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Supplementary Materials and Methods 

1. Protein sample analysis 

The purity of the eluted protein fractions was estimated by SDS-PAGE analysis as described 
previously 1,2 but with two modifications. First, the 5X electrophoresis sample buffer was changed 
to [10% SDS, 50 mM TCEP, 50% Glycerol, 250 mM Tris-HCl and 0.5% Bromophenol Blue dye, 
pH 6.8] to replace sulfhydryl-containing DTT with TCEP as reductant. Second, the samples were 
heated up at 96oC only for 30 sec. These precautions were taken to ensure that the degree of Intein-
mediated cleavage is not overestimated on SDS-PAGE 3,4 (for more information consult the 
manual of the IMPACT kit, New England BioLabs, E6901S) and that SDS-PAGE sample 
preparation does not lead to a significant Peptide Backbone Fragmentation 5 of the mRuby3 
fluorescent protein of interest (for more information consult the manufacturer’s description of 
commercially available purified Red Fluorescent Protein, Recombinant RFP, Cell Biolabs, STA-
202). The samples were separated on 10% SDS-PAGE gels (Invitrogen NuPAGE 10% Bis-Tris 
gels, 10 wells and 1.0 mm thickness), run at 200 V for 1 hr in 1X MOPS SDS running buffer 
(Invitrogen Novex 20X NuPAGE MOPS SDS Running Buffer). For a better separation of the 
TSGIT-gp2.5 cleaved products, the corresponding samples were also separated on 12% SDS-
PAGE gels (Invitrogen NuPAGE 12% Bis-Tris gels, 10 wells and 1.0 mm thickness) that was run 
at 75 V for 2.5 hr in 1X MOPS SDS running buffer. The molecular weight ladder marker used for 
all SDS-PAGE gels was PageRuler Prestained Protein Ladder (Thermo Scientific, 26616).  

The final yields and concentrations of pure mRuby3, mRuby3-BioP and gp2.5 were determined 
by A280 measurements using NanoDrop spectrophotometer (Thermo Scientific) 1,2. The extinction 
coefficient for both mRuby3 and mRuby3-BioP was considered 27390 M-1cm-1. The extinction 
coefficient for gp2.5 as monomer was considered 32890 M-1cm-1. The reported values of protein 
amount and concentration throughout the manuscript were the average and standard deviation 
generated by six repeated measurements of A280. SDS-PAGE gels were imaged using the iBright 
CL1000 system (Invitrogen) and quantification was performed using the built-in option for gel 
analysis of the ImageJ software. 

For the samples exhibiting less than 90% purity for mRuby3 or less than 98% purity for gp2.5, the 
protein yields were estimated by using the Pierce BCA protein assay kit (Thermo Scientific) with 
a Bovine Serum Albumin (BSA) standard, similarly to the protocol previously described in 1, but 
under denaturing conditions (5% SDS, 1 mM DTT and heating up to 95oC for 10 min) to eliminate 
mRuby’s natural absorbance that can interfere with the A562 measurement. For gp2.5 samples, the 
measurement was performed identically as described in 1, without the requirement of denaturing 
conditions. Six serial dilutions of the samples of interest were prepared in denaturing buffer and 
mixed with working reagent as per manufacturer’s instructions. For A562 absorbance 
measurements, the resulting test samples were placed in a clear bottom 96-well microplate 
(Corning) and absorbance was measured using a xMark Microplate Spectrophotometer (Bio-Rad) 
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set to 562 nm. The BCA standard curve was fit to a linear dependence of A562 versus BSA 
concentration. The A562 measurements of the unknown samples were converted to protein 
concentrations by using this standard curve and by taking into account the dilution factor. All the 
reported protein yields and errors represent the average and the standard deviation of six 
measurements. 

2. Steady-state fluorescence measurements 

Steady-state fluorescence measurements for the mRuby3/ NeutrAvidinDyLight650 system were 
conducted at room temperature using Fluoromax-4 (HORIBA Jobin Yvon). All emission spectra 
were measured in storage buffer. In all cases, excitation was set to 520 nm and emission spectra 
were collected between 530 and 750 nm. Both excitation and emission slit widths were set to 5 
nm. Measurements were recorded with an integration time of 0.2 sec. The emission spectra were 
corrected by subtracting the background emission of a blank solution comprised of storage buffer. 
The reported spectra are the average of three independent replicates. The spectra were then 
corrected and normalized as described below. NeutrAvidinDyLight650 was purchased from Thermo 
Fisher Scientific. 

