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SUPPLEMENTARY RESULTS
SNF discriminates diagnostic groups

While the current report was primarily interested in
investigating how SNF might serve to uncover putative
biotypes of PD, we wanted to validate the use of SNF on
identification of known diagnostic clusters in the same
dataset. We ran the full SNF pipeline as described in the
main text (see Fig. 1) including both healthy controls (n
= 87) and PD patients (n = 186), to determine if SNF
was able to correctly dissociate these groups. The re-
sulting consensus cluster assignments yielded three clus-
ters of n = 98, 84, and 91 individuals (Supplementary
Fig. 1); the third cluster (n = 91 individuals) showed
strong overlap with the healthy control population (F1
score = 0.94), while the other two clusters split the PD
population (combining the two clusters yielded an F1
score of 0.97). Notably, the healthy control cluster is eas-
ily distinguishable from the PD patient clusters along the
first dimension of the embedding space (Supplementary
Fig. 1). This is quite distinct from the seemingly arbitrary
groupings the PD biotypes make in the embedded space
shown in Fig. 4, supporting the notion that biotypes may
not be the most parsimonious characterization of PD (see
Discussion).

Assessing longitudinal clinical outcomes

To better investigate the clinical utility of the biotypes
described in the main text we compared longitudinal
clinical outcomes for these biotypes with those derived
from different subsets of the data and other clustering
techniques. Though there are numerous clinical vari-
ables to examine, we chose to focus on the two high-
lighted in the main text: the tremor dominant score
(tremor) and the postural instability/gait difficulty score
(PIGD).

First, we examined whether biotypes obtained solely
from baseline clinical assessments—excluding CSF as-
says, DAT scans, and neuroimaging data—showed differ-
ences in clinical outcomes over time for these two vari-
ables. Clustering labels were derived using the same SNF
grid search pipeline described in Results: Similarity net-
work fusion provides a viable alternative to data concate-
nation, but using only baseline clinical assessments as in-
put. We observe trends suggesting that PIGD scores are
discriminable between biotypes at baseline, and there
are no changes in this discriminability over time (Sup-
plementary Fig. 2b); tremor scores appear to be largely
overlapping between biotypes.

Next, we examined whether biotypes derived from

clustering using concatenated data showed discriminable
clinical outcomes. These biotypes showed limited dif-
ferences in PIGD and tremor scores at baseline, and
relatively limited changes in discriminability over time
(Fig. 2c). Interpretation of these results are supported
by model estimates from linear mixed effects models run
for both biotype definitions (Supplementary Table 5).

PCA is biased by data dimensionality

In the current article we compared clustering of PD
patient data using SNF and data concatenation, showing
that SNF better integrates data from different modalities
and is less influenced by input data dimensionality. Here,
we examine a similar comparison between the diffusion
map embedding results presented in the main text and
another low-dimensional projection technique: principal
components analysis (PCA).

First, we computed the PCA of the concatenated pa-
tient by feature data matrix, yielding a vector of eigen-
values and corresponding eigenvectors. To investigate
the similarities between this projection and the diffusion
map embedding results we plotted the patient scores pro-
jected onto the first two principal components (PCs; Sup-
plementary Fig. 3a). Examining these projections when
colored by patient affiliation with the PD biotypes re-
ported in the main text reveals a much less distinct sepa-
ration between biotypes than is observed with the dif-
fusion map embedding projection (Fig. 4b). We con-
firmed these differences between projections by corre-
lating patient scores along the first two PCs with their
complementary scores along the first two dimensions of
the diffusion map embedding, yielding low—but non-
zero—correlations (rpc; = 0.142, rpc; = 0.266; Supple-
mentary Fig. 3b).

To investigate whether the PCA results were biased by
data dimensionality we computed a PCA independently
for each data modality and correlated patient scores
along the first PC of these decompositions with the pa-
tient scores along the first PC of the concatenated data
matrix (Supplementary Fig. 3c). Notably, PC scores from
the concatenated data matrix are almost perfectly cor-
related with PC scores along the first dimension of the
cortical thickness data (r = 0.99998), while showing
negligible correlation with PC scores from the other data
modalities (rg = 0.01673). These results suggest that,
like clustering, PCA of the concatenated data matrix is
biased by data dimensionality and unsuitable for inves-
tigations of datasets like those presented in the current
study.



Stability of SNF

Despite extensive validation in the original article
[8], its successful application to similar neuroimaging
datasets [5, 7], and the exhaustive parameter search em-
ployed in the current article, we wanted to assess the
stability of SNF as it applies to the current dataset. We
first compare clustering assignments generated from SNF
when varying the dimensionality of cortical thickness
data (see Data dimensionality variation). We then com-
pare patient networks generated from four hyperparam-
eter combinations, examining differences in the result-
ing clustering solutions and diffusion dimensions (see
Hyperparameter variation). Finally, we investigate how
our choice of distance metric (i.e., squared Euclidean dis-
tance) impacts the patient networks and results reported
in the main text (see Alternative distance metrics).

