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Supplementary Methods 
 

Anxiety questionnaires 

Participants completed the trait portion of the Spielberger State-Trait Anxiety Inventory STAI1; before 

scanning, and then completed the state portion immediately before the scanning session. The STAI scale 

is defined such that scores range from 20 to 80. In a recent analysis of over 3,000 individuals across 

behavioral and fMRI studies, the mode was a trait score of 36, and only 5% of the participants exhibited 

scores above 602. Given our participant-matching procedure (see next), participants with trait anxiety 

scores above 60 were removed from the study. 

 

Participant matching 

Participants completed the trait portion of the STAI during an initial screening interview. The earliest 

recruited participants were assigned to the controllable condition of the experiment. Each participant's 

trait anxiety score and biological sex were used to find a match for the uncontrollable condition. In 

matching participants, we attempted to keep the difference in trait scores to within +/- 4 points. We 

prioritized matching new participants with already scanned participants. However, if we could not find a 

match with a +/- 4-point difference, we matched a new participant with participants who were already 

screened but not yet scanned. In such cases, we randomly assigned a participant to the controllable or 

uncontrollable condition. When necessary, matching of a new participant had to wait until a new one was 

screened who had an anxiety score within +/4 points. Overall, the time to recruit a match for controllable 

participants varied from one day up to one month.  

 

 



 3 

MRI data acquisition 

Functional and structural MRI data were acquired using a 3T Siemens TRIO scanner with a 32-channel 

head coil. First, a high-resolution T2-weighted anatomical scan using Siemens’s SPACE sequence (0.8 

mm isotropic) was collected. Subsequently, we collected functional EPI volumes using a multiband 

scanning sequence3 with TR = 1.0 sec, TE = 39 ms, FOV = 210 mm, and multiband factor = 6. Each 

volume contained 66 non-overlapping oblique slices oriented 30° clockwise relative to the AC-PC axis 

(2.2 mm isotropic). A high-resolution T1-weighted MPRAGE anatomical scan (0.8 mm isotropic) was 

collected. Additionally, in each session, double-echo field maps (TE1 = 4.92 ms, TE2 = 7.38 ms) were 

acquired with acquisition parameters matched to the functional data. 

 

Functional MRI preprocessing 

We adopted the same procedures used in our previous study to minimize the impact of image distortion 

and improve spatial localization4, see also5. To preprocess the functional and anatomical MRI data, we 

used a combination of packages and in-house scripts. The first three volumes of each functional run were 

discarded to account for equilibration effects. Slice-timing correction used the Analysis of Functional 

Neuroimages’ AFNI;6 3dTshift with Fourier interpolation to align the onset times of every slice in a 

volume to the first acquisition slice. To reduce the contribution of head motion, we employed FSL's 

Independent Component Analysis, Automatic Removal of Motion Artifacts (ICA-AROMA)7. 

Components classified as head motion are regressed out of the functional MRI data with FSL’s fsl_regfilt. 

In this study, we strived to improve functional-to-anatomical co-registration given the small size 

of some of the structures of interest. Skull stripping determines which voxels are considered part of the 

brain and plays an important role in successful subsequent co-registration and normalization steps. 

Currently, available packages perform sub-optimally in specific cases, and mistakes in the brain-to-skull 
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segmentation can be easily identified. Accordingly, to skull strip the T1 high-resolution anatomical image 

(which was rotated to match the oblique plane of the functional data with AFNI’s 3dWarp), we employed 

six different packages [ANTs8: http://stnava.github.io/ANTs/; AFNI6: http://afni.nimh.nih.gov/; ROBEX9: 

https://www.nitrc.org/projects/robex; FSL5: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; SPM: 

http://www.fil.ion.ucl.ac.uk/spm/; and BrainSuite10: http://brainsuite.org/] and employed a “voting 

scheme” as follows4,5: based on T1 data, a voxel was considered to be part of the brain if 4/6 packages 

estimated it to be a brain voxel; otherwise the voxel was not considered to be brain tissue.  

Subsequently, FSL was used to process field map images and create a phase-distortion map for 

each participant (by using bet and fsl_prepare_fieldmap). FSL’s epi_reg was then used to apply 

boundary-based co-registration to align the unwarped mean volume registered EPI image with the skull-

stripped anatomical image (T1 or T2), along with simultaneous EPI distortion-correction11. 

Next, ANTS was used to estimate a nonlinear transformation that mapped the skull-stripped 

anatomical image (T1 or T2) to the skull-stripped MNI152 template (interpolated to 1-mm isotropic 

voxels). Finally, ANTS combined the nonlinear transformations from co-registration/unwarping (from 

mapping mean functional EPI image to the anatomical T1 or T2) and normalization (from mapping T1 or 

T2 to the MNI template) into a single transformation that was applied to map volume-registered 

functional volumes to standard space (interpolated to 2-mm isotropic voxels). In this process, ANTS also 

utilized the field maps to simultaneously minimize EPI distortion.  

