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Figure S1. Yamaguchi et al.
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Figure S1. Oscillatory behavior of a coupled dual-phosphorylation system 

(A) Scheme of reversible phosphorylation models. 

(B) An example time course of oscillatory phosphorylation dynamics. 

(C) The example oscillatory dynamics of t = 0 min to t = 5,000 min are projected to Sa00-Sa01-Sa10 

space (green line). Red dots indicate the phosphorylation states at t = 5,000 min obtained from 200 

runs of the simulation with slightly different initial conditions. 

(D) Power spectrum of the example oscillatory trajectory analyzed by FFT. 

See also Figure 1. 
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Figure S2. Yamaguchi et al.
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Figure S2. Parameter motifs found in chaotic parameter sets 

Schematic representation and parameter histograms of the chaotic parameter clusters shown in the 

same manner as in Figure 2. 

See also Figure 2. 
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Figure S3. Specific arrangements of motif structure are important for chaos generation 

(A) Bar charts indicate the probability of oscillatory parameter sets found in the presence of each 

imposed motif. Imposed motif arrangements are shown in the same manner as in Figure 3. 

(B) A comparison of the probability of chaos behavior and oscillation for parameters in the presence 

of each combination of imposed motifs. The red arrow indicates the motif arrangement with the 

highest probability of chaos behavior (i.e., arrangement #46). 

See also Figure 3. 
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Figure S4. Bifurcation analysis of stereotypical oscillation parameter sets. 

(A) Bifurcation analysis was conducted for stereotypical oscillatory parameter sets (n = 97), all of 

which preserve the motif arrangement shown in the schematic representation in (A). The method 

used is same as that reported in Figure 4B. 

(B) The same analysis as that in (A) is shown, except that the indicated parameter and its 

symmetrical pair (e.g., ka1 and ka8, Kmb4 and Kmb5) are simultaneously fixed to an indicated value. 

See also Figure 4. 

  



Figure S5. Yamaguchi et al.
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Figure S5. Roles of enzyme trap efficiency in the coupling of two oscillators 

(A, B) Time course of oscillatory dynamics for the representative parameter set with a 0.01-fold 

decrease (A) or 100-fold increase (B) in the parameter values for symmetrical Kma2 and Kma7. 

Increasing the enzyme sequestration efficiency by Sa substrate (A) did not severely affect chaotic 

dynamics; reducing the enzyme sequestration by Sa (B) only allowed Sb-sequestration to drive the 

rhythmic synchronization of phosphorylation states such that the entire dynamics became 

dominated by slow-frequency oscillation. 

(C, D) Time course of oscillatory dynamics for the representative parameter set with a 0.01-fold 

decrease (C) or 100-fold increase (D) in the parameter values for symmetrical Kmb4 and Kmb5. 

Increasing the enzyme sequestration efficiency by Sb substrate (C) masked the high-frequency 

rhythmicity driven by Sa; reducing the enzyme sequestration by Sb (D) only allowed Sa-

sequestration to drive the rhythmic synchronization of phosphorylation states such that the entire 

dynamics became dominated by high-frequency oscillation. 

  



 

 

Supplemental Tables   

Table S1. Example stereotypical chaos parameter set, related to Figure 5. 

Parameter 

k (min-1), Km (μM) 

Example stereotypical chaos parameter set 

ka1 47.24854606 

ka2 103.9531911 

ka3 10.08171512 

ka4 1060.571158 

ka5 1060.571158 

ka6 10.08171512 

ka7 103.9531911 

ka8 47.24854606 

Kma1 1.471248283 

Kma2 0.008378714 

Kma3 57.41102352 

Kma4 2.597629575 

Kma5 2.597629575 

Kma6 57.41102352 

Kma7 0.008378714 

Kma8 1.471248283 

kb1 209.3650037 

kb2 10.6326728 

kb3 19.66831864 

kb4 12.42448634 

kb5 12.42448634 

kb6 19.66831864 

kb7 10.6326728 

kb8 209.3650037 

Kmb1 87.77317768 

Kmb2 38.41198729 

Kmb3 4.314899945 

Kmb4 0.04746365 

Kmb5 0.04746365 

Kmb6 4.314899945 

Kmb7 38.41198729 

Kmb8 87.77317768 

  



 

 

Table S2. Example stereotypical chaos parameter set for stochastic simulation, related to Figure 5. 

