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Web Appendix 1 Identification of the causal incidence rate ratio

by PERR

1.1 Identifiability conditions

We restate the identifiability conditions from the main text:

1. Consistency among the actually treated: ra=1
post (A = 1) = rpost(A = 1).

2. Hypothetical intervention to implement the control strategy does not affect the pretreatment event rate

among the treated: ra=0
pre (A = 1) = rpre(A = 1).

3. Common rate-change assumption on the multiplicative scale:
ra=0
post (A = 1)

ra=0
pre (A = 1)

=
rpost(A = 0)

rpre(A = 0)
.

4. Positivity of the treatment probability: 1 > Pr[A = 1] > 0.

5. Positivity of event rates: for a ∈ {0, 1}, rpre(A = a) > 0 and rpost(A = a) > 0.

1.2 Identification

We will show that under the identifiability conditions described above, the causal incidence rate ratio

IRRcausal(A = 1) equals the prior event rate ratio (PERR), defined as

PERR ≡ rpost(A = 1)/rpost(A = 0)

rpre(A = 1)/rpre(A = 0)
.

Starting with the right-hand-side of the above expression,

rpost(A = 1)/rpost(A = 0)

rpre(A = 1)/rpre(A = 0)
=
rpost(A = 1)

rpre(A = 1)
× rpre(A = 0)

rpost(A = 0)

=
ra=1
post (A = 1)

ra=0
pre (A = 1)

×
ra=0
pre (A = 1)

ra=0
post (A = 1)

=
ra=1
post (A = 1)

ra=0
post (A = 1)

≡ IRRcausal(A = 1),
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where the first equality follows from algebraic re-writing of the definition of PERR, the second from as-

sumptions 1 through 3, the third from cancellation of terms, and the last from the definition of the causal

incidence rate ratio.

1.3 Examples of violations of the identifiability conditions

As noted in the main text, identifiability conditions 1 through 3, which directly involve counterfactual

quantities, make up the core of the PERR method and cannot be verified using observed data (i.e., they are

untestable). Their plausibility is context- dependent, and can only be assessed using background knowledge.

To develop intuition for these three conditions, we now discuss how they might be violated in applications.

Assumption 1 is violated if the treated group (A = 1), would have a different outcome rate in the

posttreatment period under intervention to implement the treatment strategy a = 1, for example, if the

implementation of the intervention has an effect on the outcome not through treatment itself. Furthermore,

implicit in our notation is that a = 1 is a well-defined intervention. For example, assumption 1 is not

meaningful when treatment variation irrelevance [1] does not hold for different proton pump inhibitors (i.e.,

when different proton pump inhibitors in use have different effects on the outcome).

Assumption 2 is violated if the intervention to implement the control strategy (i.e., to set a = 0) would

lead to behavior changes among members of the treated group (A = 1) that would change the rate in the

pretreatment period. For example, if the group that normally would have received treatment, upon learning

that treatment might be denied, changes their behavior in a way that affects the pretreatment event rate

(e.g., by adopting ancillary interventions during the pretreatment period).

Assumption 3 is violated when time-varying factors that affect the outcome differ between the treated

and control groups. For example, if the control group receives ancillary interventions during the posttreat-

ment period that affect the outcome and are not provided to the treated group, then the observed ratio of

the pretreatment and posttreatment period rates in the control group may not be representative of the ratio

of the counterfactual pretreatment and posttreatment period rates in the treated group under intervention

to implement the control strategy. Furthermore, environmental (e.g., epidemic waves in infectious disease

applications) or policy changes (e.g., implementation of clinical practice guidelines or reimbursement deci-
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sions) that occur over time and differentially impact the treated and control group can lead to violations of

the assumption.