For all analyses, we calculated normalized mutual in-
formation scores (NMI) between different clustering so-
lutions, and used Pearson correlations to compare the
diffusion embedding dimensions derived from the fused
netowkrs.

Hyperparameter variation

Using the results of the parameter search described in
Network creation and fusion we selected four “stable” re-
gions of parameter space and investigated the extent to
which resulting clusters and embedded representations
varied across these regions. For each of the four selected
supra-threshold regions we calculated the center-of-mass
and extracted the relevant (1) cluster labels and (2) net-
work embeddings for the specified hyperparameter com-
binations (K = 22, 44, 58, 88; 1 = 2.6, 4.4, 6.3, 7.3).

We computed NMI between all pairs of hyperparame-
ter combinations separately for each cluster number (n
= 2, 3, 4), finding considerable consistency amongst the
three-cluster solutions (NMI;;,.. = 0.71 &+ 0.08 [0.63-
0.86]) but notably lower consistency for the other cluster
numbers (NMl,,,, = 0.49 £+ 0.15 [0.27-0.66]; NMl,,,,
= 0.55 + 0.32 [0.26-0.92]). Embedding dimensions
were very consistent across all parameter combinations
(average r = 0.97 + 0.03 [0.91-1.00]).

Alternative distance metrics

In the main text we use a squared Euclidean distance
function to generate patient similarity networks from the
original data feature matrices. While there is prece-
dent for this choice [5, 7, 8], we also wanted to inves-
tigate the impact of the chosen distance metric on our
results. Thus, we repeated the analyses described in
the main text using two alternative distance metrics—
cityblock (or Manhattan) distance and cosine distance—

finding that both clustering results (NML;;typioct = 0.74,
NMI,,sine = 0.68) and embedding dimensions (average
Teityblock = 0.93 £ 0.10 [0.65-0.99], reosine = 0.87 £
0.10 [0.70-0.96]) were highly consistent with squared
Euclidean distance.

Comparing clustering techniques

Clinical clustering (“subtyping”) of individuals with
Parkinson’s disease has received significant attention in
recent years, especially since the release of the PPMI
dataset [3, 4]. In the main text we demonstrated that in-
clusion of neuroimaging data significantly contributed to
biotype discriminability using similarity network fusion.
Here, we compare these findings to the clustering frame-
work of one recent clustering solution using the same
dataset.

Clinical guidelines (Fereshtehnejad et al., 2017)

In 2017, Fereshtehnejad and colleagues [4] used hi-
erarchical clustering of baseline clinical-behavioral as-
sessments to find three subtypes of individuals with PD
from the PPMI dataset. From this clustering procedure
they generated a set of clinical guidelines for classify-
ing patients into three groups. While the hierarchical
clustering and clinical guidelines result in slightly differ-
ent subgroup definitions, the authors contend that their
guidelines are more robust to different data acquisition
schemes. Indeed, these guidelines have already been
successfully applied to other datasets [2] with replica-
tion of primary clinical group differences. Although the
replications studies report limited differences on autopsy
parameters between groups, they attribute this to a ceil-
ing effect driven by the advanced stage of the disease at
death.

We apply these clinical guidelines to cluster our pa-
tient sample and find a similar distribution of assign-
ments to those reported in [4] (90 subjects classified as
“mild motor-predominant”, 68 as “intermediate”, and 28
as “diffuse malignant”). Notably, these assignments have
limited overlap with the SNF-derived clustering assign-
ments reported in the main text (normalized mutual in-
formation = 0.026). Using univariate one-way ANOVAs
we find patients grouped according to the criteria of
Fereshtehnejad are only discriminable in the clinical-
behavioral assessments on which the clusters were ini-
tially defined (seven features in total; FDR-corrected, g <
0.05). That is, we fail to observe any cluster differences
in DAT binding, CSF assays, cortical thickness, or subcor-
tical volume measurements; we also fail to observe clus-
ter differences in the PD-ICA atrophy scores derived from
[9] (see Materials and Methods: PD-ICA Atrophy Calcula-
tion).
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Ground truth SNF clustering
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Supplementary Figure 1. Similarity network fusion discriminates PD patients and healthy controls | True diagnostic groups
(left panel; PD patients and healthy controls) compared with SNF-derived clustering assignments (right panel), plotted along the
first two dimensions of the embedding space derived from SNF. Healthy individuals are largely assigned to their own cluster by
SNF (cluster 3, orange), whereas PD patients are split amongst two clusters (cluster 1, blue, and cluster 2, green).
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Supplementary Figure 2. Longitudinal clinical outcomes vary based on data and clustering method | (a) Reproduction
of panel (e) from Fig. 3 showing longitudinal trajectories of SNF-derived biotypes for postural instability/gait disorder (PIGD)
and tremor scores. (b) Longitudinal trajectories for biotypes derived from baseline clinical assessments only. (c) Longitudinal
trajectories for biotypes derived from concatenated data.
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Supplementary Figure 3. Comparison of low-dimensional embedding for SNF and data concatenation | (a) Projection of
PD patients onto the first two principal components derived from the concatenated data matrix. Patients are colored by their
affiliation to the biotypes presented in the main text. (b) Correlations of patient scores along the first two principal components
with corresponding scores along the first two diffusion map embedding dimensions. (c) Correlations of patient scores along the
first principal component from the concatenated data matrix with corresponding scores along the first principal component of each
independent data modality.



