

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Status of Intrinsic Capacity Decline in China: Prevalence, Associated Factors, and Implications for Clinical Care

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-043062
Article Type:	Original research
Date Submitted by the Author:	23-Jul-2020
Complete List of Authors:	Ma, Lina; Xuanwu Hospital, Department of Geriatrics Chhetri, Jagadish K; Xuanwu Hospital Zhang, Li; Xuanwu Hospital Sun, Fei; Xuanwu Hospital Li, Yun; Xuanwu Hospital Tang, Zhe; Xuanwu Hospital
Keywords:	GERIATRIC MEDICINE, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine)

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Status of Intrinsic Capacity Decline in China: Prevalence, Associated Factors, and
2	Implications for Clinical Care
3	Lina Ma ¹ , Jagadish K. Chhetri ¹ , Li Zhang ¹ , Fei Sun ² , Yun Li ¹ , Zhe Tang ^{1,2}
4	¹ Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical
5	Research Center for Geriatric Disorders, Beijing 100053, China.
6	² Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053,
7	China
8	Correspondence: Dr. Zhe Tang, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical
9	University, e-mail: tangzhe@sina.com; Dr. Lina Ma, Department of Geriatrics, Xuanwu Hospital,
10	Capital Medical University, e-mail: malina0883@126.com.
11	
12	Running title: Status of Intrinsic Capacity Decline in China
13	Main text word count: 3248
14	Data elements: 3 Tables, 2 Figures, 2 Supplementary Tables
15	

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
20	
40	
41	
42	
43	
44	
15	
77	
46	
47	
48	
49	
50	
20	
51	
52	
53	
54	
57	
22	
56	
57	
58	
50	
23	
60	

16 Abstract

Objectives: The WHO proposed intrinsic capacity (IC) as a new model to capture an individual's
functions and capacities across lifetime. We aimed to investigate the prevalence of and factors
associated with decline in IC (DIC) and examine associations between IC and adverse outcomes
in China.

21 **Design:** Cross-sectional study.

22 Setting: Community, China.

Participants: Data were derived from the China Comprehensive Geriatric Assessment Study. IC 23 24 comprised five domains: locomotion, cognition, vitality, sensory, and psychological domains. Participants were deemed DIC if they had any domain decline(s). Sociodemographic 25 characteristics, chronic diseases, geriatric syndromes, and adverse outcomes were examined. 26 27 Results: Of 5,823 community-dwelling participants aged 60–98 years, 2,506 were DIC (weighted 28 39.9%): 57.7% in Western, 38.3% in Northern, 33.7% in Northwest, 36.1% in Middle, 16.9% in 29 Eastern, and 19.8% in Northeast China. Participants with decline in locomotion, cognition, vitality, sensory, and psychological domains numbered 1,039 (17.8%), 646 (11.1%), 735 (12.6%), 824 30 (14.2%), and 713 (12.2%), respectively. Age, northern residence, low education, poor marital 31 status, low income, less exercise, less meat intake, insomnia, memory loss, urinary incontinence, 32 constipation, slowness, chronic obstructive pulmonary disease, and osteoarthritis independently 33 34 influenced DIC. After adjusting for age, sex, area, district, marriage, education, waist-hip ratio, smoking, alcohol consumption, exercise, income, and chronic diseases, DIC was independently 35 associated with risk of frailty, disability, fall, fracture, and immobility. 36

37 Conclusion: DIC prevalence in China is high. IC was significantly associated with adverse
38 outcomes, after adjusting for related variables. Efforts promoting IC to delay functional

dependence should focus on modifiable factors, such as worse social factors, poor lifestyle, chronic

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	, פ
1	0 0
ו ר	ን በ
2	1
2	ו ר
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	- २
4	4
4	5
т Л	6
+ /	7
4	/ Q
4	0 0
4	ש ר
5	1
5	1
5	2
5	3
5	4
5	5

diseases, and geriatric syndromes.

7		
, 8	41	
9		
10	42	Keywords: Intrinsic canacity: Older Adults: Prevalence: Frailty
11	74	Reywords . Intrinsie eapleity, Order Addus, Prevalence, Pranty
12	10	
13	43	
14		
15	44	
16		
17		
18		
19		
20		
21		
22		
25		
24 25		
25		
20		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
45 11		
44 45		
46		
47		
48		
49		
50		
51		
52		

Article summary

BMJ Open

1	
2 3 4	45
5 6	46
7 8 0	47
9 10 11	48
12 13	49
14 15 16	50
17 18	51
19 20	52
21 22	53
23 24 25	54
26 27	55
28 29	56
30 31 32	57
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
50 57	
58 59	
60	

Str	engths and limitations of this study
•	To the best of our knowledge, this study is the first large nationally representative sample of
	population-based older people focusing on intrinsic capacity in China.
•	Most of the indicators of intrinsic capacity such as locomotion, cognition, and psychological
	domain were assessed by unified measured performance tests.
•	This study provided preliminary understanding of the intrinsic capacity situation in China,
	which suggests ways to successfully put intrinsic capacity into clinical practice to contribute
	to complex integrated care strategies for older persons with declined intrinsic capacity.
•	The relatively small sample size and cross-sectional design limit generalizability of the results
•	We used a composite total score instead of a weighted score, so further statistical approaches
	should be conducted to compute IC score.

58 Introduction

The increasing global disability burden associated with rapid population aging causes physical, social, and mental health problems, which challenges the health care system for older people¹. To cope with the demands of increasing numbers of frail community-dwelling older persons with multiple complex needs, implementing integrated care is necessary to improve their well-being². As such, the World Health Organization (WHO) has developed the Integrated Care for Older People (ICOPE) approach and proposed an innovative public health model for healthy ageing focusing on concepts of intrinsic capacity (IC) and functional ability, with strong recommendations for developing comprehensive approaches such as quality integrated care to maintain IC and functional ability. This highlights the importance of integrated care in improving quality of life in the older population ^{3,4}. A recent study showed that an integrated health and social care model reduced frailty in community-dwelling older people ⁵.

IC comprises all the individual's physical and mental capacities ⁴. The new IC model has shifted the concept of "healthy ageing" from disease-centered to function-centered paradigms, which opens up opportunities for intervention at an early stage to slow down progression to disability and care-dependency. WHO proposes five components to assess IC: locomotion, cognition, vitality, sensory, and psychological domains ^{3,4}. Although each component is associated with adverse health events in older people, few studies have focused on the combined components ^{6,7}. As it reflects biological aging, monitoring IC may provide an innovative method to promote healthy ageing ⁸. While evidence about factors associated with decline in IC (DIC) is limited, with increased healthcare utilization, identification of vulnerable populations at risk and further intervention could improve their physical capacity and functional ability⁴.