1.4 Identification conditional on covariates

For completeness, we show how to extend the results in the previous section to use baseline time-fixed

covariates. Let X denote these covariates (unaffected by treatment); ra=0
post (X = x,A = 1) the conditional

counterfactual (potential) posttreatment event rate had we intervened to implement the control strategy

a = 0 in the treated group with covariate pattern X = x; ra=1
post (X = x,A = 1) the conditional counterfactual

posttreatment event rate had we intervened to implement the treatment strategy a = 1 to the treated group

with covariate pattern X = x; ra=0
pre (X = x,A = 1) the conditional counterfactual pretreatment event rate

had we intervened to implement the control strategy a = 0 in the treated group; and rpre(X = x,A = a)

and rpost(X = x,A = a) denote the factual pretreatment and posttreatment event rate, respectively, among

individuals with covariate pattern X = x who received treatment A = a. Last, for covariate pattern X = x

define the conditional prior event rate ratio as

PERR(x) ≡ rpost(X = x,A = 1)/rpost(X = x,A = 0)

rpre(X = x,A = 1)/rpre(X = x,A = 0)
,

and the conditional causal incidence rate ratio as

IRRcausal(X = x,A = 1) ≡
ra=1
post (X = x,A = 1)

ra=0
post (X = x,A = 1)

.

The modified identifiability conditions for the conditional causal incidence rate ratio are:

1. Consistency among the actually treated: ra=1
post (X = x,A = 1) = rpost(X = x,A = 1).

2. Hypothetical intervention to implement the control strategy does not affect the pretreatment event rate

among the treated: ra=0
pre (X = x,A = 1) = rpre(X = x,A = 1).

3. Common rate-change assumption on the multiplicative scale:
ra=0
post (X = x,A = 1)

ra=0
pre (X = x,A = 1)

=
rpost(X = x,A = 0)

rpre(X = x,A = 0)
.
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4. Positivity of the treatment probability: 1 > Pr[A = 0|X = x] > 0 for for all x with positive density

fX,A(x,A = 1) > 0.

5. Positivity of the conditional event rates: for a ∈ {0, 1} and for all x with positive density fX,A(x,A =

a) > 0, rpre(X = x,A = a) > 0 and rpost(X = x,A = a) > 0.

Under these identifiability conditions, the conditional causal incidence rate ratio is identified by the

conditional prior event rate ratio; that is,

IRRcausal(X = x,A = 1) = PERR(x).
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Web Appendix 2 Identification of the causal incidence rate differ-

ence by PERD

2.1 Identifiability conditions

1. Consistency among the actually treated: ra=1
post (A = 1) = rpost(A = 1).

2. Hypothetical intervention to implement the control treatment does not affect the pretreatment event rate

among the treated: ra=0
pre (A = 1) = rpre(A = 1).

3∗. Common rate-change assumption on the difference scale: ra=0
post (A = 1) − ra=0

pre (A = 1) = rpost(A =

0)− rpre(A = 0)

4. Positivity of the treatment probability: 1 > Pr[A = 1] > 0.

In addition to these conditions, we assume that all subjects can be observed from the start of the

pretreatment period until the end of the posttreatment period (i.e., no censoring and no competing risks).

2.2 Identification

We will show that under the identifiability conditions described above, the causal incidence risk difference

IRDcausal(A = 1) equals the prior event rate difference, PERD, defined as

PERD ≡
{
rpost(A = 1)− rpost(A = 0)

}
−
{
rpre(A = 1)− rpre(A = 0)

}
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Starting with the right-hand-side of the above expression,

rpost(A = 1)− rpost(A = 0)− rpre(A = 1) + rpre(A = 0)

= ra=1
post (A = 1)− ra=0

pre (A = 1)− rpost(A = 0) + rpre(A = 0)

=
{
ra=1
post (A = 1)− ra=0

pre (A = 1)
}
−
{
ra=0
post (A = 1)− ra=0

pre (A = 1)
}

= ra=1
post (A = 1)− ra=0

post (A = 1)

≡ IRDcausal(A = 1),

where the first equality follows from conditions 1 and 2 ; the second from condition 3∗, the third from

cancellation of terms; and the last from the definition of the causal incide rate difference.

2.3 Identification conditional on covariates

For completeness, we again show how to extend the results in the previous section to use baseline time-fixed

covariates. As for the PERR results presented above, X denotes these baseline covariates. For covariate

pattern X = x define the conditional prior event rate difference as

PERD(x) ≡
{
rpost(X = x,A = 1)− rpost(X = x,A = 0)

}
−
{
rpre(X = x,A = 1)− rpre(X = x,A = 0)

}
,

and the conditional causal incidence rate difference as

IRDcausal(X = x,A = 1) ≡ ra=1
post (X = x,A = 1)− ra=0

post (X = x,A = 1).