Supplementary Table 1. Cluster demographics | Demographic information on clusters defined in Results: Derived patient biotypes
are clinically discriminable across modalities. Presented values are means + standard deviations unless otherwise noted.

Cluster Age (yrs) Male (%) White (%) Education (yrs)
1 60.24 + 8.62 51.39 91.67 15.47 + 2.78
2 62.29 + 10.17 60.87 92.75 15.81 + 2.81
3 62.69 + 8.83 64.44 88.89 15.56 + 3.11

Cluster Symptom duration (mo) Family history of PD (%) UPDRS total
1 6.21 £+ 6.41 18.06 34.04 + 13.35
2 5.74 + 5.45 31.88 31.09 + 13.37
3 5.56 &+ 6.28 22.22 29.93 + 11.66




Supplementary Table 2. Data features supplied to SNF | Cortical thickness features are not listed here due to their size, but
can be found in a machine readable format on https://github.com/netneurolab/markello_ppmisnf. Designations of (+) and (-)
indicate approximate phenotypic severity, where (+) denotes that higher scores for the relevant feature are considered “more
severe” and (-) denotes that lower scores for the relevant feature are considered “more severe”. A designation of (na) indicates
that the relevant feature does not necessarily have a direct relationship to phenotypic severity. For all cortical thickness, subcortical
volume, and DAT binding features lower scores are considered “more severe”.

Subcortical volume (-) DAT binding (-) CSF assays Clinical assessments
Caudate nucleus Left caudate AB (1-42) (-) Benton (-)

Extended amygdala Right caudate CSF a-synuclein (-) Epworth (+)

Globus pallidus, external Left putamen mtDNA deletion (+) GDS (+)

Globus pallidus, internal
Habenular nuclei
Hypothalamus

Mammillary nucleus

Nucleus accumbens
Parabrachial pigmented nucleus
Putamen

Red nucleus

Substantia nigra, pars compacta
Substantia nigra, pars reticulata
Subthalamic nucleus

Ventral pallidum

Ventral tegmental area

Right putamen

MT-ND1 copy number (+)
MT-ND4 copy number (+)
Phosphorylated tau (-)
Serum IGF-1 (-)

Total tau (-)

HVLT recall (-)
HVLT recognition (-)
HVLT retention (-)
LNS (-)

MoCA (-)

PIGD (+)

QUIP (+)

RBD (+)
SCOPA-AUT (+)
Semantic fluency (-)
STAI state (na)

STAI trait (na)
Symbol digit (-)
Systolic BP drop (+)
Tremor (+)
UPDRS-I (+)
UPDRS-II (+)
UPDRS-III (4)
UPSIT (-)



https://github.com/netneurolab/markello_ppmisnf

Supplementary Table 3. Data features discriminable between SNF-derived patient clusters | Only features significant af-
ter FDR-correction (¢ < 0.05) are reported; note that no clinical-behavioral assessments survived this threshold. Numbers in
parentheses next to cortical thickness features indicate regional sub-divisions; for more information on the parcellation refer to

[1].

Cortical thickness Subcortical volume DAT binding CSF assays
Right supramarginal gyrus (15) Substantia nigra, pars compacta Left caudate Total tau

Right superior frontal gyrus (13) Red nucleus Left putamen  Phosphorylated tau
Right lateral orbitofrontal cortex (14) Subthalamic nucleus Right caudate = CSF a-synuclein
Right isthmus cingulate (5) Parabrachial pigmented nucleus Right putamen

Right medial orbitofrontal cortex (10) Ventral pallidum

Right insular cortex (14) Globus pallidus, internal

Right superior frontal gyrus (20) Substantia nigra, pars reticulata

Left paracentral lobule (10) Hypothalamus

Left superior temporal gyrus (25) Extended amygdala

Left insular cortex (6) Globus pallidus, external

Ventral tegmental area
Nucleus accumbens
Putamen

Habenular nuclei
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Supplementary Table 4. Linear mixed effect model of tremor and PIGD scores | Parameter estimates for two linear mixed
effect models fit to longitudinal patient data with formula: score ~ time * biotype + age + education + sex [6]. Relevant
data are shown in Figure 3.