80 While disease burden affects public health systems and increases expenses, an IC approach might

BMJ Open

allow a better understanding of an individual's functional trajectories and vulnerabilities to develop strategies for prevention or to delay progression of DIC, even during a catastrophic event as the coronavirus disease ⁹. The healthcare system should prioritize strategies targeting chronic diseases in the older population to reduce the disabilities burden ¹⁰. Although the concept of IC has been used in several observational studies ¹¹, no studies have been conducted in China. Therefore, to facilitate the evaluation of integrated primary care approaches for older patients, the present study focuses on (1) the prevalence and factors associated with DIC proposed by the WHO, and (2) the association between IC and frailty, disability, falls, fracture, and immobility in community-dwelling older people in China.

91 Methods

Participants

Data were obtained from the China Comprehensive Geriatric Assessment Study (CCGAS, 2011-2012), a population-based face-to-face survey of adults aged 60 years or over from rural and urban areas of China. Further details regarding the CCGAS have been reported. Briefly, seven cities (Beijing, Xi'an, Harbin, Chengdu, Chongqing, Changsha, and Shanghai) from seven different provinces were chosen based on well-established cluster, stratification, and random selection statistical sampling techniques; these cities represent six main regions in China (northern, middle, eastern, northwestern, southwestern, and northeastern). A total of 6,867 older adults were included, and 1,040 participants were excluded because of missing data, resulting in 5,823 with complete IC data included in this analysis. All study participants provided informed consent, and the study design was approved by the ethics review board of Xuanwu Hospital Capital Medical University. Demographics, lifestyles, and diseases

A door-to-door survey was conducted by formally trained interviewers using the standard Comprehensive Geriatric (CGA) instrument. Assessment Data gathered included sociodemographic characteristics, anthropometric measurements, health status, personal habits, and mental health. Medical conditions such as self-reported history of chronic disease diagnosed by a doctor and geriatric syndromes were recorded.

109 IC construct

110 IC was assessed by the following five domains recommended by WHO ^{3,12} and available in our 111 cohort.

Locomotion was assessed by a short physical performance battery ¹³. The balance test comprises three parts: standing unsupported for 10 seconds with the feet together; a semi-tandem stand; and a full-tandem stand. Subjects who were unable to complete each test received a score of 1; otherwise, they were scored 0. The chair-stand test was performed with the subject seated in a chair, with the feet flat on the floor and arms held flat against their side with the elbows at 90°. Subjects who were able to stand five times from the chair received a score of 1, those who partly completed this task scored 0.5, and those who could not do so scored 0. A 20-meter walking test was also conducted; those who were able to walk 20 meters scored 1, those who walked less than 20 meters scored 0.5, and those could not walk scored 0.

121 Cognition was assessed by the Mini-Mental State Examination, with a total score range of 0–30 122 ¹⁴. The thresholds for participants who were illiterate or who were educated up to elementary 123 school, middle school, and high school or above were 17, 20, and 24, respectively. Participants 124 who scored below the threshold value for their education group were regarded as mildly 125 cognitively impaired (score of 1), and those below 15 were regarded as moderately to severely 126 cognitively impaired (score of 0). Page 9 of 28

BMJ Open

Vitality was assessed by body mass index (BMI), which was calculated by dividing the weight in kilograms by height in meters squared. BMI cutoffs were based on Asian adjustments. BMI above 20kg/m^2 received a score of 2, 18.5–20 kg/m² was scored 1, and <18.5 kg/m² was scored 0.

Sensory domain was assessed by self-reported visual and hearing impairment. Vision capacity was considered intact when the older person did not report "eyesight problems" that interfered with their activities, and they were not identified by the interviewer as being functionally blind. Hearing capacity was considered intact when the older person did not report "hearing problems or deafness" that interfered with their activities, and they were not identified by the interviewer as being profoundly deaf. Participants with both vision and hearing impairments received a score of 0, those with either vision or hearing impairment received a score of 1, and those with both vision and hearing capacities intact scored 2.

Psychological domain was measured by the 30-item Geriatric Depression Scale ¹⁵. Scores from 0
to 10 represent an intact psychological domain (score of 2); scores from 11 to 20 represent mild
depression (score of 1); scores from 21 to 60 represent moderate to severe depression (score of 0).
For each of the above five items, participants were scored either 0 (representing severe decline), 1
(representing mild decline), or 2 (representing intact IC). The IC total score ranged from 0–10;
higher scores indicated better performance.

144 Adverse outcomes

Physical function was assessed as activities of daily living (ADL) and instrumental activities of daily living (IADL). The list of activities consisted of 14 items (eating, grooming, dressing, transferring in and out of bed, bathing, walking inside the house, using the toilet, cooking, managing finances, driving or using public transportation, shopping, walking 250 meters, cutting toenails, and climbing stairs), and an individual's performance on each item was classified as

independent, partially dependent, or completely dependent. Those with one or more impaired ADL or IADL functions were defined as disabled. The frailty index derived from CGA was measured based on six variables: demographic characteristics, physical health, physical function, living behavior and social function, mental health, and cognitive function ¹⁶. Frailty was defined as a score ≥ 0.25 . We defined fractures as spontaneous fractures over the previous two years. Falls were defined as those that occurred twice in the past year. Immobility was self-reported.

Statistical methods

EpiData was used to establish the database, and input and automatically verify the data. All statistical analyses were performed using SPSS (Chicago, IL, USA, version 11.0). Count data were expressed as percentages. Chi-square tests, t-tests, and one-way analysis of variance were performed. The standard rates calculated using the national standard population composition ratio as at the Sixth National Census (2010). A forward stepwise logistic regression was conducted to explore the association between the factors and DIC or between DIC and adverse outcomes. A Pvalue of <0.05 was considered statistically significant.

- 165 Results

166 Of the total 5,823 older adults, the average IC score was 9.14 ± 1.304 , and 2,506 were DIC, yielding 167 a prevalence of 43.0% (weighted 39.9%). A total of 3,317 (57.0%), 1,512 (26.0%), 636 (10.9%), 168 271 (4.7%), 75(1.3%), and 12 (0.2%) participants showed decline in 0, 1, 2, 3, 4, and 5 domains, 169 respectively. The prevalence of DIC was higher in women than in men (43.0% vs. 36.7%). The 170 prevalence of DIC among older adults in rural areas was higher, by 1.36 times, than that in urban 171 areas. The prevalence of DIC increased with age, with the highest observed in individuals aged 172 \geq 80 y (66.6%) and the lowest among those aged 60–64 y (28.6%) (Table 1). The number of

participants with decline in locomotion, cognition, vitality, sensory, and psychological domains
was 1,039 (17.8%), 646 (11.1%), 735 (12.6%), 824 (14.2%), and 713 (12.2%), respectively. For
each domain, the prevalence was higher in females and those with rural residence, and increased
with age, although there was no association between psychological domain and age (Table S1).