3. Correction and normalization of emission spectra 

Steady state emission spectra for the mRuby3/ NeutrAvidinDyLigth650 were collected as described 
above. For all emission spectra, the excitation wavelength was fixed to 𝜆!" = 520	𝑛𝑚. The 
concentrations of biotin-labeled mRuby3 and unlabeled mRuby3 were both fixed to 50 nM. 
Emission spectra of various concentrations of NeutrAvidinDyLigth650 were collected and corrected 
by blank subtraction. The resulting set of spectra is denoted as 𝐼. Emission spectra of various 
concentrations of NeutrAvidinDyLigth650 in the presence of biotin-labeled mRuby3 and unlabeled 
mRuby3 were collected and corrected by blank subtraction. The resulted sets of spectra are denoted 
as 𝐼#̇$% and 𝐼&̇'()#(!*, respectively. Including their full dependence, the sets of emission spectra can 
be written as: 

 

,
𝐼 = 𝐼(𝜆!" = 520	𝑛𝑚; 𝜆!+, 𝑐)

𝐼#̇$% = 𝐼#̇$%(𝜆!" = 520	𝑛𝑚; 𝜆!+, 𝑐)
𝐼&̇'()#(!* = 𝐼&̇'()#(!*(𝜆!" = 520	𝑛𝑚; 𝜆!+, 𝑐)

       ,   (1) 

 
where  𝜆!+ is the current emission wavelength and c is the current concentration of 
NeutrAvidinDyLigth650. The contribution of emission  of NeutrAvidinDyLigth650 at a given wavelength 
upon direct excitation at 520 nm, i.e., 𝐼(𝜆!" = 520	𝑛𝑚; 𝜆!+, 𝑐) was then subtracted from each 
spectrum. Simultaneously, the spectra were normalized to a total area of 1 A.U. by integration. 
The resulting corrected and normalized emission spectra of biotin-labeled mRuby3 and unlabeled 
mRuby3, in the presence of various concentration of NeutrAvidinDyLigth650, are given by: 
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⎩
⎪
⎨

⎪
⎧ 𝐼#̈$%(𝜆!" = 520	𝑛𝑚; 𝜆!+, 𝑐) =

𝐼#̇$%(𝜆!+, 𝑐) − 𝐼(𝜆!+, 𝑐)
∫9𝐼#̇$%(𝜆!+, 𝑐) − 𝐼(𝜆!+, 𝑐): 𝑑𝜆!+

𝐼&̈'()#!(!*(𝜆!" = 520	𝑛; 𝜆!+, 𝑐) =
𝐼&̇'()#!(!*(𝜆!+, 𝑐) − 𝐼(𝜆!+, 𝑐)

∫9𝐼&̇'()#!(!*(𝜆!+, 𝑐) − 𝐼(𝜆!+, 𝑐): 𝑑𝜆!+

								,			(2) 

 
where integration is performed over the whole collected emission spectrum. The explicit 
dependence on the fixed excitation wavelength was omitted for the R.H.S. terms for simplicity. 
For any given NeutrAvidinDyLigth650 concentration, the fluorescence emission enhancement at 
𝜆!+ = 673	𝑛𝑚 (i.e., the position of the emission maximum of NeutrAvidinDyLigth650) was 
calculated for biotin-labeled mRuby3 and unlabeled mRuby3 relative to their emission spectrum 
in the absence of NeutrAvidinDyLigth650 [i.e., 𝐼#̈$%(𝜆!" = 520	𝑛𝑚, 𝜆!+ = 673	𝑛𝑚; 0) and 
𝐼&̈'()#!(!*(𝜆!" = 520	𝑛𝑚, 𝜆!+ = 673	𝑛𝑚; 0)	respectively] as: 
 

I Δ𝐼#̈$%(𝜆!" = 520	𝑛𝑚, 𝜆!+ = 673	𝑛𝑚; 𝑐) = 𝐼#̈$%(𝑐) − 𝐼#̈$%(0)
Δ𝐼&̈'()#!(!*(𝜆!" = 520	𝑛𝑚, 𝜆!+ = 673	𝑛𝑚; 𝑐) = 𝐼&̈'()#!(!*(𝑐) − 𝐼&̈'()#!(!*(0)