 

Voxelwise analysis 

The voxelwise analysis followed the same model described in equation (1). Thus, the analyses were the 

same, with the exception of the multilevel component (ROIs). The cluster extent for statistical 

thresholding was determined by simulations using the 3dClustSim program and other AFNI tools. For 
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these simulations, the smoothness of the data was estimated using 3dFWHMx (restricted to gray matter 

voxels) based on the residual time series from the participant-level voxelwise analysis. Taking into 

account the recent report of increased false-positive rates linked to the assumption of Gaussian spatial 

autocorrelation in fMRI data12, we used the –acf (i.e., autocorrelation function) option added to the 

3dFWHMx and 3dClustSim tools, which models spatial noise as a mixture of Gaussian plus 

monoexponential distributions. This improvement was shown to control false-positive rates around the 

desired alpha level, especially with relatively stringent voxel-level uncorrected p values such as 0.00113. 

Based on a voxel-level uncorrected p value of 0.001, simulations indicated a minimum cluster extent of 

13 voxels for a cluster-level corrected alpha of 0.05. 

 

Visualization of response shape 

Estimation of stressor responses relied on simultaneously accounting for all signal contributions, 

including fMRI responses during approach and retreat periods surrounding the stressor. To do so, 

response magnitude estimation of stressor events relied on convolving regressors with a canonical 

hemodynamic response. In doing so, regression coefficients are efficiently estimated for all conditions, 

allowing us to estimate responses to stressors. But to aid visualization of the stressor response, we 

performed an additional unassumed-shape analysis (also called deconvolution analysis) that estimated 

signal intensities at every time point following stressor delivery for a window of 13.75 seconds. We stress 

that the objective of this analysis was to help visualize the responses, and not to draw statistical 

inferences. 

Responses were recovered using the 3dDeconvolve AFNI program using cubic spline basis 

functions, which provide a slightly smoother approximation of the underlying signal than using delta 

(“stick”) functions (also called finite impulse responses or FIR). The results (Figures 4 and 7) confirm 

that the canonical hemodynamic response provided an adequate response model for most brain regions, 
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including the anticipated peak around 5 seconds post onset. However, deconvolution indicated that the 

canonical model was probably not ideal for some regions, such as the anterior hippocampus, PCC, and 

PCC/precuneus, which appeared to follow a different time evolution (note that the mismatch is not 

because the response was negative, but related to the shape/timing of the response itself).  

Finally, we note that we chose to perform the main inferential analyses (described in the 

preceding sections) by using regressors convolved with the hemodynamic response because we did not 

have a priori information concerning the timing/shape of stressor-related responses. Importantly, stressor 

duration varied to some extent for each event, which poses a problem for deconvolution (essentially, each 

trial’s response varied because of timing differences and potentially due to “noise” fluctuations). 

 

Skin conductance response (SCR) analysis 

For the analysis of SCR, we employed methods previously adopted in our past work e.g.,4. Each 

participant's SCR data were initially smoothed with a median-filter over 50 samples (200 ms) to reduce 

scanner-induced noise. Previous work has capitalized on the slow evolution of SCR signals to propose an 

analysis approach paralleling the one used with fMRI (Bach et al.14 and Engelmann et al.15). Accordingly, 

the pre-processed SCR data were analyzed using multiple linear regression using the 3dDeconvolve 

program in AFNI. We employed the same regression model as the one used for fMRI data. All regressors 

were convolved with a canonical skin conductance response model based on the sigmoid-exponential 

function16. 

 

Relationship between SCR and brain activity: Trial-by-trial analysis 

To probe the relationship between brain activity and physiological arousal, we focused on the BST and 

the left dorsal anterior insula (see Results). Our goal was to evaluate the relationship between trial-by-trial 
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responses in the brain and SCR. To estimate single-trial responses of fMRI data, the model was the same 

one employed for the participant-level analysis, except for the stressor regressor, which was defined 

separately for each stressor event (“trial”). Because the simultaneous presence of all trial-level stressor 

regressors in the model would unduly increase collinearity, estimation was performed via the iterative 

procedure developed by Mumford et al. 17 as implemented by the 3dLSS program of the AFNI suite. 

The same approach was employed to estimate trial-by-trial SCRs. General methods for SCR 

processing followed our past work e.g.,4. For computational tractability, SCR data were resampled by 

decimating the original 250 Hz sample rate to 10 Hz. Note that given the slow evolution of this type of 

signal, the downsampled time series preserved the information needed for the analysis. As with fMRI 

data, 3dLSS was employed to estimate single-trial responses. 