Parameter 

k (min-1), kc (min-1 μM-1), kuc (min-1) 

Example stereotypical chaos parameter set  

(stochastic simulation) 

ka1 47.24854606 

ka2 103.9531911 

ka3 10.08171512 

ka4 1060.571158 

ka5 1060.571158 

ka6 10.08171512 

ka7 103.9531911 

ka8 47.24854606 

kuca1 - kuca8 10 

kca1 32.794 

kca2 12526 

kca3 0.19302 

kca4 408.67 

kca5 408.67 

kca6 0.19302 

kca7 12526 

kca8 32.794 

kb1 209.3650037 

kb2 10.6326728 

kb3 19.66831864 

kb4 12.42448634 

kb5 12.42448634 

kb6 19.66831864 

kb7 10.6326728 

kb8 209.3650037 

kucb1 - kucb8 10 

kcb1 2.3967 

kcb2 0.30284 

kcb3 4.79 

kcb4 282.84 

kcb5 282.84 

kcb6 4.79 

kcb7 0.30284 

kcb8 2.3967 



 

 

Transparent Methods 

Modeling of coupled-posttranslational oscillator system 

The coupled-posttranslational oscillator system was formulated as a set of ten ordinary differential 

equations that describe the temporal evolution of the concentrations of eight substrate 

phosphorylation states and two unbound enzymes. 

d[Sa00]

d𝑡
= − (

𝑘𝑎1

𝐾𝑚a1

+
𝑘a2

𝐾𝑚a2

) [E][Sa00] + (
𝑘a5

𝐾𝑚a5

[Sa01] +
𝑘a6

𝐾𝑚a6

[Sa10]) [F] (1) 

d[Sa01]

d𝑡
= (

𝑘a1

𝐾𝑚a1

[Sa00] −
𝑘a3

𝐾𝑚a3

[Sa01]) [E] + (−
𝑘a5

𝐾𝑚a5

[Sa01] +
𝑘a7

𝐾𝑚a7

[Sa11]) [F] (2) 

d[Sa10]

d𝑡
= (

𝑘a2

𝐾𝑚a2

[Sa00] −
𝑘a4

𝐾𝑚a4

[Sa10]) [E] + (−
𝑘a6

𝐾𝑚a6

[Sa10] +
𝑘a8

𝐾𝑚a8

[Sa11]) [F] (3) 

d[Sa11]

d𝑡
= (

𝑘a3

𝐾𝑚a3

[Sa01] +
𝑘a4

𝐾𝑚a4

[Sa10]) [E] − (
𝑘a6

𝐾𝑚a6

+
𝑘a8

𝐾𝑚a8

) [F][Sa11] (4) 

d[Sb00]

d𝑡
= − (

𝑘b1

𝐾𝑚b1

+
𝑘b2

𝐾𝑚b2

) [E][Sb00] + (
𝑘b5

𝐾𝑚b5

[Sb01] +
𝑘b6

𝐾𝑚b6

[Sb10]) [F] (5) 

d[Sb01]

d𝑡
= (

𝑘b1

𝐾𝑚b1

[Sb00] −
𝑘b3

𝐾𝑚b3

[Sb01]) [E] + (−
𝑘b5

𝐾𝑚b5

[Sb01] +
𝑘b7

𝐾𝑚b7

[Sb11]) [F] (6) 

d[Sb10]

d𝑡
= (

𝑘b2

𝐾𝑚b2

[Sb00] −
𝑘b4

𝐾𝑚b4

[Sb10]) [E] + (−
𝑘b6

𝐾m𝑏6

[Sb10] +
𝑘b8

𝐾𝑚b8

[Sb11]) (7) 

d[Sb11]

d𝑡
= (

𝑘b3

𝐾𝑚b3

[Sb01] +
𝑘b4

𝐾𝑚b4

[Sb10]) [E] − (
𝑘b6

𝐾mb6

+
𝑘b8

𝐾𝑚b8

) [F][Sb11] (8) 