						 ,			(3) 

 
where the explicit dependence on the fixed excitation and emission wavelengths was omitted for 
the R.H.S. terms for simplicity. In the case of biotin-labeled mRuby3, where significant 
enhancement was observed, the dependence of fluorescence enhancement in emission at 673 nm 
upon excitation at 520 nm, as a function of NeutrAvidinDyLigth650 concentration [denoted  as 
Δ𝐼#̈$%(𝑐)], was fitted to a Hill-type dependence, similar to the one described in 6, as: 
 

Δ𝐼#̈$%(𝑐) = Δ𝐼+̈)" ×
𝑐'

𝐾,/.' + 𝑐'
						,			(4) 

 
where 𝐾,/. represents the monomeric concentration of NeutrAvidinDyLigth650 at which half of the 
maximum emission enhancement (Δ𝐼+̈)") is produced and 𝑛 represents the Hill coefficient. 

4. Time-resolved fluorescence measurements 

Time-resolved fluorescence lifetime measurements were carried out using QuantaMaster 800 
spectrofluorometer (Photon Technology International Inc.) equipped with a Fianuim 
supercontinuum fiber laser source (Fianium, Southampton, U.K.) operating at 20 MHz repetition 
rate as described previously 7,8. Arrival time of each photon was measured with a Becker-Hickl 
SPC-130 time-correlated single photon counting module (Becker-Hickl GmbH, Berlin, Germany). 
Measurements were collected under magic angle (54.7°) conditions and photons were counted 
using time to amplitude converter (TAC). To reduce the collection of scattered light, a longpass 
filter (550 nm) was placed at the emission side. In all measurements, 10,000 counts were acquired. 
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The instrument response function (IRF) was estimated using a Ludox colloidal silica suspension 
dissolved in water. Measurements were recorded at room temperature in gp2.5 binding buffer [50 
mM HEPES-KOH pH (7.5), 50 mM KCl, 10 mM MgCl2, 1 mM DTT, 5% Glycerol and 0.1 mg/mL 
BSA]. The samples were excited at 532 nm and emission was collected at 565 nm with 5 nm slit 
width for both the excitation and emission. Cy3-labeled ssDNA was kept at a limiting 
concentration of 50 nM. Increasing concentrations of gp2.5 were then added to the Cy3-ssDNA-
containing samples. The fluorophore lifetime decays were then obtained using FluoFit software 
package (PicoQuant) applying the IRF and fitted to two-exponential decays. The best fit was 
chosen based on reduced chi-square and randomness of the residuals. The final lifetimes at each 
gp2.5 concentration represent the mean of amplitude-averaged lifetimes 9 of three independent 
replicates. The increase in Cy3 fluorescence lifetime upon gp2.5 binding at various concentrations 
is reported as a difference in ns compared to the fluorescence lifetime of the Cy3-labeled oligo in 
the absence of protein. The resulting binding isotherms at various concentrations of gp2.5 (c) 
versus the increase in Cy3 fluorescence lifetime were fitted to Hill-type dependencies similar to 
the one presented in Eq.(4) as: 

Δ𝜏(𝑐) = Δ𝜏+)" ×
𝑐'

𝐾*' + 𝑐'
						,			(5) 

 
where 𝐾* represents the monomeric concentration of gp2.5 at which half of the maximum 
fluorescence lifetime enhancement (Δ𝜏!"#) is produced and 𝑛 represents the Hill coefficient. 

5. Size-exclusion chromatography analysis 

For size-exclusion chromatography analysis, a 120 ml Superdex 16/600 75 pg (GE Healthcare) 
column and a 120 ml Superdex 16/600 200 pg (GE Healthcare) were pre-equilibrated with analysis 
buffer [50 mM HEPES pH (8), 250 mM NaCl, 0.1 mM TCEP and 5% Glycerol]. The Superdex 
75 pg column was calibrated with Conalbumin, Ovalbumin, Carbonic anhydrase and Ribonuclease 
A provided by a low molecular weight (LMW) calibration kit (GE Healthcare). The Superdex 200 
pg column was calibrated with Ferritin, Aldolase, Conalbumin and Ovalbumin provided by a high 
molecular weight (HMW) calibration kit (GE Healthcare). 