 

Bayesian multilevel model 

The basic linear model can be written as  

𝑦! = 𝛼 + 𝛽𝑥! + 𝜀 

where 𝑥 is a predictor variable. A multilevel model with a grouping/clustering variable (for example, 

ROIs) indexed by 𝑗, can be expresses as 

𝑦! = 𝛼 +	𝛼"[!] + 𝛽𝑥! + 𝛽"[!]𝑥! + 𝜀 

where 𝛼 is the overall intercept, 𝛽 is the overall slope, 𝛼"[!] are 𝑗 intercepts, and 𝛽"[!] are 𝑗 slopes (say, one 

per ROI). With two regressors, we can write 

𝑦! = 𝛼 + 𝛼"[!] + 𝛽%,"[!]𝑥%,! + 𝛽',"[!]𝑥',! + 𝜀. 

  In the present study, the difference of stressor response, ∆(,), for a yoked pair of participants 𝑝 

and ROI 𝑟 can be expressed in terms of the linear mixed effects model notation (lme4-like) as 
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∆(,) 	~	1 + (1	|	PP) + StateMean + 	StateDiff + 	TraitMean + 	TraitDiff + ButtonDiff

+	(1 + 	StateMean + 	StateDiff + 	TraitMean + 	TraitDiff + ButtonDiff		|	ROI) 

where PP (participant pair) and ROI are grouping variables, and the other terms indicate the covariates in 

the model. The first line specifies the intercepts, with a general one, as well as one per participant pair; it 

also specifies the 5 covariates (slopes). The second line specifies slopes for the covariates nested within 

ROI. The notation “1 + covariate” indicates that they are allowed to have a nonzero correlation with the 

intercepts (technically specified via a variance/covariance matrix). 

The full model is therefore in the notation of 18: 

∆(,) 	~	Student	t(𝜈, 𝜇, 𝜎) 

𝜇(,) = 	𝛼 + 𝛼**[(] + 𝛼+,-[)] +                                                                                   (1) 

														𝛽./0/12103StateMean + 𝛽./0/14566StateDiff +																																																																 (2) 
															𝛽7805/2103TraitMean + 𝛽7805/4566TraitDiff +																																																																	 (3)	 
													𝛽9://;3*81<<4566ButtonPressDiff +																																																																																				 (4) 
																𝛾./0/12103,[)]StateMean + 𝛾./0/14566,[)]StateDiff +																																																						 (5)		 

													𝛾7805/2103,[)]TraitMean + 𝛾7805/4566,[)]TraitDiff	 +																																																					 (6) 

																								𝛾7805/4566,[)]ButtonPressDiff

+ 	𝜖																																																																																																																																												(7) 

where the 𝛼 terms are “intercepts”, with the “varying intercepts” 𝛼(	and 𝛼) capturing the contribution of 

each participant pair p and each ROI r. The slope parameters 𝛽 are parameters that model the 

contributions of the covariates, and the “varying slopes”, 𝛾) , model the covariate contribution at each 

specific ROI.   

In addition, the following weakly-informative priors were employed. All intercept and slopes 

were defined as 

𝛼	~	𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(3,0,10) 

                                                           𝛽	~	𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(3,0,10) 
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for all five covariates. The notation for the Student t distribution, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(𝜈, 𝜇, 𝜎), is such that 𝜈 is the 

degrees of freedom, 𝜇 is the mean, and 𝜎 is the scale parameter. This prior is a very noninformative 

heavy-tail distribution suggested by Stan.  

The intercepts clustered by participant were defined as 

𝛼**	~	𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(𝜈**, 0, 𝜎**) 

𝜈**	~	𝐺𝑎𝑚𝑚𝑎(3.325,0.1) 

𝜎**	~	𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡	𝑡(3,0,10) 

where the Gamma distribution, 𝐺𝑎𝑚𝑚𝑎(𝑘, 𝛽), is such that 𝑘 is the shape parameter and 𝛽 is the rate 

parameter. Note that 𝛼** expresses a vector of intercept parameters, one for each participant pair. The 

default suggested by Stan is 𝐺𝑎𝑚𝑚𝑎(2,0.1). However, we chose our parameters because they provide 

50% probability mass that a value can be above/below 30. As the Gamma prior informs the estimate of 

the degrees of freedom, a value of 𝜈 > 30 essentially entails a normal distribution. Values less than 30 

will amount to heavier tails and more skew/outlier tolerance. In any case, the actual estimates of 𝜈 are 

estimated from the data, and the Gamma prior is rather weakly informative. The 𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(𝜈, 𝜇, 𝜎) 

is simply a positively truncated Student t. 

In a similar fashion, the slopes clustered by ROI were defined as 

𝛾+,-	~	𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(𝜈+,-, 0, 𝜎+,-) 

𝜈+,-	~	𝐺𝑎𝑚𝑚𝑎(3.325,0.1) 

𝜎+,-	~	𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡	𝑡(3,0,10). 