[E] =
𝐸total

1 +
[Sa00]
𝐾𝑚a1

+
[Sa00]
𝐾𝑚a2

+
[Sa01]
𝐾𝑚a3

+
[Sa10]
𝐾𝑚a4

+
[Sb00]
𝐾𝑚b1

+
[Sb01]
𝐾𝑚b2

+
[Sb10]
𝐾𝑚b3

+
[Sb10]
𝐾𝑚b4

(9)
 

[F] =
𝐹total

1 +
[Sa01]
𝐾𝑚a5

+
[Sa10]
𝐾𝑚a6

+
[Sa11]
𝐾𝑚a7

+
[Sa11]
𝐾𝑚a8

+
[Sb01]
𝐾𝑚b5

+
[Sb10]
𝐾𝑚b6

+
[Sb11]
𝐾𝑚b7

+
[Sb11]
𝐾𝑚b8

(10)
 

 

In these equations, [Sa00], [Sa01], [Sa10], and [Sa11] represent the concentrations of the four 

phosphorylation states of substrate A; [Sb00], [Sb01], [Sb10], and [Sb11] represent the concentrations of 

the four phosphorylation states of substrate B; [E] and [F] are the concentrations of free (unbound) 

kinase and phosphatase; ka1-ka8 and kb1-kb8 are the reaction rate constants; Kma1-Kma8 and Kmb1-Kmb8 

are the Michaelis−Menten constants; and Etotal and Ftotal are the total concentrations of kinase and 

phosphatase. 

 

Random parameter search for chaotic and oscillatory parameter sets 

We randomly generated parameter sets that consisted of 32 constants (16 reaction rate constants 

and 16 Michaelis−Menten constants) and then numerically solved the equations to find chaotic 

parameter sets. Reaction rate constants ka1-ka8 and kb1-kb8 were independently generated from 

exponential distributions bounded between 1 and 1000 min−1. Michaelis−Menten constants Kma1-

Kma8 and Kmb1-Kmb8 were independently generated from exponential distributions bounded between 



 

 

0.01 and 1000 μM. The integration began from a state in which all the substrate molecules were 

dephosphorylated and all the enzyme molecules were unbounded ([Sa00] = [Sb00] = 1000 μM; [E] = 

[F] = 20 μM). The solution for each parameter set could be convergent, oscillatory, or chaotic. We 

judged a solution to be chaotic when its power spectrum was continuous rather than discrete; the 

spectrum was firstly numerically classified as not discrete if the proportion of the power at the peak 

frequency to the total power was below 15%. Then we plotted those candidate continuous 

spectrums and visually checked their continuity. We further checked the chaotic parameter sets to 

ensure that, after sufficient time had passed (t = 5000 min), the solution was divergent because of 

small changes in the initial state of the integration. The degree of divergence is visually inspected. 

Oscillatory parameter sets were collected in the same manner as chaotic parameter sets. Solutions 

were considered to be oscillatory when the power spectrum was discrete. 

 

Clustering of chaotic parameter sets 

Chaotic parameter sets collected in the random parameter search were standardized and clustered 

by performing a clustering analysis. In the standardization procedure, each constant was 

transformed so that the defined lower bound, upper bound, and the midpoint between them mapped 

to −1, 1, and 0, respectively. To achieve this, reaction rate constants were log-transformed with 

base 10, 1.5 was subtracted from the value [= (0 + 3)/2], and then this value was divided by 1.5 [= 