We observed differences in the prevalence of DIC among the six regions: 57.7% in Western China,
38.3% in Northern China, 33.7% in Northwest China, 36.1% in Middle China, 16.9% in Eastern
China, and 19.8% in Northeast China (Figure 1A). The prevalence of DIC was higher in northern
than southern regions (46.9% vs 36.7%; Figure 1B). The IC score decreased with increasing age
(9.53±0.88, 49.37±1.06, 9.18±1.22, 8.96±1.39, 8.35±1.73; Figure 1D) and was higher in men than
women (9.24±1.19 vs 9.06±1.38; Figure 1C).

Next, we observed the prevalence of DIC in different regions according to geography, sex, and age. In urban areas, the weighted prevalence of DIC differed across the six regions, with western urban regions showing the highest rates and eastern urban regions showing the lowest rates: 43.1% in Western, 36.1% in Middle, 33.7% in Northwest, 30.7% in Northern, and 19.8% in Northeast, and 11.8% in Eastern China. Older adults living in rural areas included those residing in Beijing and Chengdu, and the prevalence of DIC was higher in Chengdu than Beijing (74.1% vs 47.2%). The prevalence of DIC among the six regions was different when analyzed according to sex and age, with western regions showing the highest rate in both men and women, and in those aged <75y, and those aged \geq 75 y, the eastern regions showing the lowest rates in both men and women, and those aged <75 y, and east-north region showing the lowest rates in those aged ≥75 y (Figure 2). When we compared social-psychological factors, chronic diseases, and geriatric syndromes, a high prevalence of DIC was observed in illiterate participants, those with low income, not married, who did not exercise, with less meat intake and alcohol consumption. Those who had chronic diseases

> such as coronary heart disease, stroke, kidney disease, chronic obstructive pulmonary disease, and osteoarthritis, as well as geriatric syndromes had a higher prevalence of DIC, while there was a lower prevalence of DIC in older adults without diabetes (Table S2). The prevalence of DIC among individuals with ≥ 5 (62.5%) chronic diseases was about two times higher than that among individuals without chronic disease (30.9%). With DIC as the dependent variable and the above factors as independent variables, forward logistic analysis showed that older age, northern region, low education, poor marital status, low income, less exercise, less meat intake, insomnia, memory decline, urinary incontinence, constipation, slowness, chronic obstructive pulmonary disease, and osteoarthritis, were independent factors influencing DIC in older adults (Table 2). We further compared the frequency of adverse clinical outcomes between non-DIC and DIC groups. Participants with DIC were much more likely to be frail (22.2% vs 1.2%), disabled (15.0%) vs 1.0%), and have falls (7.9% vs 1.8%), fractures (4.7% vs 2.2%), and immobility (20.4% vs 3.4%). Logistic regression showed that, after adjustment for age, sex, area, district, marriage, education, waist-hip ratio, smoking, alcohol consumption, exercise, income, and chronic diseases, DIC was independently associated with risks of frailty (adjusted OR = 19.021), disability (adjusted OR = 8.611), falls (adjusted OR = 3.053), fractures (adjusted OR = 1.656), and immobility (adjusted OR = 4.403) (Table 3).

5 214

215 Discussion

In a nationally representative cross-sectional study, the weighted prevalence of DIC was as high as 39.9% in community-living Chinese adults aged ≥ 60 years, which was about five times higher than the prevalence of frailty in the same population ¹⁷. The frequency of participants with decline Page 13 of 28

BMJ Open

in locomotion, cognition, vitality, sensory, and psychological domains was 17.8%, 11.1%, 12.6%, 14.2%, and 12.2%, respectively. The traditional care model for older adults is mostly diseasecentered; however, frailty, as an increasingly problematic consequence of population aging, threatens the sustainability of healthcare resources where most people seek healthcare attention only when experiencing symptoms. Furthermore, some studies reported that current integrated care models did not significantly reduce utilization nor consistently reduce mortality ¹⁸. Thus, an IC model may support modernization of current healthcare systems and meet the requirements of each older adult. The ongoing INSPIRE study conducted in Europe will test the implementation and follow up of the ICOPE tool ¹⁹.

This study showed the prevalence of DIC participants was higher in northern than southern regions. Furthermore, there were differences in the prevalence of DIC among the six regions, which was consistent with previous studies in which the incidence of frailty ²⁰ and prevalence of disability ²¹ was more common in the north than the south, indicating the importance of implementing the ICOPE protocol, especially in northern China. We found that IC score decreased with increasing age, while longitudinal studies showed that the effect of age on incidence of ADL dependency was modified by IC ²².

Logistic regression showed that age, region, low education, poor marital status, low income, less exercise, less meat intake, insomnia, memory loss, urinary incontinence, constipation, slowness, chronic obstructive pulmonary disease, and osteoarthritis were independent factors influencing DIC in older adults, which shows the that efforts to develop strategies and health policies to identify and manage modifiable variables are urgently needed. A longitudinal study in New Zealand showed that neighborhood environments and IC interact to affect quality of life in older persons ²³. Since the above associated factors independently affected the persons' IC, multidomain

and complex interventions provide a better option for prevention and management of DIC.
Accordingly, WHO recommends screening using instruments such as the ICOPE screening tool
as the first step at the primary care level ^{3,4,24}.

We showed that after adjusting for sociodemographic variables, age-related factors, and chronic conditions, DIC was independently associated with risk of frailty, disability, falls, fractures, and immobility, which is in line with the finding that IC predicted the incidence of loss of ADLs and IADLs²², and further indicates the need for worldwide implementation of prevention of DIC. The World Report on Ageing and Health proposes the concept of IC as central for healthy ageing ⁴. The term frailty refers to health deficits while IC emphasizes positive aspects and perhaps includes the biological state that underpins the frailty phenotype. Thus, IC may be considered as an evolution of frailty by creating a bridge between geroscience and healthy aging ¹¹. Furthermore, an IC approach has the benefit of tracing trajectories for progression to adverse clinical outcomes such as frailty and disability, as well as the effectiveness of interventions implemented at the individual level. Thus, an IC model is of great importance in the face of unmet needs.

This study has several limitations. First, the relatively small sample size and cross-sectional design limit generalizability of the results. Further longitudinal studies with a larger sample size are urgently needed. Second, vitality was defined by BMI instead of specific nutritional assessment, which may have affected some of the results, since most of the diabetic patients had a higher BMI, which could explain the lower DIC in participants with diabetes in the study. Third, we used a composite total score instead of a weighted score, so further statistical approaches should be conducted to compute IC score.