Tremor model

Estimate SE Z-stat 2.5% CI 97.5% CI
Intercept -1.212 1.000 -1.213 -3.171 0.747
Biotype [T.2] 0.792 0.276 2.866 0.251 1.334
Biotype [T.3] 0.086 0.313 0.276 -0.526 0.699
Sex [M-F] 0.170 0.238 0.717 -0.295 0.636
Time -0.081 0.024 -3.391 -0.128 -0.034
Time:Biotype [T.2] 0.074 0.034 2.193 0.008 0.140
Time:Biotype [T.3] 0.177 0.039 4.504 0.100 0.253
Age 0.042 0.013 3.378 0.018 0.067
Education 0.064 0.041 1.580 -0.015 0.144

PIGD model
Estimate SE Z-stat 2.5% CI 97.5% CI
Intercept -0.581 0.474 -1.225 -1.509 0.348
Biotype [T.2] -0.281 0.132 -2.127 -0.540 -0.022
Biotype [T.3] -0.147 0.150 -0.984 -0.440 0.146
Sex [M-F] -0.067 0.113 -0.591 -0.287 0.154
Time 0.166 0.013 12.937 0.141 0.191
Time:Biotype [T.2] -0.046 0.018 -2.533 -0.081 -0.010
Time:Biotype [T.3] 0.017 0.021 0.827 -0.024 0.058
Age 0.023 0.006 3.879 0.011 0.035

Education -0.006 0.019 0.770 -0.043 0.032
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Supplementary Table 5. Longitudinal clinical outcomes vary based on data and clustering method | Parameter estimates
for supplementary linear mixed effect models fit to longitudinal patient data with formula: score ~ time * biotype + age +
education + sex [6]. Biotypes are derived from either baseline clinical data only (“clinical-only”) or concatenated multimodal
data (“concatenated data”). Relevant data are shown in Supplementary Figure 2b-c.

Tremor model

Clinical-only Concatenated data
Estimate SE  Z-stat 2.5%CI 97.5% CI Estimate SE  Z-stat 2.5% CI 97.5% CI
Intercept -0.702 1.094 -0.642 -2.846 1.442 -1.233 1.055 -1.169  -3.301 0.834
Biotype [T.2] -0.615 0.346 -1.781 -1.293 0.062 0.391 0.324 1.209 -0.243 1.026
Biotype [T.3] -0.082 0.348 -0.235 -0.764 0.601 -0.150 0.288 -0.520 -0.714 0.414
Sex [M-F] 0.205 0.246 0.834 -0.277 0.687 0.291 0.252 1.154 -0.203 0.784
Time -0.032 0.038 -0.854 -0.106 0.042 -0.042 0.025 -1.676  -0.091 0.007
Time:Biotype [T.2] 0.072 0.043 1.661 -0.013 0.157 -0.040 0.038 -1.052 -0.116 0.035
Time:Biotype [T.3] -0.039 0.045 -0.870 -0.127 0.049 0.103 0.034 2.983 0.035 0.170
Age 0.041 0.013 3.112 0.015 0.067 0.045 0.013 3.435 0.019 0.070
Education 0.074 0.042 1.769  -0.008 0.156 0.070 0.042 1.663 -0.012 0.152

PIGD model

Clinical-only Concatenated data
Estimate SE  Z-stat 2.5% CI 97.5% CI Estimate SE  Z-stat 2.5%CI 97.5% CI
Intercept -0.604 0.477 -1.264 -1.541 0.333 -0.484 0.494 -0.981  -1.452 0.484
Biotype [T.2] 0.116 0.153 0.756  -0.184 0.416 -0.047 0.153 -0.304 -0.346 0.253
Biotype [T.3] 0.582 0.155 3.768 0.279 0.885 -0.036 0.136 -0.266  -0.303 0.230
Sex [M-F] -0.159 0.107 -1.482  -0.369 0.051 -0.061 0.118 -0.518 -0.292 0.170
Time 0.209 0.020 10.486 0.170 0.248 0.170 0.013 12.664 0.143 0.196
Time:Biotype [T.2] -0.099 0.023 -4.317 -0.144 -0.054 0.024 0.020 1.177 -0.016 0.064
Time:Biotype [T.3] -0.027 0.024 -1.111  -0.073 0.020 -0.061 0.018 -3.332  -0.097 -0.025
Age 0.016 0.006 2.792 0.005 0.028 0.021 0.006  3.449 0.009 0.033
Education 0.000 0.018 0.026  -0.035 0.036 -0.011 0.020 -0.546  -0.049 0.028
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