(3 − 0)/2]. Michaelis−Menten constants were log-transformed with base 10, 0.5 was subtracted from 

the value [= (3 + (−2))/2], and then this value was divided by 2.5 [= (3 − (−2))/2]. In the clustering 

analysis, standardized parameters were hierarchically clustered using Ward’s algorithm. We used a 

special distance metric for the algorithm to consider the three symmetries of the system. These 

symmetries existed (1) in the phosphorylation states of each substrate (i.e., exchanging the position 

of Sa01 and Sa10, or exchanging the position of Sb01 and Sb10, conserves the overall structure), (2) as 

an enzymatic symmetry (i.e., exchanging the role of kinase and phosphatase conserves the overall 

structure), and (3) as a substrate symmetry (i.e., exchanging Sa and Sb conserves the overall 

structure). By considering the first symmetry, the parameter set that exchanged parameter {ka1, Kma1, 

ka2, Kma2, ka3, Kma3, ka4, Kma4, ka5, Kma5, ka6, Kma6, ka7, Kma7, ka8, Kma8} with {ka2, Kma2, ka1, Kma1, ka4, 

Kma4, ka3, Kma3, ka6, Kma6, ka5, Kma5, ka8, Kma8, ka7, Kma7} can be regarded as the same as the original 

set. Similarly, by considering the second symmetry, the parameter set that exchanged parameter 

{ka1, Kma1, ka2, Kma2, ka3, Kma3, ka4, Kma4, ka5, Kma5, ka6, Kma6, ka7, Kma7, ka8, Kma8, kb1, Kmb1, kb2, Kmb2, kb3, 

Kmb3, kb4, Kmb4, kb5, Kmb5, kb6, Kmb6, kb7, Kmb7, kb8, Kmb8} with {kb7, Kmb7, kb8, Kmb8, kb5, Kmb5, kb6, Kmb6, 

kb3, Kmb3, kb4, Kmb4, kb1, Kmb1, kb2, Kmb2, kb7, Kmb7, kb8, Kmb8, kb5, Kmb5, kb6, Kmb6, kb3, Kmb3, kb4, Kmb4, kb1, 

Kmb1, kb2, Kmb2} can be regarded as the same set. By considering the third symmetry, the parameter 

set that exchanged parameter {ka1, Kma1, ka2, Kma2, ka3, Kma3, ka4, Kma4, ka5, Kma5, ka6, Kma6, ka7, Kma7, 

ka8, Kma8, kb1, Kmb1, kb2, Kmb2, kb3, Kmb3, kb4, Kmb4, kb5, Kmb5, kb6, Kmb6, kb7, Kmb7, kb8, Kma8} with {kb1, 

Kmb1, kb2, Kmb2, kb3, Kmb3, kb4, Kmb4, kb5, Kmb5, kb6, Kmb6, kb7, Kmb7, kb8, Kmb8, ka1, Kma1, ka2, Kma2, ka3, 

Kma3, ka4, Kma4, ka5, Kma5, ka6, Kma6, ka7, Kma7, ka8, Kma8} can be regarded as the same set. Given 



 

 

these symmetries, the distance between two parameter sets P1 and P2 is defined as the minimum of 

the distances between P1 and all the symmetrically exchangeable parameter sets of P2. To abstract 

the motif structure, parameter histograms were calculated for each cluster. When observing the 

distribution of all parameters in all clusters (Figures 2 and S2), the highest frequency at which 

parameters occurred with highly skewed distributions was ~0.4. Therefore, we set a threshold value 

of 0.2, i.e., half the highest frequency. 

 

Biased parameter search 

Parameter sets were generated by introducing some specific biases to some of their parameters; 

the solutions were then classified in the same manner as for the random parameter search based 

on the power spectrum. The biases were determined as combinations of motif A bias and motif B 

bias. Both motif A bias and motif B bias consisted of two biased parameters, one for a high reaction 

rate constant and the other for a low Michaelis−Menten constant. When the bias for the reaction 

rate constant was set, the parameter was randomly generated from an exponential distribution 

bounded between 100 and 1000 min−1. When the bias for the Michaelis−Menten constant was set, 

the parameter was randomly generated from an exponential distribution bounded between 0.01 and 

0.1 μM. In this biased parameter search, we did not apply visual inspection of the sentisitivity to 

initial conditions. The lack of this confirmation would not critically deteriorate the classification 

performance for a chaos parameter set: for a follow-up analysis, we randomly chose 1,000 

parameter sets that were classified as chaos through all the biased conditions and inspected their 

sensitivity to initial conditions. Through the inspection, only 12 parameters were found to be 

misclassified (in other words, 98.8% of chaos parameters were accurately classified as chaos 

without the visual inspection of initial condition sensitivity). 