Finally, for the variance-covariance structure, the LKJ correlation prior19 was used with the shape 

parameter with the value 1. 
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Supplementary Figures 

Supplementary figure 1: Covariate posterior distributions  

 

Evidence for individual differences in state/trait anxiety (a-d) and button presses (e). a) There is no 
relationship between yoked participants mean state anxiety score and the stressor contrast (uncontrollable 
– controllable) for any of the ROIs. b) There is some evidence suggesting that state anxiety difference 
(uncontrollable – controllable) has a positive relationship with the stressor contrast for left BST, such that 
yoked participants with greater state anxiety difference exhibit larger stressor contrast. There is also 
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evidence suggesting that state anxiety difference has a negative relationship with the stressor contrast for 
regions like PCC/Precuneus and left ventral anterior insula, such that yoked participants with greater state 
anxiety difference exhibit smaller stressor contrast. The c) mean trait score of the yoked participants or its 
d) difference does not have any relationship with stressor contrast. e) There is evidence suggesting that 
difference in the total number of button presses between the yoked participants has positive relationship 
with the stressor contrast for regions like right aMCC, right basolateral amygdala, left mid-posterior 
Insula, right mid-posterior Insula, left basolateral amygdala, and left central/medial amygdala; and 
negative relationship with the stressor contrast for regions like left and right BST. Abbreviations: aMCC, 
anterior midcingulate cortex; BST, bed nucleus of the stria terminalis; PCC, posterior cingulate cortex.  

Supplementary figure 2: Activation clusters with controllability effect 

 

a PCC/precuneus and PCC regions of interest and b activation cluster with a controllability effect from 
voxelwise analysis. Abbreviations: PCC, posterior cingulate cortex. 
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Supplementary Tables 

Supplementary Table 1: Uncontrollable stressor vs. Controllable stressor  

Hemisphere Area MNI 
coordinates 

Cluster 
extent 

(voxels) 

t-value at peak 
coordinate 

          
Uncontrollable > Controllable 

          
L Middle/inferior occipital gyrus -46 -84 -2 17 4.100 
R Middle occipital gyrus 30 -78 16 24 4.523 
R Fusiform gyrus (1) 28 -74 -12 14 4.141 
R Fusiform gyrus (2) 36 -68 -12 16 4.385 
L Inferior temporal/occipital gyrus -48 -68 -10 182 5.700 
L Posterior intraparietal sulcus -24 -68 34 60 4.550 
L Superior parietal lobule 24 66 56 29 4.022 
R Superior parietal lobule 24 -64 48 46 4.750 
L Anterior intrapartietal sulcus -46 -38 40 129 5.066 
L Middle frontal gyrus/ precentral 

gyrus (FEF) 
-28 -4 58 177 4.886 

L Inferior frontal gyrus/precentral 
gyrus 

-40 2 34 215 6.187 

L Dorsomedial PFC -8 14 50 212 6.177 
L Anterior Insula -38 20 -4 81 5.038 
R Middle cingulate cortex 8 20 46 14 4.609 
L Anterior cingulate cortex -6 36 30 14 4.647 
L Inferior frontal gyrus -48 46 0 17 3.740 
R Cerebellum (lobule VIIb) 30 -70 -50 25 4.193 
R Cerebellum (lobule VI) 34 -62 -28 43 4.744 
L Putamen -18 10 2 39 5.170 
L Caudate -14 14 8 45 4.781  

  
   

Controllable > Uncontrollable 
R  PCC 12 -56 18 49 -4.802 

 

          
Activation clusters defined based on voxel-level 0.001 threshold, minimum 13 voxel extent: Cluster 
corrected 0.05. Abbreviations: L, left; R, right, FEF, frontal eye field. 
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Supplementary Table 2: Exploratory analysis 

Hemisphere Area MNI 
coordinates 

Cluster 
extent 

(voxels) 

t-value at peak 
coordinate 

          
Uncontrollable > Controllable 

     
R Angular gyrus 44 -74 34 25 -3.721 
L Supramarginal gyrus -44 -36 26 17 -4.304 
R Transverse temporal gyrus 44 -24 16 16 -3.637 
L Parietal operculum -40 -18 20 12 -3.396 
R Superior temporal gyrus 64 -20 -6 24 -4.707 
R Medial frontal gyrus 18 30 44 12 -3.943 
L Medial frontal gyrus -6 56 26 30 -4.330 
L Putamen -28 -4 -10 10 -3.942  

    
     

Activation clusters defined based on voxel-level 0.005 threshold, minimum 10 voxel extent. Note that for a 
voxelwise threshold of 0.005, a cluster extent of 27 or more voxels is corrected at the cluster level of 0.05. 
Only Controllable > Uncontrollable reported. A cluster in the posterior cingulate cortex was not reported 
here as it was included in Supplementary Table 1. Abbreviations:  L, left; R, right 
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