To the best of our knowledge, this study is the first large nationally representative sample ofpopulation-based older people focusing on IC in China. Second, most of the indicators of IC such

Page 15 of 28

BMJ Open

as locomotion, cognition, and psychological domain were assessed by unified measured
performance tests; thus, response or interviewer bias was avoided. Third, standardized protocols
as well as regularly and randomly performed internal quality checks of the data were used to avoid
the quality disadvantage of the multi-center design.

The current study provided preliminary understanding of the IC situation in China, which suggests ways to successfully put IC into clinical practice to contribute to complex integrated care strategies for older persons with DIC. This study has the potential to enhance our understanding of the importance and promising future of an IC model of disease and treatment effects in this vulnerable population. Consistent with the WHO recommendations, this study indicates screening and interventions should be provided, especially for vulnerable participants. As such, China has already put the theory-based ICOPE approach into clinical practice and launched a pilot multi-center study called "China Aging, Resilience and Intrinsic Capacity Study (CARICS)" to identify and manage DIC to improve well-being among community-living older adults.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Funding: This work was supported by the following grants: National Key R&D Program of China
(2018YFC1312001), the National Natural Science Foundation of Beijing (7202059), Beijing
Municipal Hospital Scientific Research Training Project (PX2020036), and Milstein Medical
Asian American Partnership Foundation Project Award in Geriatrics (2018).

Acknowledgments: We acknowledge all the people who participated in the CCGAS from the following hospitals: Xuanwu Hospital, Beijing Hospital, Beijing Institute of Geriatrics, General Hospital of PLA, Peking University Third Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xijing Hospital of The Fourth Military Medical University, The First Affiliated Hospital of Harbin Medical University, West China Hospital of Sichuan University, First Affiliated Hospital of Chongqing Medical University, Xiangya Hospital of Central South University, The Third Xiangya Hospital of Central South University, and Ruijin Hospital of Shanghai Jiao Tong University School of Medicine.

Author contributions: LM and ZT conceived of the research, reviewed related literature, oversaw analysis and was responsible for final drafting of the paper. JC, FS, LZ and YL contributed to conceptualisation, reviews of related literature and drafting of the paper. All authors reviewed and

approved the final manuscript submitted for publication.

⁰ 295 **Data sharing statement:** No additional data are available.

Conflict of interest: None declared.

297 Patient consent for publication: Not required.

298 Ethical approval: All study participants provided informed consent, and the study design was299 approved by the ethics review board of Xuanwu Hospital Capital Medical University.

60

BMJ Open

1 2			
2 3 4 5 6 7 8 9	301	Refe	nces
	302	1.	Prince MJ, Wu F, Guo Y, et al. The burden of disease in older people and implications for
	303		nealth policy and practice. Lancet. 2015;385(9967):549-62.
9 10 11	304	2.	Stoop A, Lette M, Ambugo EA, et al. Improving Person-Centredness in Integrated Care for
12 13	305		Older People: Experiences from Thirteen Integrated Care Sites in Europe. Int J Integr Care
14 15	306		Internet] 2020 [cited 2020 Jul 3];20(2):16. Available from:
16 17 18	307		nttps://www.ijic.org/article/10.5334/ijic.5427/
19 20	308	3.	Integrated Care for Older People: Guidelines on Community-Level Interventions to Manage
21 22	309		Declines in Intrinsic Capacity [Internet]. 2017 [cited 2020 Jul 3];Available from:
23 24 25	310		nttps://pubmed.ncbi.nlm.nih.gov/29608259/
25 26 27	311	4.	World Health Organization. Ageing and health [Internet]. 2018 [cited 2018 Jun
28 29 30 31 32 33 34 35 36 37 38	312		23];Available from: http://www.who.int/news-room/fact-sheets/detail/ageing-and-health
	313	5.	Ruby Yu, Cecilia Tong JW. Effect of an integrated care model for pre-frail and frail older
	314		people living in community. Age Ageing [Internet] 2020 [cited 2020 Jul 3]; Available from:
	315		nttps://academic.oup.com/ageing/article-
	316		abstract/doi/10.1093/ageing/afaa087/5848668?redirectedFrom=fulltext
39 40	317	6.	Framework Implementation of the INSPIRE ICOPE-CARE Program in Collaboration with
41 42 43	318		the World Health Organization (WHO) in the Occitania Region. J Frailty Aging 2020;1–7.
44 45	319	7.	Alexia Charles, Fanny Buckinx, Médéa Locquet, Jean-Yves Reginster, Jean Petermans,
46 47	320		Bastien Gruslin OB. Prediction of Adverse Outcomes in Nursing Home Residents
48 49 50	321		According to Intrinsic Capacity Proposed by the World Health Organization The Journals
50 51 52	322		of Gerontology: Series A Oxford Academic. J Gerontol A Biol Sci Med Sci [Internet] 2019
53 54	323		cited 2020 Jun 15];Available from:
55 56 57			

1

59

2			
3 4	324		https://academic.oup.com/biomedgerontology/advance-article-
5 6	325		abstract/doi/10.1093/gerona/glz218/5575908?redirectedFrom=fulltext
7 8	326	8.	Cesari M, Araujo de Carvalho I, Amuthavalli Thiyagarajan J, et al. Evidence for the
9 10 11	327		Domains Supporting the Construct of Intrinsic Capacity. Journals Gerontol Ser A [Internet]
12 13	328		2018 [cited 2018 Jun 22];Available from:
14 15	329		https://academic.oup.com/biomedgerontology/advance-
16 17 18	330		article/doi/10.1093/gerona/gly011/4834876
19 20	331	9.	Nestola T, Orlandini L, Beard JR, Cesari M. Covid-19 and Intrinsic Capacity. J Nutr Heal
21 22	332		Aging [Internet] 2020 [cited 2020 Jul 3];1–4. Available from:
23 24 25	333		https://doi.org/10.15585/mmwr.mm6912e2.
26 27	334	10.	Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its
28 29	335		provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.
30 31 22	336		Lancet [Internet] 2019 [cited 2020 Jul 3];394(10204):1145-58. Available from:
33 34	337		https://pubmed.ncbi.nlm.nih.gov/31248666/
35 36	338	11.	Barreto P de S, Guyonnet S, Ader I, et al. The Inspire Research Initiative: A Program for
37 38 30	339		Geroscience and Healthy Aging Research going from Animal Models to Humans and the
39 40 41	340		Healthcare System. J Frailty Aging [Internet] 2020 [cited 2020 Jun 25];1–8. Available from:
42 43	341		https://link.springer.com/article/10.14283/jfa.2020.18
44 45	342	12.	WHO Meeting of the Clinical Consortium on Healthy Ageing. WHO 2018;
46 47 48	343	13.	Guralnik JM, Simonsick EM, Ferrucci L, et al. A Short Physical Performance Battery
49 50	344		Assessing Lower Extremity Function: Association With Self-Reported Disability and
51 52	345		Prediction of Mortality and Nursing Home Admission. J Gerontol [Internet] 1994 [cited
53 54 55	346		2018 Aug 18];49(2):M85-94. Available from: https://academic.oup.com/geronj/article-
50 57 58			17