Cleaved gp2.5 was analyzed using the Superdex 75 pg column, while TSGIT-gp2.5 uncleaved 
fusion was analyzed using the Superdex 200 pg column. Size-exclusion chromatography was 
performed using an FPLC system (ÄKTA, GE Healthcare) equipped with an absorbance module 
to continuously monitor the protein elution. Column run and elution were performed in analysis 
buffer at a flow-rate of 1 ml/min. To estimate the peak positions, the experimental A280 versus 
retention volume dependencies were fitted to a smoothing spline with a smoothing parameter of 
0.98. The positions of the elution peaks were then determined by the points were the first derivative 
of the fitted splines intercept the x-axis. Prior to fitting, baselines were corrected for each of the 
four chromatograms using the build-in function of the Unicorn software (GE Healthcare). 
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Retention volumes for each peak were then converted to proportion of resin pores available to the 
respective molecule (Kav) as previously described 10. 

6. Expression and purification of His-tagged Ulp1 SUMO protease 

The gene encoding Trx-SUMO-Ulp1-His as a fusion protein was custom synthesized by IDT as 
gBlock and cloned into a pRSF-1b plasmid by Gibson assembly. This plasmid is denoted as pTS-
Ulp1. This expression plasmid was transformed into E. coli strain BL21 (DE3) competent cells 
(Novagen) and colonies were selected on LB-agar plates containing 50 μg/ml Kanamycin. Ulp1 
was overproduced by growing the transformed cells in 10 liters of 2xYT media (Teknova) 
supplemented with the same concentration of Kanamycin. Cells were grown at 37°C to an OD600 
of 1.0 and then protein expression was induced by the addition of 0.5 mM isopropyl β-D-
thiogalactopyranoside (IPTG) and incubated further for 6 hr at 37°C. Cells were collected by 
centrifugation at 5,500g for 10 min and re-suspended in lysis buffer [20 mM Tris pH (8), 300 mM 
NaCl, 20 mM Imidazole, 5 mM β-Mercaptoethanol, 10% Glycerol and one EDTA free protease 
inhibitor cocktail tablet per 50 ml (Roche, UK)]. All further steps were performed at 4°C.  

Cells were lysed enzymatically by adding 2 mg/ml lysozyme and mechanically by sonication using 
the same cycle conditions describe in the main Materials and Methods section. Cell debris was 
removed by centrifugation (22,040g, 45 min) and the clear supernatant was directly loaded onto a 
custom-assembled 30 ml His-affinity column filled with Ni-NTA Superflow resin (QIAGEN) pre-
equilibrated with binding buffer [20 mM Tris pH (8), 300 mM NaCl, 20 mM Imidazole, 5 mM β-
Mercaptoethanol and 10% Glycerol]. We have previously noticed that the use of HisTrap HP 5 ml 
affinity columns (GE Healthcare) rapidly saturated with Ulp1 and a high amount of protein was 
lost in the flow-through fraction. Therefore, we increased the volume of the column to the 30 ml 
custom-assembled one described above. The 30 ml column was then washed with 10 column 
volumes of binding buffer followed by gradient elution with 10 column volumes of elution buffer 
[50 mM Tris pH (8), 300 mM NaCl, 500 mM Imidazole, 5 mM β-Mercaptoethanol and 10% 
Glycerol]. The peak fractions were pooled and dialyzed overnight in a dialysis buffer [25 mM Tris 
pH (7.5), 150 mM NaCl, 1 mM DTT and 50% Glycerol], flash frozen and stored at -80°C. 

During protein expression Trx-SUMO as an N-terminal fusion tag provides increased expression 
and solubility levels. Ulp1 cleaves itself from the fusion, while remaining attached to its C-terminal 
His-tag which is then used for purification. The Trx-SUMO cleaved tag will pass as flow-through 
in the His affinity column. The design of self-cleaving Ulp1 in fusion with N-terminal SUMO is 
inspired from 11. Ulp1 SUMO protease cleaved itself from the fusion in vivo prior to cell lysis. The 
typical yield of this method generates 50-100 mg of His-tagged Ulp1 from a 10 liters culture. The 
custom-purified Ulp1 SUMO protease purity is shown in Figure S1. Under the mentioned storage 
conditions the protein can also be stored at -20°C for several months while retaining activity. 
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7. Single-molecule flow-stretching bead assay 