The modified identifiability condition for the conditional causal incidence rate difference is:

3∗. Common rate-change assumption on the additive scale:

ra=0
post (X = x,A = 1)− ra=0

pre (X = x,A = 1) = rpost(X = x,A = 0)− rpre(X = x,A = 0);
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Furthermore, we retain conditions 1, 2, and 4, but no longer need condition 5 (i.e., we no longer need to

assume that the event rates are strictly positive).

Under these identifiability conditions, the conditional causal incidence rate difference is identified by the

conditional prior event rate difference; that is,

IRDcausal(X = x,A = 1) = PERD(x).
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Web Appendix 3 Identification of the causal hazard ratio by PEHR

3.1 Observed data

We assume a common time origin at the beginning of the pretreatment period (t = 0); the interval Tpre

represents time from the origin to the end of the pretreatment period and the interval Tpost represents

time from the start of treatment to the end of the posttreatment period (i.e., the end of the study). Let

hpre(t, A = a) be the pretreatment hazard rate at time t ∈ Tpre, among individuals who received treatment

A = a; and hpost(t, A = a) be the posttreatment hazard rate at time t ∈ Tpost, among individuals who

received treatment A = a. As in the main text, we take treatment A to be binary, so that a ∈ {0, 1}, and we

assume that the outcome of interest can recur (i.e., it is not a terminal outcome). This simple scheme for

failure-time outcomes allows us to illustrate an identification strategy for the causal hazard ratio among the

treated that relates closely to the strategies we used to identify the causal rate ratio and rate difference. The

strategy can be extended to more complex schemes for failure-time outcomes (e.g., see [2]) but a detailed

treatment of each of these schemes is outside the scope of this paper.

3.2 Causal quantities of interest

For time t ∈ Tpost, let ha=0
post (t, A = 1) be the counterfactual posttreatment hazard rate under intervention

to implement the control strategy a = 0 in the treated group and ha=1
post (t, A = 1) be the counterfactual

posttreatment hazard rate under intervention to implement the treatment strategy a = 1 in the treated

group. For time t ∈ Tpre, let ha=0
pre (t, A = 1) be the counterfactual pretreatment hazard rate had we intervened

to implement the control strategy a = 0 in the treated group. We define the causal hazard ratio (HR) among

the treated at time t ∈ Tpost, as

HRcausal(t, A = 1) ≡
ha=1

post (t, A = 1)

ha=0
post (t, A = 1)

.

Under this definition, the hazard ratio in the posttreatment period may vary over time.
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3.3 Identification of the causal hazard rate ratio by PEHR

3.3.1 Identifiability conditions

We assume that the following identifiability conditions hold:

HR1. Consistency among the actually treated: ha=1
post (t, A = 1) = hpost(t, A = 1), t ∈ Tpost; among the treated

group, the posttreatment counterfactual hazard rate under intervention to assign treatment strategy a = 1

is equal to the factual hazard rate.

HR2. Hypothetical intervention to withhold treatment does not affect the pretreatment period hazard rate

among the treated: ha=0
pre (t, A = 1) = hpre(t, A = 1), t ∈ Tpre; the factual pretreatment hazard rate among the

treated equals the counterfactual hazard rate of the same group under intervention to implement the control

strategy.

HR3. Proportional hazards in the pretreatment period: hpre(t, A = 1) = hpre(t, A = 0) exp(βpre), t ∈ Tpre; this

assumption states that the hazard ratio comparing the treated and untreated group during the pretreatment

period does not vary over time.

HR4. Proportional hazards in the posttreatment period: hpost(t, A = 1) = hpost(t, A = 0) exp(βpost), t ∈

Tpost; this assumption states that the hazard ratio comparing the treated and untreated group during the

posttreatment period does not vary over time.

