method. One dot represents one method. scMC consistently exhibits better 

performance on both batch effect removal and cell type separation, which are assessed by bLISI 

and 1-cLISI.  
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Figure S5. Overlay the expression levels of known marker genes associated with each 

population in control and Hedgehog activation during mouse skin wound healing. Each 

column represents the UMAP visualization of the corrected data from one of the four methods: 

LIGER, Seurat V3, Harmony and scMC. Cells are colored based on the expression levels of each 

marker gene. Dark red and grey colors represent the high and zero expression.  

 



 8 

 

 

Figure S6. The performance of LIGER, Seurat V3, Harmony and scMC on the integration of 

two replicates from skin E13.5 embryonic development datasets. (A) UMAP visualization of 
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the corrected data from LIGER, Seurat V3, Harmony and scMC across the two E13.5 biological 

replicates. Cells are colored by replicate labels. Red and blue colors represent replicates 1 and 

2. (B) UMAP visualization of the corrected data from LIGER, Seurat V3, Harmony and scMC 

across the two E13.5 biological replicates. Cells are colored based on the identified cell 

subpopulations by applying Leiden algorithm to the corrected data of each method. (C) Overlay 

the expression levels of marker genes onto the UMAP spaces given by LIGER, Seurat V3, 

Harmony and scMC. Each row represents the UMAP space of one method. Dark red and grey 

colors represent the high and zero expression. 

 



 10 

 

 

Figure S7. The performance of LIGER, Seurat V3, Harmony and scMC on the integration of 

two replicates from skin E14.5 embryonic development datasets. (A) UMAP visualization of 
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the corrected data from LIGER, Seurat V3, Harmony and scMC across the two E14.5 biological 

replicates. Cells are colored by replicate labels. Red and blue colors represent replicates 1 and 

2. (B) UMAP visualization of the corrected data from LIGER, Seurat V3, Harmony and scMC 

across the two E14.5 biological replicates. Cells are colored based on the identified cell 

subpopulations by applying Leiden algorithm to the corrected data of each method. (C) Overlay 

the expression levels of marker genes onto the UMAP spaces given by LIGER, Seurat V3, 

Harmony and scMC. Each row represents the UMAP space of one method. 

 

 

 

Figure S8. The performance of LIGER on the integration of single cell time course data 

during skin embryonic development. (A) UMAP visualization of the corrected data from LIGER 

on the time course scRNA-seq datasets from E13.5 to E14.5. Cells are colored by the replicates 

and time points. (B) UMAP visualization of the corrected data from LIGER. Cells are colored by 

the identified cell subpopulations from the corrected data. (C) Overlay the expression levels of 
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markers of dermal (Col1a1 and Lum) and epidermal cells (Krt14 and Krt10) onto the UMAP space. 

(D) PHATE visualizations for the epidermal cells from both E13.5 and E14.5, only E13.5 and only 

E14.5.  (E) Overlay the expression levels of markers of epidermal cells (Krt5, Krt14, Krt10 and 

Lor) onto the PHATE space. (F) PHATE visualizations for the dermal cells from both E13.5 and 

E14.5, only E13.5 and only E14.5.  (G) Overlay the expression levels of markers of dermal cells 

(Lox and Col1a1) and DC cells (Sox2 and Bmp4) onto the PHATE space.  

 

 

 

Figure S9. The performance of Seurat V3 on the integration of single cell time course data 

during skin embryonic development. (A) UMAP visualization of the corrected data from Seurat 

V3 on the time course scRNA-seq datasets from E13.5 to E14.5. Cells are colored by the 

replicates and time points. (B) UMAP visualization of the corrected data from Seurat V3. Cells are 

colored by the identified cell subpopulations from the corrected data. (C) Overlay the expression 

levels of markers of dermal (Col1a1 and Lum) and epidermal cells (Krt14 and Krt10) onto the 
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UMAP space. (D) PHATE visualizations for the epidermal cells from both E13.5 and E14.5, only 

E13.5 and only E14.5.  (E) Overlay the expression levels of markers of epidermal cells (Krt5, 

Krt14, Krt10 and Lor) onto the PHATE space. (F) PHATE visualizations for the dermal cells from 

both E13.5 and E14.5, only E13.5 and only E14.5.  (G) Overlay the expression levels of markers 

of dermal cells (Lox and Col1a1) and DC cells (Sox2 and Bmp4) onto the PHATE space.  

 

 

 

Figure S10. The performance of Harmony on the integration of single cell time course data 

during skin embryonic development. (A) UMAP visualization of the corrected data from 

Harmony on the time course scRNA-seq datasets from E13.5 to E14.5. Cells are colored by the 

replicates and time points. (B) UMAP visualization of the corrected data from Harmony. Cells are 

colored by the identified cell subpopulations from the corrected data. (C) Overlay the expression 

levels of markers of dermal (Col1a1 and Lum) and epidermal cells (Krt14 and Krt10) onto the 

UMAP space. (D) PHATE visualizations for the epidermal cells from both E13.5 and E14.5, only 



 14 

E13.5 and only E14.5.  (E) Overlay the expression levels of markers of epidermal cells (Krt5, 

Krt14, Krt10 and Lor) onto the PHATE space. (F) PHATE visualizations for the dermal cells from 

both E13.5 and E14.5, only E13.5 and only E14.5.  (G) Overlay the expression levels of markers 

of dermal cells (Lox and Col1a1) and DC cells (Sox2 and Bmp4) onto the PHATE space. 

 

 

Figure S11. The integration performance of LIGER, Seurat V3, Harmony and scMC on the 

scATAC-seq data.  (A) UMAP visualization of the corrected data from LIGER, Seurat V3, 

Harmony and scMC on scATAC-seq data with the feature matrix transformed by ChromVAR. 