The primed single-stranded DNA (ssDNA) substrate was generated by annealing circular 
M13mp18 ssDNA (New England BioLabs) to 100-fold excess of the 5’-Digoxigenin-
CTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCA-Biotin-
TGGTCATAGCTGTTTCCTGTGTG-3’ primer (Integrated DNA Technologies), which contains 
two orthogonal attachment modifications and which upon hybridization to M13mp18 ssDNA 
generates an EcoR1 restriction site. The annealed DNA was linearized with EcoRI (New England 
BioLabs), and the reaction was stopped by EcoRI inactivation at 65°C for 20 min. Excess 
unannealed primers and heat-inactivated EcoRI were removed by using a QIAquick PCR 
purification kit (QIAGEN). The final concentration of the DNA was quantified by using UV-
visible absorption spectroscopy at 260 nm with an extinction coefficient of 91801.1 mM-1cm-1.  

Single-molecule experiments were performed at room temperature in a custom-built microfluidic 
flow cell as described previously 12,13. Briefly, bacteriophage T7 ssDNA binding protein gp2.5 was 
introduced into the flow cell at concentration of 2 μM in T7 reaction buffer [40 mM Tris-HCl pH 
(7.5), 50 mM KGlu, 10 mM MgCl2, 10 mM DTT, and 0.1 mg/mL BSA]. The ssDNA stretching 
reaction was performed under continuous presence of protein in solution. Data acquisition and 
processing methods were identical to the previously described ones 14-16. The centroid position of 
the DNA-attached beads during each acquisition time point (500 ms sampling rate) was determined 
by fitting a 2-dimensional Gaussian distribution to the bead intensities by using the DiaTrack 
particle-tracking software (SemaSopht). Residual instabilities in the flow were corrected by 
subtracting traces corresponding to tethered DNA molecules that were not enzymatically altered. 
Displacement of the beads due to the conversion of the template strand from free ssDNA to gp2.5-
coated ssDNA was transformed into the numbers of equivalent dsDNA base pairs (bp) by using a 
conversion factor of 3.76 bp/nm. This conversion factor was derived from the difference in the 
length between ssDNA and dsDNA at the applied stretching force of ~2.6 pN 15-17. 
 
General considerations on Intein-tag fusion cleavage 
 
This discussion is based on the chemical cascade scheme presented in Figure 2b for thiol-cleavable 
contiguous mini-inteins. In the figure, Cys1 denotes the first cysteine residue of the Intein-tag. 
Briefly, the reaction is initiated by the peptide bond rearrangement between the last amino acid of 
the protein of interest and Cys1 of Intein-tag via N®S acyl shift in the precursor fusion protein. 
The resulting linear thioester intermediate can be attacked by the sulfhydryl group of a thiol reagent 
such as Dithiothreitol (DTT), β-Mercaptoethanol (2-ME), 2-Mercaptoethanesulfonic acid (2-
MESNA), Thiophenol, or even free cysteine amino acid which results in cleavage of the Intein-
tag and therefore of the C-terminal fusion tag from the protein of interest via thiol-thioester 
exchange. The resulting protein of interest has an activated thioester C-terminus which is required 
for a subsequent IPL reaction. If IPL is not of interest and the excess free thiol reagent is removed, 
at basic pH, water can act as a nucleophile resulting in the hydrolysis of the activated thioester and 



 8 

formation of a native peptide carboxyl C-terminus. The reactions are driven forward (down in the 
scheme presented in Figure 2b) toward the cleaved product by basic pH, presence of conserved 
Intein’s B-block residues 18-20 (for Mxe GyrA amino acids TANH) and large excess of free thiol 
reagent (Figure 2c). In this mechanism, basic pH aids the deprotonation of the sulfhydryl groups 
to increase their nucleophilic attack power 21, the conserved Intein’s residues (especially H75) 
promote the initial N®S acyl shift 18-20, while excess thiol reagents provide the power for the thiol-
thioester exchange and prevent the re-ligation of the cleaved Intein-tag to the target protein. For 
the purification of oxidation-sensitive proteins, sulfhydryl-free reducing agents (Figure 2d) can be 
used in buffer composition to maintain the cysteines of the protein of interest in their reduced form 
and prevent aggregation prior to the addition of the thiol reagent used for Intein-tag cleavage. If a 
thiol reducing agent would be included from the beginning of the protein purification, it can induce 
undesired premature cleavage of the fusion. In Figure 2e, which shows the schematic 
representation of the cascade of chemical reactions of IPL, 2-MESNA is illustrated in its 
deprotonated form (sulfonate) as the reaction occurs at pH 8.5 above the pKa of its sulfo group. 
Finally, an S®N acyl shift component reaction of IPL ensures that the protein-peptide fusion is 
linked through a native peptide bond. The peptide can contain various modifications such as 
specific reactive groups or attachment moieties. The IPL reaction is typically driven forward by 
basic pH as described above and a high excess of peptide over target protein. 
 