HR5. Common hazard ratio assumption:

ha=0
post (t, A = 1)

hpost(t, A = 0)
=
ha=0

pre (t′, A = 1)

hpre(t′, A = 0)
, for every t ∈ Tpost and every t′ ∈ Tpre.

HR6. Positivity of the treatment probability: 1 > Pr[A = 1] > 0.

HR7. Positivity of the hazard rates: hpre(t, A = 0) > 0, for t ∈ Tpre; and hpost(t, A = 0) > 0, for t ∈ Tpost;

and βpre and βpost are real numbers (i.e., not infinite).

In addition to these conditions, we assume that all subjects can be observed from the start of the

pretreatment until the end of the posttreatment period. Extensions to address identification in the presence
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of drop-out or competing events are possible but beyond the scope of this paper.

3.3.2 Identification

We will show that under identifiability conditions HR1 through HR7 described above, the causal hazard

ratio among the treated HRcausal(t, A = 1) does not vary over time and is identifiable by the population prior

event ratio of hazard ratios (PEHR),

PEHR ≡ exp(βpost)

exp(βpre)
, which also does not vary over time.

To derive the identification result, first, note that PEHR is well-defined by assumption HR7 and throuh-

gout this derivation all quantities conditional on A = a, for a ∈ {0, 1} are well-defined by condition HR6.

Next, by assumptions HR3 and HR7, exp(βpre) =
hpre(t, A = 1)

hpre(t, A = 0)
, which does not vary over t ∈ Tpre and

is positive. Using assumption HR2, this result implies that

exp(βpre) =
ha=0

pre (t, A = 1)

hpre(t, A = 0)
, (3.1)

where the right-hand-side also does not vary over t ∈ Tpre and is positive.

By assumptions HR4 and HR7, exp(βpost) =
hpost(t, A = 1)

hpost(t, A = 0)
, which does not vary over t ∈ Tpost and is

positive. Using assumption HR1, this result implies that

exp(βpost) =
ha=1

post (t, A = 1)

hpost(t, A = 0)
, (3.2)

where the right-hand-side also does not vary over t ∈ Tpost and is positive.

Using the definition of PEHR, and the results in equations (3.1) and (3.2), we obtain

PEHR ≡ exp(βpost)

exp(βpre)
=
ha=1

post (t, A = 1)/hpost(t, A = 0)

ha=0
pre (t′, A = 1)/hpre(t′, A = 0)

, for every t′ ∈ Tpre and every t ∈ Tpost,

and where the far right-hand-side does not vary over t′ ∈ Tpre or t ∈ Tpost.
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By assumption HR5, we can re-write the above result as

PEHR ≡ exp(βpost)

exp(βpre)
=
ha=1

post (t, A = 1)/hpost(t, A = 0)

ha=0
pre (t′, A = 1)/hpre(t′, A = 0)

=
ha=1

post (t, A = 1)/hpost(t, A = 0)

ha=0
post (t, A = 1)/hpost(t, A = 0)

=
ha=1

post (t, A = 1)

ha=0
post (t, A = 1)

≡ HRcausal(t, A = 1),

where all ratios or ratios-of-ratios do not vary over t′ ∈ Tpre or t ∈ Tpost.

Remark: As shown above, exp(βpre) =
ha=0

pre (t′, A = 1)

hpre(t′, A = 0)
, and thus, using assumption HR5,

exp(βpre) =
ha=0

pre (t′, A = 1)

hpre(t′, A = 0)
=
ha=0

post (t, A = 1)

hpost(t, A = 0)
for every t′ ∈ Tpre and every t ∈ Tpost.

Because the far left-hand-side does not vary over time, it has to be that

ha=0
post (t, A = 1)

ha=0
pre (t′, A = 1)

=
hpost(t, A = 0)

hpre(t′, A = 0)
for every t′ ∈ Tpre and every t ∈ Tpost.

This expression is analogous to the rate-change assumptions in the main text.
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Web Appendix 4 Should we use PERR or PERD?

4.1 Observed data implications of the identifiability conditions for PERR and

PERD

Suppose that the conditions needed for both PERR and PERD to have a causal interpretation held simul-

taneously. Then, the two rate-change conditions, would be

ra=0
post (A = 1)

ra=0
pre (A = 1)

=
rpost(A = 0)

rpre(A = 0)

and

ra=0
post (A = 1)− ra=0

pre (A = 1) = rpost(A = 0)− rpre(A = 0).