 

Collection of stereotypical chaos and oscillatory parameter sets 

To obtain stereotypical chaos parameter sets with symmetrical structures, we used the results of the 

biased parameter search corresponding to motif arrangement #46. Parameters were randomly 

sampled from a Gaussian distribution defined by the mean and the covariance matrix of chaos 

parameters obtained from the biased parameter search. In this sampling, distributions were not 

bounded within a specific range. The sampled parameter was modified so that it had a symmetrical 

structure, i.e., kai = ka(9-i), kbi = kb(9-i), Kmai = Kma(9-i), Kmbi = Kmb(9-i) for i = 1…4. The solution was then 

determined to be either chaotic or not chaotic as described in the method section “Random 

parameter search for chaotic and oscillatory parameter sets”. In total, 97 chaotic parameters were 

collected from 10 million random sampling repeats. Chaotic parameters were confirmed to show 

initial condition sensitivity. The stereotypical oscillatory parameter sets were obtained by the same 

procedure except that the numerical solution was considered to be oscillation. Collection of 

oscillatory parameter sets continued until 97 sets were found. 

The example chaos parameter set was selected as follows. Each stereotypical chaos 



 

 

parameter set was first standardized, which was conducted using the same method described for 

the clustering procedure. The example parameter set was then selected as the one closest to the 

mean of the standardized parameter sets. The distance between parameter sets was measured by 

Euclidian distance. The values of the selected stereotypical chaos parameter sets are shown in 

Table S1. 

 

Bifurcation analysis 

Each parameter in the typical chaotic parameter set varied between the following ranges: 1 and 

1000 min−1 for the reaction rate constant; 0.01 and 0.1 μM for the binding constant. The varied 

value took 30 logarithmically-spaced points between the ranges, including both sides. For each 

analysis, the solution type was determined as as described in the method section “Random 

parameter search for chaotic and oscillatory parameter sets”. For asymmetric perturbation, when 

bifurcation analysis on each specific parameter had been conducted, the other parameters at the 

symmetrical positions were fixed to the original value, resulting in a violation of symmetry. For 

symmetric perturbation, both parameters at the symmetrical positions (e.g., ka1 and ka8) varied 

simultaneously. Bifurcation maps were produced based on the results of the bifurcation analysis. 

The color of each cell was specified using a RGB color code: the R channel was set to the 

proportion of chaos behavior, G was the proportion of oscillation, and B was the proportion of 

convergence. 

 

Stochastic simulation 

The stochastic simulation was performed using Gillespie’s direct method stochastic simulation 

algorithm implemented in StochPy (Maarleveld et al., 2013). We modified the simulation to track the 

behavior of the full system including each kinase−substrate complex molecule. The full ordinary 

differential equation system, without application of the Michaelis−Menten approximation, is 

described below. 

d[Sa00]

d𝑡
= −(𝑘𝑐a1 + 𝑘𝑐a2)[E][Sa00] + 𝑘𝑢𝑐a1[ESa00→𝑎01]

+𝑘𝑢𝑐a2[ESa00→a10] + 𝑘a5[FSa01] + 𝑘a6[FSa10] (11)
 

d[Sa01]

d𝑡
= −𝑘𝑐a3[E][Sa01] + 𝑘𝑢𝑐a3[ESa01] − 𝑘𝑐a5[F][Sa01]

+𝑘𝑢𝑐a5[FSa01] + 𝑘a1[ESa00→a01] + 𝑘a7[FSa11→a01] (12)
 

d[Sa10]

d𝑡
= −𝑘𝑐a4[E][Sa10] + 𝑘𝑢𝑐a4[ESa10] − 𝑘𝑐a6[F][Sa10]

+𝑘𝑢𝑐a6[FSa10] + 𝑘a2[ESa00→a10] + 𝑘a8[FSa11→a10] (13)
 

d[Sa11]

d𝑡
= −(𝑘𝑐a7 + 𝑘𝑐a8)[F][Sa11] + 𝑘𝑢𝑐a7[FSa11→a01]