General considerations on SUMO-tag fusion design 
 
The sequence encoding the gene of interest can be assembled together with the TSGIT N- and C-
terminal fusion tags by Gibson assembly cloning between the SUMO-tag and Intein-tag regions 
(Figure 2a) into any desired destination plasmid. As most fusion systems, TSGIT does not require 
the inserted gene of interest to contain the N-terminal methionine since it already contains an 
initiator methionine at the N-terminus of the fusion. In E. coli, only one methionine 
aminopeptidase (MAP) exists 22. In general, removal of the initiator methionine by MAPs is based 
on the size of the residue immediately adjacent to the initiator methionine 22. If the initiator 
methionine-adjacent amino acid has a radius of gyration of 1.29 Å or less then the initiation 
methionine will be cleaved by MAP. In fusion proteins, the N-terminal methionine encoded by the 
ATG codon of the inserted gene cannot be accessed by MAPs since it becomes a regular internal 
methionine rather than initiator methionine. If not manually removed, upon in vitro cleavage of 
the SUMO-tag by Ulp1, this methionine would be present at the N-terminus of the target protein 
and MAPs would not be present to ensure its removal. Failure to remove the initiator methionine 
can lead to dramatic decrease in protein activity. In general, the principle presented in 22 should be 
consulted to decide whether the first methionine should be included in the inserted gene. If the 
initiator methionine is removed, particular care should be taken in cases where the resulting 
cleaved protein of interest would have an N-terminal cysteine, as this residue can be attacked by 
the activated thioester C-terminus generated by Intein-tag cleavage, resulting in undesired circular 
protein forms and/ or head-to-tail protein multimers. 



 9 

Supplementary Figures and Tables 
 

 
Figure S1. Custom-purified His-tagged Ulp1 SUMO protease. Image of a 10% SDS-PAGE gel 
showing the purity of the purified Ulp1. The marker (M) is PageRuler Prestained Protein Ladder. 
 

 
Figure S2. Amino acid sequence of the mRuby3 insert. The amino acids sequence and the 
corresponding nucleotide sequence are presented in FASTA format. The initial methionine is 
absent as it is not required by the TSGIT fusion expression system. This sequence was assembled 
together with the TSGIT N- and C-terminal fusion tags between the SUMO-tag and Intein-tag 
regions by Gibson assembly into a pRSF-1b plasmid. 
 

 
Figure S3. Amino acid sequence of the gp2.5 insert. The amino acids sequence and the 
corresponding nucleotide sequence are presented in FASTA format. The initial methionine is 
absent as it is not required by the TSGIT fusion expression system. This sequence was assembled 
together with the TSGIT N- and C-terminal fusion tags between the SUMO-tag and Intein-tag 
regions by Gibson assembly into a pRSF-1b plasmid. 
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Figure S4. Fluorescence functionality of the final purified proteins. The emission spectra of 
(a) 50 nM unlabeled mRuby3 and (b) 50 nM IPL biotin-labeled mRuby3. All data points represent 
the average of three independent acquisitions. Both spectra were collected between 530 and 750 
nm upon excitation at 520 nm. 
 