60

BMJ Open

1 2 3			
5 4	347		lookup/doi/10.1093/geronj/49.2.M85
5 6 7	348	14.	Li H, Jia J, Yang Z. Mini-Mental State Examination in Elderly Chinese: A Population-
7 8 9 10 11 12 13 14 15 16	349		Based Normative Study. J Alzheimers Dis [Internet] 2016 [cited 2018 Nov 16];53(2):487-
	350		96. Available from:
	351		http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160119
	352	15.	Chan ACM. Clinical validation of the Geriatric Depression Scale (GDS): Chinese version.
10 17 18	353		J Aging Health 1996;8(2):238–53.
19 20	354	16.	Ma L, Zhang L, Tang Z, et al. Use of the frailty index in evaluating the prognosis of older
21 22	355		people in Beijing: A cohort study with an 8-year follow-up. Arch Gerontol Geriatr
23 24 25	356		2016;64(3):172–7.
26 27	357	17.	Ma L, Tang Z, Zhang L, Sun F, Li Y, Chan P. Prevalence of Frailty and Associated Factors
28 29	358		in the Community-Dwelling Population of China. J Am Geriatr Soc [Internet] 2018 [cited
30 31	359		2018 Apr 15];66(3):559–64. Available from:
32 33 34	360		http://www.ncbi.nlm.nih.gov/pubmed/29168883
35 36	361	18.	Kasteridis P, Mason A, Street A. Evaluating integrated care for people with complex needs.
37 38	362		J Health Serv Res Policy [Internet] 2020 [cited 2020 Jul 3];135581962093187. Available
39 40 41	363		from: http://journals.sagepub.com/doi/10.1177/1355819620931872
42 43	364	19.	Takeda C, Guyonnet S, Sumi Y, Vellas B, Araujo de Carvalho I. Integrated Care for Older
44 45	365		People and the Implementation in the INSPIRE Care Cohort [Internet]. J. Prev. Alzheimer's
46 47 48	366		Dis. 2020 [cited 2020 Jul 3];7(2):70–4. Available from:
49 50	367		https://pubmed.ncbi.nlm.nih.gov/32236394/
51 52	368	20.	Xu W, Li YX, Wu C. Incidence of frailty among community-dwelling older adults: A
53 54 55 56	369		nationally representative profile in China. BMC Geriatr 2019;19(1).
57 58			18

1 2

3 4	370	21.	Ma L, Li Z, Tang Z, et al. Prevalence and socio-demographic characteristics of disability in
5 6	371		older adults in China: Findings from China Comprehensive Geriatric Assessment Study.
7 8 0	372		Arch Gerontol Geriatr [Internet] 2017;73:199–203. Available from:
9 10 11	373		http://linkinghub.elsevier.com/retrieve/pii/S0167494316302813
12 13	374	22.	Whiley L, Sen A, Heaton J, et al. Evidence of altered phosphatidylcholine metabolism in
14 15 16	375		Alzheimer's disease. Neurobiol Aging [Internet] 2014 [cited 2018 Jun 28];35(2):271-8.
17 18	376		Available from: http://www.ncbi.nlm.nih.gov/pubmed/24041970
19 20	377	23.	Stephens C, Allen J, Keating N, Szabó Á, Alpass F. Neighborhood environments and
21 22 22	378		intrinsic capacity interact to affect the health-related quality of life of older people in New
25 24 25	379		Zealand. Maturitas 2020;139:1–5.
26 27	380	24.	WHO Integrated care for older people (ICOPE): guidance for person-centred assessment
28 29 30 31 32	381		and pathways in primary care. WHO [Internet] 2020 [cited 2020 Jul 3];Available from:
	382		http://www.who.int/ageing/publications/icope-handbook/en/
33 34	383		
35 36 27	384		
37 38 39	385		
40 41			
42 43			
44 45			
46 47			
48			
49 50			
51			
52			
53 54			
55			
56			
57 58			19
59			

59

2 3	386	Captions for Tables and Figures
4 5 6	387	Table 1. Prevalence of declines in intrinsic capacity in older adults by sex, area, and age
7 8	388	Table 2. Stepwise forward logistic regression for associated factors with decline in intrinsic
9 10 11 12	389	capacity
12 13	390	Table 3. Multivariate logistic regression analysis (forward method) for DIC associated with risk
14 15 16	391	of adverse clinical outcomes
16 17 18	392	Figure 1. The intrinsic capacity in different region, age, and sex groups. (A) The comparison of
19 20	393	the weighted prevalence of DIC among the six regions of China (Chi-square test, $p < 0.01$). (B)
21 22 23	394	The comparison of the weighted prevalence of DIC between North China and South China (Chi-
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 	395	square test, $p < 0.01$). (C) The comparison of the intrinsic capacity score among different age
	396	groups (One-way ANOVA, p < 0.01). (D) The comparison of the intrinsic capacity score between
	397	males and females (t-test, p < 0.01). Abbreviations: ANOVA, analysis of variance; DIC, decline
	398	in intrinsic capacity; IC, intrinsic capacity.
	399	Figure 2. The weighted prevalence of declines in intrinsic capacity in community-dwelling older
	400	adults living in the urban area (A1), rural area (A2), male (B1), female (B2), <75 ys (C1) and \geq 75
	401	ys (C2). All were analyzed using the Chi-square test, $p < 0.01$.
40 41	402	Table S1. Prevalence of each declined domain in older adults by sex, area, and age
42 43	403	Table S2. The effect of social factors, lifestyle and chronic conditions on DIC
44 45 46		
47 48		
49 50 51		
52 53		
54 55		
50 57 58		20