+𝑘𝑢𝑐a8[FSa11→a10] + 𝑘a3[ESa01] + 𝑘a4[ESa10] (14)
 

d[ESa00→a01]

d𝑡
= 𝑘𝑐a1[E][Sa00] − (𝑘𝑢𝑐a1 + 𝑘a1)[ESa00→a01] (15) 



 

 

d[ESa00→a10]

d𝑡
= 𝑘𝑐a2[E][Sa00] − (𝑘𝑢𝑐a2 + 𝑘a2)[ESa00→a10] (16) 

d[ESa01]

d𝑡
= 𝑘𝑐a3[E][Sa01] − (𝑘𝑢𝑐a3 + 𝑘a3)[ESa01] (17) 

d[ESa10]

d𝑡
= 𝑘𝑐a4[E][Sa10] − (𝑘𝑢𝑐a4 + 𝑘a4)[ESa10] (18) 

d[FSa01]

d𝑡
= 𝑘𝑐a5[F][Sa01] − (𝑘𝑢𝑐a5 + 𝑘a5)[FSa01] (19) 

d[FSa10]

d𝑡
= 𝑘𝑐a6[F][Sa10] − (𝑘𝑢𝑐a6 + 𝑘a6)[FSa10] (20) 

d[FSa11→a01]

d𝑡
= 𝑘𝑐a7[F][Sa11] − (𝑘𝑢𝑐a7 + 𝑘a7)[FSa11→a01] (21) 

d[FSa11→a10]

d𝑡
= 𝑘𝑐a8[F][Sa11] − (𝑘𝑢𝑐a8 + 𝑘a8)[FSa11→a10] (22) 

d[Sb00]

d𝑡
= −(𝑘𝑐b1 + 𝑘𝑐b2)[E][Sb00] + 𝑘𝑢𝑐b1[ESb00→b01]

+𝑘𝑢𝑐b2[ESb00→b10] + 𝑘b5[FSb01] + 𝑘b6[FSb10] (23)
 

d[Sb01]

d𝑡
= −𝑘𝑐b3[E][Sb01] + 𝑘𝑢𝑐b3[ESb01] − 𝑘𝑐b5[F][Sb01]

+𝑘𝑢𝑐b5[FSb01] + 𝑘b1[ESb00→b01] + 𝑘b7[FSb11→b01] (24)
 

d[Sb10]

d𝑡
= −𝑘𝑐b4[E][Sb10] + 𝑘𝑢𝑐b4[ESb10] − 𝑘𝑐b6[F][Sb10]

+𝑘𝑢𝑐b6[FSb10] + 𝑘b2[ESb00→b10] + 𝑘b8[FSb11→b10] (25)
 

d[Sb11]

d𝑡
= −(𝑘𝑐b7 + 𝑘𝑐b8)[F][Sb11] + 𝑘𝑢𝑐b7[FSb11→b01]

+𝑘𝑢𝑐b8[FSb11→b10] + 𝑘b3[ESb01] + 𝑘b4[ESb10] (26)
 

d[ESb00→b01]

d𝑡
= 𝑘𝑐b1[E][Sb00] − (𝑘𝑢𝑐b1 + 𝑘b1)[ESb00→b01] (28) 

d[ESb00→b10]

d𝑡
= 𝑘𝑐b2[E][Sb00] − (𝑘𝑢𝑐b2 + 𝑘b2)[ESb00−b10] (29) 

d[ESb01]

d𝑡
= 𝑘𝑐b3[E][Sb01] − (𝑘𝑢𝑐b3 + 𝑘b3)[ESb01] (30) 

d[ESb10]

d𝑡
= 𝑘𝑐b4[E][Sb10] − (𝑘𝑢𝑐b4 + 𝑘b4)[ESb10] (31) 

d[FSb01]

d𝑡
= 𝑘𝑐b5[F][Sb01] − (𝑘𝑢𝑐b5 + 𝑘b5)[FSb01] (32) 

d[FSb10]

d𝑡
= 𝑘𝑐b6[F][Sb10] − (𝑘𝑢𝑐b6 + 𝑘b6)[FSb10] (33) 

d[FSb11→b01]

d𝑡
= 𝑘𝑐b7[F][Sb11] − (𝑘𝑢𝑐b7 + 𝑘b7)[FSb11→b01] (34) 

d[FSb11→b10]

d𝑡
= 𝑘𝑐b8[F][Sb11] − (𝑘𝑢𝑐b8 + 𝑘b8)[FSb11→b10] (35) 



