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Supplementary Methods 

 

Ratio model 

As a result, we obtained the sum of pixel intensities of the main ROI and reference fiducial 

marker. We also have the known TIV of the reference fiducial marker which was calculated and 

recorded by hand during preparation of the solution and phantom sample for imaging. To 

calculate the unknown TIV of a main ROI we used the following equation: 

 

𝑅𝑎𝑡𝑖𝑜:	
∑ 𝑃𝑖𝑥𝑒𝑙	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝐹𝑖𝑑𝑢𝑐𝑖𝑎𝑙	𝑀𝑎𝑟𝑘𝑒𝑟

𝑇𝐼𝑉	𝐹𝑖𝑑𝑢𝑐𝑖𝑎𝑙	𝑀𝑎𝑟𝑘𝑒𝑟  

 

𝑇𝐼𝑉	𝑀𝑎𝑖𝑛	𝑅𝑂𝐼 = 	
∑𝑃𝑖𝑥𝑒𝑙	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝑀𝑎𝑖𝑛	𝐵𝑙𝑜𝑏

𝑅𝑎𝑡𝑖𝑜  

 

In order to predict the TIV of the main ROI using the aforementioned ratio method, we 

calculated the ratio of the sum of pixel intensities in fiducial marker to its TIV in the fiducial 

marker region, and then we used this ratio to predict the TIV of the main ROI using the formula 

above, because we extracted the total pixel sum of the ROI from the K-means++ segmentation 

algorithm and solved for the unknown TIV through this ratio. Although the ratio method is the 



current manual approach to predicting TIV of ROI within an MPI scan by imaging specialists, 

there are limitations to this approach including its inability to operate with a high degree of 

specificity and accuracy since the calculated ratio is only relative to a single fiducial marker 

region’s pixel sum and known TIV, and therefore does not account for variations in region size 

and TIV fluctuations. Therefore, this method may not render a standardized approach to TIV 

prediction of an ROI within an MPI scan and limits the viability and extent of analysis of the K-

means++ segmentation results (Supplemental Fig. 1 A).   

 

Standard curve model 

Due to limitations in the Ratio model for predicting the unknown TIV of the main ROI within an 

MPI scan, we propose another approach using the K-means++ segmentation. In order to create 

a more robust, standardized model for TIV prediction, we generated MPI Images with four 

reference fiducial markers with known TIV of increasing value instead of just one, along with 

the main ROI in the center (Supplemental Fig. 1). Using these four reference markers, we 

created a linear regression model and predicted the TIV of the main ROI using this model. The 

linear regression model was created using the sum of pixel intensities of fiducial markers as the 

independent variable and total iron value of these blobs as the dependent variable. The 

algorithm generated a standard curve (SC) from these values. From this, using the known total 

pixel sum of the main ROI, we used the standard curve to predict the corresponding TIV of the 

main ROI. This approach certainly posed segmentation challenges. Instead of the previous two 

ROIs in the ratio method, we now had to identify five regions of interest. To accomplish this, we 

devised an entirely region-based K-means++ approach by exploiting the center position of the 



image. Since reference blobs are always located in the corners and main blob is near the center, 

as per our standard setup for MPI scans in this study, we found our five regions of interest and 

their locations. Then, we calculated the distance from the center of the image. Based on this 

distance we easily assigned numbers to our regions, such as closest to the center was the main 

blob, left and below of center was reference blob one, left and above of center was reference 

two, right and above was reference three and right and below was reference four 

(Supplemental Fig. 1 B). Using this numbering system, we input the known TIV for each 

reference blob in the standard curve model, with their corresponding segmented total pixel 

sum values. Here, the K-means++ segmentation worked the same as in the ratio method, 

except that it segmented all four of the markers and the main ROI pixel cluster instead of just 

two such blobs. An overview of the pipeline flow implemented is shown in Supplemental Fig. 2.  

 

 

Supplementary Results 

 

Ratio model vs. standard curve model for TIV prediction of phantom 

Upon optimization of the K-means++ algorithm for segmentation and extraction of the ROI, the 

efficacy of the two proposed models for TIV prediction (the Ratio model and the Standard curve 

model) was assessed using the two 3D printed phantoms generated for this study: the ‘S’ and 

‘Circle’ phantom. First, the ratio model was employed for TIV prediction (Supplemental Fig. 3).  