By rewriting the first condition as ra=0
post (A = 1) = ra=0

pre (A = 1)
rpost(A = 0)

rpre(A = 0)
, inserting the result into the

expression for the second condition, and using straightforward algebraic manipulations, we obtain

{
rpost(A = 0)− rpre(A = 0)

}{ra=0
pre (A = 1)

rpre(A = 0)
− 1

}
= 0,

which implies that {
rpost(A = 0) = rpre(A = 0) or ra=0

pre (A = 1) = rpre(A = 0)
}
,

and, by condition 2, that

{
rpost(A = 0) = rpre(A = 0) or rpre(A = 1) = rpre(A = 0)

}
.

In summary, if the conditions that are needed to endow both PERR and PERD with a causal interpreta-

tion hold simultaneously, then it has to be that the pretreatment and posttreatment event rates among the

control group are equal (i.e., there was no change over time in the control group) or the pretreatment event

rates of the treated and control group are equal (i.e., there is an indication that the treatment and control

groups are “similar” during the pretreatment period).
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The conditions rpost(A = 0) = rpre(A = 0) and rpre(A = 1) = rpre(A = 0) are testable using the observed

data and thus if one of them is rejected by the data with high confidence, then we could infer that at least

one of the conditions needed for both PERR and PERD to have a causal interpretation does not hold. Such

rejection does not imply that either PERR or PERD have a causal interpretation; it only implies that at

most one of PERR or PERD can have a causal interpretation in the particular application. In such cases, it

is not sensible to conduct both PERR and PERD analyses on the same data. In fact, because neither of the

observed data conditions we derived above is likely to hold in practice, it will usually be necessary to rely

on background knowledge to choose on which scale a rate-change condition is most likely to hold and, thus,

to decide whether PERR or PERD analysis is most appropriate.

4.2 Implications for the counterfactual event rate among the treated under

intervention to implement the control strategy

When the assumptions needed to endow both PERR and PERD with a causal interpretation hold, the

two methods lead to the same inferences about the counterfactual posttreatment rate in the treated group,

under intervention to implement the control strategy, ra=0
post (A = 1). Using the identification result for PERR,

consistency among the actually treated (condition 1 ), and positivity of rpost(A = 1) (condition 5 ), we obtain

ra=0
post (A = 1) = rpre(A = 1)

rpost(A = 0)

rpre(A = 0)
. (4.1)

Similarly, using the identification result for PERD and consistency among the actually treated, we obtain

ra=0
post (A = 1) = rpre(A = 1) + rpost(A = 0)− rpre(A = 0). (4.2)

It is now easy to see that the quantities on the right-hand-side of the above two expressions are equal

when rpre(A = 0) > 0, which is assumed by condition 5 needed for PERR to be well defined, and

rpre(A = 1)
rpost(A = 0)

rpre(A = 0)
= rpre(A = 1) + rpost(A = 0)− rpre(A = 0),
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or equivalently, when

{
rpost(A = 0)− rpre(A = 0)

}{
rpre(A = 1)− rpre(A = 0)

}
= 0.

As shown in the previous section of this Appendix, when the assumptions needed to endow both PERR

and PERD with a causal interpretation hold, it has to be that either rpre(A = 1) = rpre(A = 0) or rpost(A =

0) = rpre(A = 0). Thus, we conclude that PERR and PERD produce the same inferences about ra=0
post (A = 1),

whenever PERR and PERD have a causal interpretation.

When one or both of the methods do not have a causal interpretation (i.e., whenever the assumptions

needed for a causal interpretation fail to hold for at least one of PERR or PERD) then, in general, we

do not expect PERR and PERD to lead to the same inferences about ra=0
post (A = 1). The expressions on

the right-hand-side of equations (4.1) and (4.2), however, will always be equal to each other whenever (1)

rpre(A = 0) > 0; and (2) rpre(A = 1) = rpre(A = 0) or rpost(A = 0) = rpre(A = 0).
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