 
Figure S5. Characterization of the TSGIT-purified gp2.5. (a) A plot of the proportion of resin 
pores available to the molecule (Kav) versus the logarithm with base 10 of the relative molecular 
weight of the four molecular weight markers (green) obtained from the size-calibration of the 
Superdex 75 pg column shown in the bottom panel of Figure 5b. The experimental datapoints were 
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fitted with a linear dependence characterized by an intercept of 2.3702 and a slope of -0.4642. 
Using the position of the maximum of the elution peak of TSGIT-purified from the same size-
exclusion column (top panel in Figure 5b), the size of the protein was estimated (red) from the 
linear fit by inverting the linear dependence equation. (b) Top: a chromatogram showing the 
elution of TSGIT-gp2.5 fusion (with both the N- and C- terminal fusion tags uncleaved, as obtained 
after the first Strep elution step; Lane 5 in Figure 5a) from the Superdex 200 pg size-exclusion 
column. Bottom: a chromatogram showing the elution of four different molecular weight markers 
from the Superdex 200 pg size-exclusion column. The position of the peaks (green dashed lines) 
were determined as described above. (c) A plot of the proportion of resin pores available to the 
molecule (Kav) versus the logarithm with base 10 of the relative molecular weight of the four 
molecular weight markers (green) obtained from the size-calibration of the Superdex 200 pg 
column shown in the bottom panel of Figure S5b. The experimental datapoints were fitted with a 
linear dependence characterized by an intercept of 2.1567 and a slope of -0.3613. Using the 
position of the maximum of the elution peak of TSGIT-gp2.5 uncleaved fusion from the same size-
exclusion column (top panel in Figure S5b), the size of the protein was estimated (red)  from the 
linear fit by inverting the linear dependence equation. (d) Examples of time-resolved fluorescence 
decays of the Cy3-labelled ssDNA obtained in the presence of various concentrations of native 
tag-free-purified gp2.5. The curves respect the color code presented in the inset legend. 
 

 
Figure S6. ssDNA stretching power of TSGIT-purified gp2.5. (a) Additional example of a 
single-molecule time-trace showing the stretching of the ssDNA-containing substrate upon 
injection of native tag-free-purified gp2.5. (b) Additional example of a single-molecule time-trace 
showing the stretching of the ssDNA-containing substrate upon injection of TSGIT-purified gp2.5. 
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Table S1. Yields and purities obtained during the purification of mRuby3 by TSGIT. For the 
samples exhibiting more than 90% purity, the proteins amounts were determined by A280 
measurements using NanoDrop as described above. For the samples exhibiting less than 90% 
purity, the proteins amounts were determined by A562 measurements using Pierce BCA protein 
assay as described above. All the values in the table have their source indicated as: a purity of the 
band of interest, b purity of the sum of the bands resulted from cleavage, c as determined by Pierce 
BCA protein assay, d as determined by A280 measurements and e as determined for unlabeled 
mRuby3 fraction (half amount). 
 

Purification step 
Elution from 
first HisTrap 

column 

Elution from 
first StrepTrap 

column  

Cleavage via 
Ulp1 and  

2-MESNA 

Flow-through of 
the second 

HisTrap column 

Flow-through of 
the second 

StrepTrap column 

Elution from 
size-exclusion 

column 
Purity (SDS-PAGE) ~60% a ~76% a ~86% b / ~23% a ~89% b / ~31% a ~92% a >95% a 
Total protein (mg) 25.9 ± 3.5 c 21.4 ± 2.1 c 18.6 ± 1.8 c 12.5 ± 2.3 c 2.7 ± 0.2 d 1.1 ± 0.2 d, e 

 
Table S2. Yields and purities obtained during the purification of gp2.5 by TSGIT. For the 
samples exhibiting more than 98% purity, the proteins amounts were determined by A280 
measurements using NanoDrop as described above. For the samples exhibiting less than 98% 
purity, the proteins amounts were determined by A562 measurements using Pierce BCA protein 
assay as described above. All the values in the table have their source indicated as: a purity of the 
band of interest, b purity of the sum of the bands resulted from cleavage, c as determined by Pierce 
BCA protein assay and d as determined by A280 measurements. 
 

Purification step 
Elution from 
first HisTrap 

column 

Elution from 
first StrepTrap 

column  

Cleavage via 
Ulp1 and  

DTT 

Flow-through of 
the second 

HisTrap column 

Flow-through of 
the second 

StrepTrap column 

Elution from 
size-exclusion 

column 
Purity (SDS-PAGE) ~67% a ~96% a ~97% b / ~30% a ~98% b / ~60% a ~98% a >98% a 
Total protein (mg) 49.1 ± 2.6 c 29.3 ± 1.7 c 28.9 ± 0.1 c 18.0 ± 0.6 d 10.1 ± 0.2 d 4.3 ± 0.1 d 
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