The K-means++ algorithm was used for segmentation of the reference and main ROI, and total 

pixel sum of the regions was extracted.  A ratio of the total pixel sum of the fiducial marker to 



the known TIV of the marker was calculated. This ratio was then used to estimate the TIV of the 

main ROI. For segmentation, both the “S” and the “circle” were segmented with minimal 

inclusion of pixels from the desired ROI, as seen in the increasing concentrations of the ‘S and 

‘Circle phantom (Supplemental Fig. 3A). Noticeably, the ‘Circle’ phantom segmentation included 

little relative noise, and therefore the final output ROI was rather crescent shaped than a full 

circle (Supplemental Fig. 3B). This is critical to proper analysis of the ROI and potential TIV 

prediction, especially due to the results produced by board-certified radiologists that included 

noise and bleeding of signals in the final ROI analysis. As segmented ROIs increased in total pixel 

sum as the injected amount of iron oxide increased in the phantom constructs, the predicted 

TIV value from the applied ratio model algorithm also increased in a linear fashion 

(Supplemental Fig. 3C). However, it is apparent that variations from the actual injected TIV and 

that predicted by the algorithm were rather wide with the applied ratio method. From the 

calculated ICC score, the data purports that for single measures, the ratio method did not have 

a great degree of inter-rater reliability, although the algorithm performed adequately in regards 

to the segmentation of the ROI with K-means++ (Supplemental Table 1A, B).  For TIV prediction 

using this method, the ICC score was slightly greater, but not considered above the .9 

threshold, a value that would indicate excellent inter-rater reliability (Supplemental Table 1C, 

D). This is likely due to variations in ROI inclusion of pixel values during segmentation, including 

instances of false-positive signal analysis by the human rater. However, due to the indicated 

linear correlation between the ROIs total pixel sum and the predicted TIV, these findings 

warranted further study in which a linear regression-based SC model was applied to extract 

more accurate TIV predictions from the algorithm.  



When the K-means++ algorithm was applied to the standard curve (SC) model for TIV 

prediction, a clear correlation between the increasing amount of injected iron, indicating 

increasing signal intensity of total pixel sum, and the TIV prediction was observed 

(Supplemental Fig. 4). Furthermore, for the S shaped phantom, the segmentation output 

preformed with a high degree of specificity for the true signals of nanoparticles and excluded 

existing noise from the nanoparticle signal. The final output showed islands of pixel values 

where the signals originated and were the strongest (Supplemental Fig. 4A). This is an 

important feature of this unsupervised machine learning segmentation algorithm, as board-

certified radiologists can rarely account for situations where bleeding of the original 

nanoparticle signal is often overlooked or difficult to detect. In these situations, the ROI chosen 

by the individual often includes false positive/negative signals which are incorrectly quantified 

in the manually detected ROI and distorts subsequent analysis of TIV and other parameters 

associated with the ROI. Furthermore, this phenomenon is also inherent in the K-means++ 

segmentation of the signals from the circle phantom, in which the final output ROI is not merely 

a complete circle, but instead only includes the true signals from the nanoparticles without 

including bleeding of signal noise in the segmentation result (Supplemental Fig. 4B). From these 

segmentation results, the algorithm then preformed TIV prediction from the total pixel 

intensity sum of the segmented ROI’s of multiple MPI scans of both the ‘S’ and ‘Circle’ phantom 

(Supplemental Fig. 4C). The standard curve generated by the algorithm permitted subsequent 

prediction of the TIV of the segmented ROI, and a linear trend between the total pixel intensity 

sum of the ROI and its TIV was observed for the increasing injected total iron in the phantom 

constructs. This was apparent in both the ‘S’ and ‘Circle’ phantom. Furthermore, due to the 



greater degree of accuracy in TIV prediction by the SC model in comparison to the Ratio model, 

as indicated by the greater ICC and degree of correlation between the actual and predicted TIV 

for both phantom shapes, the SC-K-means++ based model was selected as the unsupervised 

machine learning algorithm of precedence throughout the rest of the study and was used in in 

vitro, in vivo, and ex vivo experiments (Supplemental Table 2A-D).  

 

Supplemental Figures 

 

 

 

Supplemental Figure 1. Layout of different fiducial marker and main ROI regions for use in the 

ratio K-means++ model (A) and standard curve K-means++ model (B). The blobs in the 

periphery indicate fiducial reference markers of known TIV, and the larger blob in the middle 

indicates a sample main ROI. 

 



 

Supplemental Figure 2. Flow diagram of the pipeline for the ratio and standard curve K-

means++ machine learning algorithms. 