Cells are colored by the biological conditions. Red color represents condition 1 with cells from 

Whole Brain replicate 1, Large Intestine replicate 1, Liver and Heart. Blue color represents 

condition 2 with cells from Whole Brain replicate 2 and Large Intestine replicate 2.  (B) UMAP 

visualization of the corrected data from LIGER, Seurat V3, Harmony and scMC on scATAC-seq 

data with the feature matrix transformed by Gene Scoring. scMC outperformes other methods in 

preserving condition-specific tissues.  
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Figure S12. Comparison of integration performance using other 9 evaluation metrics on 

scATAC-seq dataset. (A) Evaluation of integration methods using other 9 metrics, which are 

grouped into two categories: batch effect removal (i..e, Batch correction) and biological variation 

conservation (i..e, Bio conservation) on ChromVAR-kmer transformed data.  (B) Comparison of 

the overall scores among different methods, calculated based on batch effect removal metrics, 

biological variation conservation metrics, and both batch effect removal and biological variation 

conservation metrics on ChromVAR-kmer transformed data. (C) Dot plot showing the computed 

bLISI (x-axis) and 1-cLISI (y-axis) of each method on ChromVAR-kmer transformed data. The 

bLISI and cLISI were computed on all cells except cells in the dataset-specific clusters (i.e. Liver 

and Heart). One dot represents one method. scMC exhibits a good trade-off between bLISI and 

cLISI. (D-F) Comparison of integration performance on the GeneScoring transformed data. 
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Figure S13. scMC reveals the biological heterogeneity of brain tissue on the scATAC-seq 

dataset. (A) UMAP visualization of the corrected data from scMC on the scATAC-seq dataset. 

The identified cell subpopulations in the brain tissue are highlighted and colored. Cells from other 

tissues are colored in grey. (B) Hierarchical clustering of chromVAR deviations for all the identified 

TFs (columns) and brain cells (rows), calculated using the differential loci among these four 

subpopulations. Hierarchical clustering analysis shows the patterns of these TFs were almost 

specific to each particular cell subpopulation, as indicated by the color bar on the right 

representing the group information of cells. (C) Enriched biological processes of the differential 

loci associated with each cell subpopulation.  
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Figure S14. Transfer performance of scMC on simulated dataset 3. (A) UMAP visualization 

of the corrected data by applying scMC to the cells from Batch 1 and Bach 2 on simulated dataset 

3. Cells are colored by batches (left) and cell types (right). (B) UMAP visualization of all the 

corrected data from Batch 1, Batch 2 and Batch 3 by projecting the cells from Batch 3 onto the 

correction vectors learned from Batch1 and Batch 2. Cells are colored by batches (left) and cell 

types (right). The cells with the same cell type labels from Batch 3 are correctly placed onto the 

UMAP space. 
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Figure S15. Performance of scMC with different number of highly variable genes (HVGs) 

as input. (A) UMAP visualization of the corrected data from scMC with 4457 and 10000 HVGs 

as input on the simulation dataset 1. Cells are colored by batches (top) and cell types (bottom). 

(B) UMAP visualization of the corrected data from scMC with 4792 and 17912 HVGs as input on 

the mouse skin wound healing dataset. Cells are colored by batches (top) and annotated cell 

labels (bottom). The Hh in-active fibroblast and Hh active fibroblast subpopulations can be 

consistently identified.  
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Figure S16. The performance of scMC with the varied λ on all simulation datasets. (A) 

UMAP visualization of the corrected data from scMC with λ varying from 0.1 to 20. For the first 

three datasets, cells are colored by batch labels (top row) and golden standard cell labels (bottom 

row). For the dataset 4, cells are colored by batch labels (top row) and golden standard cell 
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pseudotime values (bottom row).  (B) The evolution of the ratio (denoted by R) of technical 

variation among the total variation with the increasing of λ. 

 

 

 

 

 

Figure S17. The performance of scMC with the varied λ on two real datasets. (A) UMAP 

visualization of the corrected data from scMC on the Hedgehog activation mouse skin scRNA-

seq data with λ varying from 0.1 to 20. Cells are colored by experimental conditions. (B) The 

evolution of the ratio (denoted by R) of technical variation among the total variation with the 

increasing of λ on the control and Hedgehog activation mouse skin scRNA-seq data. (C) UMAP 

visualization of the corrected data from scMC on skin embryonic development data with λ varying 

from 0.1 to 20. Cells are colored by the sample identity. (D) The evolution of R with the increasing 

of λ on the skin embryonic development data. 
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Figure S18. The performance of scMC with the varied T on all simulation datasets. (A) 

UMAP visualization of the corrected data from scMC with T varying from 0.55 to 0.8. For the first 

three datasets, cells are colored by batch labels (top row) and golden standard cell labels (bottom 

row). For the dataset 4, cells are colored by batch labels (top row) and golden standard cell 



 22 

pseudotime values (bottom row).  (B) The evolution of the ratio (denoted by R) of technical 

variation among the total variation with the increasing of T. 

 

 

 

Figure S19. The performance of scMC with the varied T on two real datasets. (A) UMAP 

visualization of the corrected data from scMC on Hedgehog activation mouse skin data with T 

varying from 0.5 to 0.7. Cells are colored by experimental conditions. (B) The evolution of the 

ratio (denoted by R) of technical variation among the total variation with the increasing of T on the 

Hedgehog activation mouse skin data. (C) UMAP visualization of the corrected data from scMC 

on skin embryonic development data with T varying from 0.5 to 0.7. Cells are colored by the 

sample identity. (D) The evolution of R with the increasing of T on the skin embryonic development 

data. 

 

 

 

 

 

 

 

 

 