a DIC n (%) 3 2506(43.0) 8 1030(40.9) 5 1476(44.7) 4 1243(35.6) 9 1263(54.2) 1 428(29.1) 9 414(35.1)	Weighted (%) 39.9 36.7 43.0 32.7 50.1 28.6 24.0	0 3317(57.0) 1488(59.1) 1829(55.3) 2251(64.4) 1066(45.8) 1043(70.9)	Numb 1 1512(26.0) 652(25.9) 860(26.0) 868(24.8) 644(27.7) 200(21.0)	2 636(10.9) 266(10.6) 370(11.3) 275(7.9) 361(15.5)	d Domains 3 271(4.7) 81(3.2) 190(5.7) 81(2.3) 190(8.2)	$ \frac{4}{75(1.3)} 27(1.1) 48(1.5) 18(0.5) 57(2.4) $	$5 \\ 12(0.2) \\ 4(0.2) \\ 8(0.2) \\ 1(0) \\ 11(0.5)$
$\begin{array}{r} n (\%) \\ 3 & 2506(43.0) \\ 8 & 1030(40.9) \\ 5 & 1476(44.7) \\ 4 & 1243(35.6) \\ 9 & 1263(54.2) \\ 1 & 428(29.1) \\ 9 & 414(35.1) \end{array}$	(%) 39.9 36.7 43.0 32.7 50.1 28.6 24.0	$\begin{array}{r} 0\\ \hline 0\\ 3317(57.0)\\ 1488(59.1)\\ 1829(55.3)\\ 2251(64.4)\\ 1066(45.8)\\ \hline 1043(70.9)\\ \end{array}$	$ \begin{array}{r} 1 \\ 1512(26.0) \\ 652(25.9) \\ 860(26.0) \\ 868(24.8) \\ 644(27.7) \\ 200(21.0) \\ \end{array} $	$ \begin{array}{r} 2 \\ 636(10.9) \\ 266(10.6) \\ 370(11.3) \\ 275(7.9) \\ 361(15.5) \\ \end{array} $	3 271(4.7) 81(3.2) 190(5.7) 81(2.3) 190(8.2)	$ \frac{4}{75(1.3)} 27(1.1) 48(1.5) 18(0.5) 57(2.4) $	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	39.9 36.7 43.0 32.7 50.1 28.6	3317(57.0) 1488(59.1) 1829(55.3) 2251(64.4) 1066(45.8) 1043(70.9)	1512(26.0) 652(25.9) 860(26.0) 868(24.8) 644(27.7)	636(10.9) 266(10.6) 370(11.3) 275(7.9) 361(15.5)	271(4.7) 81(3.2) 190(5.7) 81(2.3) 190(8.2)	75(1.3) $27(1.1)$ $48(1.5)$ $18(0.5)$ $57(2.4)$	$ \begin{array}{r} 12(0.2) \\ 4(0.2) \\ 8(0.2) \\ 1(0) \\ 11(0.5) \end{array} $
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36.7 43.0 32.7 50.1 28.6	1488(59.1) 1829(55.3) 2251(64.4) 1066(45.8) 1043(70.9)	652(25.9) 860(26.0) 868(24.8) 644(27.7)	266(10.6) 370(11.3) 275(7.9) 361(15.5)	81(3.2) 190(5.7) 81(2.3) 190(8.2)	27(1.1) 48(1.5) 18(0.5) 57(2.4)	4(0.2) 8(0.2) 1(0) 11(0.5)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36.7 43.0 32.7 50.1 28.6	1488(59.1) 1829(55.3) 2251(64.4) 1066(45.8) 1043(70.9)	652(25.9) 860(26.0) 868(24.8) 644(27.7)	266(10.6) 370(11.3) 275(7.9) 361(15.5)	81(3.2) 190(5.7) 81(2.3) 190(8.2)	27(1.1) 48(1.5) 18(0.5) 57(2.4)	$ \begin{array}{r} 4(0.2) \\ 8(0.2) \\ 1(0) \\ 11(0.5) \end{array} $
$5 1476(44.7) \\ 4 1243(35.6) \\ 9 1263(54.2) \\ 1 428(29.1) \\ 9 414(35.1) \\ $	43.0 32.7 50.1 28.6	1829(55.3) 2251(64.4) 1066(45.8) 1043(70.9)	860(26.0) 868(24.8) 644(27.7)	370(11.3) 275(7.9) 361(15.5)	190(5.7) 81(2.3) 190(8.2)	48(1.5) 18(0.5) 57(2.4)	8(0.2) 1(0) 11(0.5)
$\begin{array}{rrrr} 4 & 1243(35.6) \\ 9 & 1263(54.2) \\ 1 & 428(29.1) \\ 9 & 414(35.1) \end{array}$	32.7 50.1 28.6	2251(64.4) 1066(45.8) 1043(70.9)	868(24.8) 644(27.7)	275(7.9) 361(15.5)	81(2.3) 190(8.2)	18(0.5) 57(2.4)	1(0) 11(0.5)
$\begin{array}{rrrr} 4 & 1243(35.6) \\ 9 & 1263(54.2) \\ 1 & 428(29.1) \\ 9 & 414(35.1) \end{array}$	32.7 50.1 28.6	2251(64.4) 1066(45.8) 1043(70.9)	868(24.8) 644(27.7)	275(7.9) 361(15.5)	81(2.3) 190(8.2)	18(0.5) 57(2.4)	1(0) 11(0.5)
9 1263(54.2) 1 428(29.1) 9 414(35.1)	50.1 28.6	1066(45.8)	644(27.7)	361(15.5)	190(8.2)	57(2.4)	11(0.5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.6	1043(70.9)	200(21.0)		. ,		
$\begin{array}{ccc} 1 & 428(29.1) \\ 9 & 414(35.1) \end{array}$	28.6	1043(70.9)	200(21.0)				
9 414(35.1)	24.0		309(21.0)	85(5.8)	30(2.0)	4(0.3)	0(0)
	34.9	765(64.9)	271(23.0)	100(8.5)	34(2.9)	9(0.8)	0(0)
5 515(44.2)	43.6	650(55.8)	337(28.9)	116(10.0)	46(3.9)	16(1.4)	0(0)
9 562(50.2)	50.3	557(49.8)	325(29.0)	150(13.4)	62(5.5)	20(1.8)	5(0.4)
9 587(66.0)	66.6	302(34.0)	270(30.4)	185(20.8)	99(11.1)	26(2.9)	7(0.8)
, decline in intrinsic	capacity						
<i>></i>),	587(66.0) decline in intrinsic	502(50.2) 50.3 587(66.0) 66.6 decline in intrinsic capacity	$\frac{502(50.2)}{587(66.0)} = \frac{50.3}{66.6} = \frac{557(49.8)}{302(34.0)}$ decline in intrinsic capacity	$\frac{502(50.2)}{587(66.0)} = \frac{50.3}{66.6} = \frac{557(49.8)}{302(34.0)} = \frac{325(29.0)}{270(30.4)}$ decline in intrinsic capacity	$\frac{502(50.2)}{587(66.0)} = \frac{50.3}{66.6} = \frac{537(49.8)}{302(34.0)} = \frac{525(29.0)}{270(30.4)} = \frac{150(13.4)}{185(20.8)}$ decline in intrinsic capacity	$\frac{502(50.2)}{587(66.0)} = \frac{50.3}{66.6} = \frac{537(49.8)}{302(34.0)} = \frac{325(29.0)}{270(30.4)} = \frac{130(13.4)}{185(20.8)} = \frac{02(5.3)}{99(11.1)}$ decline in intrinsic capacity	$\frac{502(50.2)}{587(66.0)} = \frac{50.3}{66.6} = \frac{502(34.0)}{270(30.4)} = \frac{150(13.4)}{185(20.8)} = \frac{502(3.3)}{99(11.1)} = \frac{20(1.8)}{26(2.9)}$ decline in intrinsic capacity