 

 

d[E]

d𝑡
= −((𝑘𝑐a1 + 𝑘𝑐a2)[Sa00] + 𝑘𝑐a3[Sa01] + 𝑘𝑐a4[Sa10])[E] + (𝑘𝑢𝑐a1 + 𝑘a1)[ESa00→a10]

+(𝑘𝑢𝑐a2 + 𝑘a2)[ESa00→a10] + (𝑘𝑢𝑐a3 + 𝑘a3)[ESa01] + (𝑘𝑢𝑐a4 + 𝑘a4)[ESa10]

−((𝑘𝑐b1 + 𝑘𝑐b2)[Sb00] + 𝑘𝑐b3[Sb01] + 𝑘𝑐b4[Sb10])[E] + (𝑘𝑢𝑐b1 + 𝑘b1)[ESb00→b01]

+(𝑘𝑢𝑐b2 + 𝑘b2)[ESb00→b10] + (𝑘𝑢𝑐b3 + 𝑘b3)[ESb01] + (𝑘𝑢𝑐b4 + 𝑘b4)[ESb10] (36)

 

d[F]

d𝑡
= −(𝑘𝑐a5[Sa00] + 𝑘𝑐a6[Sa10] + (𝑘𝑐a7 + 𝑘𝑐a8)[Sa11])[F] + (𝑘𝑢𝑐a5 + 𝑘a5)[FS01]

+(𝑘𝑢𝑐a6 + 𝑘a6)[FSa10] + (𝑘𝑢𝑐a7 + 𝑘a7)[FSa11→a01] + (𝑘𝑢𝑐a8 + 𝑘a8)[FSa11→a10]

−(𝑘𝑐b5[Sb00] + 𝑘𝑐b6[Sb10] + (𝑘𝑐b7 + 𝑘𝑐b8)[Sb11])[F] + (𝑘𝑢𝑐b5 + 𝑘b5)[FS01]

+(𝑘𝑢𝑐b6 + 𝑘b6)[FSb10] + (𝑘𝑢𝑐b7 + 𝑘b7)[FSb11→b01] + (𝑘𝑢𝑐b8 + 𝑘b8)[FSb11→b10] (37)

 

 

In these equations, [Sa00], [Sa01], [Sa10], and [Sa11] represent the concentrations of the four 

phosphorylation states of substrate A; [Sb00], [Sb01], [Sb10], and [Sb11] represent the concentrations of 

the four phosphorylation states of substrate B; [E] and [F] are the concentrations of free (unbound) 

kinase and phosphatase; [ES] and [FS] are the enzyme-substrate complex concentrations with the 

arrow in the subscript indicating which reaction the complex is involved in (e.g., ESa00→a01 denotes 

that the ES complex is involved in the kinase reaction converting Sa00 to Sa01); ka1-ka8 and kb1-kb8 are 

the catalytic rate constants; kca1-kca8 and kcb1-kcb8 are the binding constants; and kuca1-kuca8 and kucb1-

kucb8 are the unbinding constants. The values of the parameter sets are shown in Table S2. The 

relationship among the Michaelis−-Menten constants, binding constants, and unbinding constants is 

described as follows: 

𝐾𝑚i =
𝑘𝑢𝑐i + 𝑘i

𝑘𝑐i

, for i = 1 … 8 (38) 

 

Software for computer simulation 

Numerical integration and clustering were carried out by Python 3.6.1 with the libraries of numpy 

1.12.1 and scipy 0.19.1, or by Mathematica 12.0 (Wolfram Research). Stochastic simulation was 

carried out by StochPy 2.3. 

 