 

Supplemental Figure 3. K-means++ Segmentation and Ratio TIV prediction for MPI phantom 

images. A. K-means++ Segmentation and Ratio TIV prediction of ‘S’ phantom with 0.5 µg iron, 

‘S’ phantom with 0.77 µg iron, ‘S’ phantom with 1.2 µg iron; The size of the ‘S’ phantom was 

15mm. B. K-means++ Segmentation and Ratio TIV prediction of ‘Circle’ phantom with 0.7 µg 

iron, ‘Circle’ phantom with 3.0 µg iron, ‘Circle’ phantom with 7.5 µg iron; C. TIV prediction of 

algorithm from total pixel intensity sum of ROI via ratio model. The size of the ‘Circle’ phantom 

was 10mm. 



  

 

Supplemental Figure 4. K-means++ segmentation and standard curve model TIV prediction for 

MPI phantom images. A. K-means++ segmentation and standard curve model TIV prediction of 

‘S’ phantom with 1.0 µg iron, ‘S’ phantom with 2.2 µg iron, and ‘S’ phantom with 4.0 µg iron; 

The size of the ‘S’ phantom was 30mm.B. K-means++ segmentation and standard curve model 

TIV prediction of ‘Circle’ phantom with 0.5 µg iron, ‘Circle’ phantom with 1.5 µg iron, and 

‘Circle’ phantom with 2.5 µg iron; C. TIV prediction of algorithm from total pixel intensity sum of 

ROI via SC model. The size of the ‘Circle’ phantom was 20mm. 

 

 

 

 

 

 

 



 

 

Supplemental Figure 5. K-means++ segmentation and SC model TIV prediction of ex vivo MPI of 

excised kidneys. A. K-means++ segmentation and SC model TIV prediction of kidney with 100 

IEQ, 400 IEQ, and 800 IEQ; B.TIV prediction of extracted ROIs for 100, 200, 400 and 800 IEQ's 

using SC model.  

 

 



 

 

 

 

Supplemental Figure 6. Ex vivo immunostaining of a kidney section containing transplanted 

human islets labeled with VivoTrax. Green = VivoTrax, Red = Insulin, Blue = DAPI staining of cell 

nucleus. Bar=10µm. 

 

Supplemental Tables 

Supplementary Tables 1: Phantom Ratio Method ICC’s. 

A: Actual vs. Predicted ROI for “S” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.629 0.080-0.891 9 0.03 

Average Measures 0.921 0.148-0.942 9 0.03 

 



B: Actual vs. Predicted ROI for “O” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.797 0.375-0.945 9 0.02 

Average Measures 0.887 0.545-0.972 9 0.02 

 
 
C: Actual vs. Predicted TIV for “S” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.851 0.488-0.968 7 0.02 

Average Measures 0.919 0.619-0.984 7 0.02 

 

D: Actual vs. Predicted TIV for “O” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.820 0.353-0.961 7 0.04 

Average Measures 0.901 0.522-0.980 7 0.04 

 
 

Supplementary Tables 2: Phantom SC Method ICC’s. 

A: Actual vs. Predicted ROI for “S” phantoms 



Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

df 

F test with true 

value 0 

sig 

Single measures 0.891 0.693-0.965 12 0.01 

Average 

Measures 

0.942 0.818-0.982 12 0.01 

 

B: Actual vs. Predicted ROI for “O” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

df 

F test with true 

value 0 

sig 

Single measures 0.916 0.753-0.973 12 0.01 

Average 

Measures 

0.956 0.859-0.987 12 0.01 

 
 
C: Actual vs. Predicted TIV for “S” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.921 0.711-0.970 10 0.01 

Average Measures 0.959 0.831-0.989 10 0.01 

 

D: Actual vs. Predicted TIV for “O” phantoms 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

F test with 

true value 0 



Degree of freedom P value 

Single measures 0.905 0.699-0.973 10 0.01 

Average Measures 0.950 0.823-0.986 10 0.01 

 
 
Supplementary Tables 3: In Vitro Method ICC. 

Algorithm vs. Raters 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.812 0.316-0.959 7 0.02 

Average Measures 0.896 0.480-0.979 7 0.02 

 
Supplementary Tables 4: In Vivo Method ICC. 

Algorithm vs. Raters 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 

Single measures 0.892 0.621-0.972 9 0.01 

Average Measures 0.943 0.011-0.986 9 0.01 

 
Supplementary Tables 5: Ex Vivo Method ICC. 

Algorithm vs. Raters 

Type Interclass 

correlation 

95% confidence 

interval 

F test with true 

value 0  

Degree of freedom 

F test with 

true value 0 

P value 



Single measures 0.828 0.341-0.963 7 0.04 

Average Measures 0.906 0.509-0.981 7 0.04 

 
 