1	
2	2
3	
4	-
5	
6	•
7	,
8	;
9)
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0

Table 2. Stepwise forward logistic	regression for	associated facto	ors with decline	e in intrinsic
capacity				

Factors	В	S.E.	Wald	df	Sig	OR	95% CI	
Older age	0.647	0.093	48.426	1	< 0.001	1.910	1.592-2.291	
North region	0.466	0.090	26.993	1	< 0.001	1.594	1.337-1.901	
Low education	0.890	0.143	38.657	1	< 0.001	2.435	1.839-3.223	
Poor marital status	0.395	0.105	14.157	1	< 0.001	1.485	1.209-1.825	
Low income	0.388	0.094	16.974	1	< 0.001	1.474	1.226-1.773	
Less exercise	0.293	0.099	8.690	1	0.003	1.340	1.103-1.628	
Less meat intake	0.260	0.089	8.532	1	0.003	1.296	1.089-1.543	
Insomnia	0.453	0.095	22.735	1	< 0.001	1.572	1.305-1.894	
Urinary incontinence	0.680	0.209	10.605	1	0.001	1.974	1.311-2.973	
Constipation	0.408	0.126	10.605	1	0.001	1.504	1.175-1.924	
Memory decline	0.714	0.083	73.427	1	< 0.001	2.043	1.735-2.405	
Slowness	0.407	0.102	15.908	1	< 0.001	1.502	1.230-1.835	
COPD	0.853	0.215	15.758	1	< 0.001	2.347	1.540-3.576	
Osteoarthritis	0.534	0.095	31.785	1	< 0.001	1.706	1.417-2.054	
Constant	-2.028	0.104	379.542	1	< 0.001	0.132		

Note: COPD, chronic obstructive pulmonary disease.

The variables not in the equation were sex, living areas, alcohol consumption, coronary heart disease, diabetes, stroke and kidney disease.

ney disease.

		Model 1			Model 2	
	OR	95% CI	P value	OR	95% CI	P value
Frailty	19.625	14.044-27.423	< 0.001	19.021	12.882-28.084	< 0.001
Disability	12.628	8.750-18.225	< 0.001	8.661	5.925-12.660	< 0.001
Fall	3.671	2.699-4.993	< 0.001	3.053	2.232-4.177	< 0.001
Fracture	1.965	1.448-2.666	< 0.001	1.656	1.195-2.295	0.003
Immobility	6.098	4.903-7.584	< 0.001	4.403	3.500-5.538	< 0.001

Table 3. Multivariate logistic regression analysis (forward method) for DIC associated with					
risk of adverse clinical outcomes					

Reference: Non-DIC.

Model 1: Adjusted by age, sex, area and district.

Model 2: Fully adjusted Cox proportional hazard analysis. Adjusted by age, sex, area, district, marriage, education, waist hip ratio, smoking, alcohol consuming, exercise, income, and chronic diseases.

Note: DIC, decline in intrinsic capacity.

	Total	Locomotion	Cognition	Vitality	Sensorv	Psychological
			8		J	<i>J</i> 8
All sample	5823	1039(17.8)	646(11.1)	735(12.6)	824(14.2)	713(12.2)
Sex						
Male	2518	372(14.8)*	227(9.0)*	338(13.4)	371(14.7)	247(9.8)*
	3305	667(20.2)	419(12.7)	397(12.0)	453(55.0)	466(14.1)
Female			`` ,	× ,		
Area	3494	481(14.1)*	168(4.8)*	344(9.8)*	417(11.9)*	318(9.1)*
Urban	2329	548(23.5)	478(20.5)	391(16.8)	407(17.5)	395(17.0)
Rural			`` ,	× ,		· · · · ·
Age (ys)	1471	106(7.2)*	72(4.9)*	116(7.9)*	114(7.7)*	177(12.0)
60-64	1179	129(10.9)	90(7.6)	123(10.4)	131(11.1)	136(11.5)
65-69	1165	197(16.9)	123(10.6)	141(12.1)	166(14.2)	144(12.4)
70-74	1119	256(22.9)	158(14.1)	154(13.8)	210(18.8)	138(12.3)
75-79	889	351(39.5)	203(22.8)	201(22.6)	203(22.8)	118(13.3)
>80					(-)	- ()

Note: Data were expressed as n (%); *P<0.05 Certeries only

	Total	DIC, n (%)	Weighted (%)	χ^2	I
Social factors					
Education	5823				
Illiterate	1047	724(69.1)	67.7	355.086	< 0.00
Not illiterate	4776	1782(37.3)	34.9		
Monthly income	5665	()			
- - 2000 Yuan	2658	1408(53.0)	49.6	227.561	< 0.00
≥2000 Yuan	3007	996(33.1)	30.0		
Marital status	5818	~ /			
Married	4493	1738(38.7)	35.8	151.541	< 0.00
Windowed	1325	765(57.7)	56.8		
Lifestyle		()			
Exercise	5808				
Yes	4594	1779(38.7)	36.1	168.600	< 0.00
No	1214	722(59.5)	55.0		•
Meat intake	5823	()			
Usually	3369	1322(39.2)	35.9	46.925	< 0.00
Less	2454	1184(48.2)	45.8		0.00
Alcohol consumption	5823	1101(1012)	1010		
Yes	4503	600(45.5)	40.7	4.081	0.04
No	5823	1906(42.3)	39.6		0.0.1
Smoking	1320	1900(1210)	5710		
Ves	1658	722(43.5)	38.7	0 241	0.62
No	4165	1784(42.8)	40.5	0.211	0.02
Thronic disease	1100	1701(1210)	1012		
Hypertension	5823				
Yes	2688	1127(41.9)	39.0	2 505	0.11
No	3135	1379(44.0)	40.7	2.303	0.11
CHD	5823	1575(44.0)	-10.7		
Ves	1168	559(47.9)	46.0	13 823	<0.00
No	4655	1947(41.8)	38 5	15.025	\$0.00
Diahetes	5823	1)+/(+1.0)	50.5		
	862	3/1/(30.0)	36.6	4 0/1	0.04
No	7961	2162(13.5)	<u> </u>	4.041	0.04
Strako	5823	2102(45.0)	т0.5		
Vac	570	277(56.5)	52.2	17 272	<0.00
IES No	574	327(30.3) 2170(41.6)	29.5	47.323	<0.00
INU Vidnov disease	5972	21/9(41.0)	50.5		
Voc	250	126(52.5)	50.6	0.007	0.00
No	239 5561	130(32.3)	20.0	7.707	0.00
	5004	2370(42.0)	37.4		
Vac	3823 205	140(69.2)	667	55 700	~0.00
res	203	140(08.3)	00./	33.288	<0.00
INO Liven diagona	5018	2306(42.1)	39.0		
Liver disease	3823	107(40.2)	40.0	0.072	0.00
res	233	107(42.3)	40.0	0.062	0.80.

	Fable S2.	The effect of	social factors.	lifestyle and	chronic	conditions	on DIC
--	-----------	---------------	-----------------	---------------	---------	------------	--------

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2						
3	No	5570	2399(43.1)	38.7		
4	Osteoarthritis	5823				
5	Yes	1597	855(53.5)	51.2	98,993	< 0.001
6	No	4226	1651(39.1)	35.9	20.225	0.001
/	Cancor	5822	1051(57.1)	55.7		
8	Cancer	3823		20 5	0.010	0.000
9	Yes	148	63(42.6)	39.7	0.013	0.909
10	No	5675	2443(43.0)	39.9		
11	Geriatric syndrome					
12	Insomnia	5823				
13	Ves	1427	830(58.2)	56.5	176 113	<0.001
14	No	/306	1676(38.1)	34.0	170.115	-0.001
15		4390	1070(38.1)	54.9		
16	Memory decline	5823				
17	Yes	2629	1450(55.2)	52.6	286.447	< 0.001
18	No	3194	1056(33.1)	30.2		
19	Urinary incontinence	5823				
20	Yes	257	198(77.0)	76.3	126.654	< 0.001
21	No	5566	2308(41.5)	38.5		
22	Constipation	5823				
24	Yes	738	430(59.1)	56.6	87.043	< 0.001
25	No	5095	2076(40.8)	37.8		
26	Slowness	3306		• • • •		
27	Vag	600	(267(52,2))	50.2	54 009	<0.001
28	ies	000	507(55.5) 001(27.0)	30.2	34.008	<0.001
29	No	2618	991(37.9)	35.1		

...t disease; COPD, chr Abbreviations: DIC, decline in intrinsic capacity; ADL, activities of daily living; IADL, instrumental activities of daily living; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease.

BMJ Open

Cross-sectional Study Examining the Status of Intrinsic Capacity Decline in Community-dwelling Older Adults in China: Prevalence, Associated Factors, and Implications for Clinical Care

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-043062.R1
Article Type:	Original research
Date Submitted by the Author:	07-Dec-2020
Complete List of Authors:	Ma, Lina; Xuanwu Hospital, Department of Geriatrics Chhetri, Jagadish K; Xuanwu Hospital Zhang, Li; Xuanwu Hospital Sun, Fei; Xuanwu Hospital Li, Yun; Xuanwu Hospital Tang, Zhe; Xuanwu Hospital
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Geriatric medicine
Keywords:	GERIATRIC MEDICINE, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine)

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
1/	
15	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
10	
4U	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52 52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Cross-sectional Study Examining the Status of Intrinsic Capacity Decline in Community-
2	dwelling Older Adults in China: Prevalence, Associated Factors, and Implications for
3	Clinical Care
4	Lina Ma ¹ , Jagadish K. Chhetri ¹ , Li Zhang ¹ , Fei Sun ² , Yun Li ¹ , Zhe Tang ^{1,2}
5	¹ Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical
6	Research Center for Geriatric Disorders, Beijing 100053, China.
7	² Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053,
8	China
9	Correspondence: Dr. Zhe Tang, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical
10	University, e-mail: tangzhe@sina.com; Dr. Lina Ma, Department of Geriatrics, Xuanwu Hospital,
11	Capital Medical University, e-mail: malina0883@126.com.
12	
13	Running title: Status of Intrinsic Capacity Decline in China
14	Main text word count: 3324
15	Data elements: 3 Tables, 2 Figures, 3 Supplementary Tables

BMJ Open

17 Abstract

Objectives: Intrinsic capacity (IC) was proposed by the World Health Organization as a new concept for capturing an individual's functional capacities across their lifetime. We aimed to investigate the prevalence and factors associated with IC decline and examine associations between IC and adverse outcomes among community-dwelling older adults in China.

- **Design:** Cross-sectional study.
- 23 Setting: Community, China.

Participants: Data were derived from the China Comprehensive Geriatric Assessment Study, a population-based nationally representative sample. IC comprises of five domains: locomotion, cognition, vitality, sensory, and psychology. Participants were deemed to have IC decline if they showed a decline in any of the five domains. Sociodemographic characteristics, chronic diseases, geriatric syndromes, and adverse outcomes were also examined.

Results: Of the 5,823 community-dwelling participants aged 60–98 years, 2,506 had IC decline (weighted 39.9%): 57.7% in Western, 38.3% in Northern, 33.7% in Northwest, 36.1% in Middle, 16.9% in Eastern, and 19.8% in Northeast China. The number of participants with decline in the locomotion, cognition, vitality, sensory, and psychological domains were 1,039 (17.8%), 646 (11.1%), 735 (12.6%), 824 (14.2%), and 713 (12.2%), respectively. Age, northern residence, low education, being unmarried, low income, less exercise, less meat intake, insomnia, memory loss, urinary incontinence, constipation, slowness, chronic obstructive pulmonary disease, and osteoarthritis were related to IC decline. After adjusting for age, sex, area, district, marriage, education, waist-hip ratio, smoking, alcohol consumption, exercise, income, and chronic diseases,

IC decline was independently associated with risk of frailty, disability, falls, fractures, and immobility.

Conclusion: The prevalence of IC decline in China is high. IC decline was significantly associated with adverse outcomes, after adjustment for related variables. Efforts promoting IC to delay functional dependence should focus on modifiable factors, including negative social factors, poor lifestyle, chronic diseases, and geriatric syndromes.

Keywords: Intrinsic capacity; Older Adults; Prevalence; Frailty; Disability; Aging

BMJ Open

2 3 4	47	Article summary
5 6 7	48	Strengths and limitations of this study
8 9 10	49	• This study is the first nationally representative large sample of population-based older people
11 12 13	50	focusing on intrinsic capacity (IC) in China.
14 15 16	51	• Most of the domains of IC were assessed using unified measured performance tests.
17 18 19	52	• This study provided a preliminary understanding of the IC status in China, which suggests
20 21	53	ways to successfully put IC into clinical practice contributing to the development of integrated
22 23 24	54	care strategies for older persons with IC decline.
25 26 27	55	• The cross-sectional design of this study limits causality.
28 29 30	56	• We used a composite total score instead of a weighted score, so further statistical approaches
31 32	57	should be conducted to compute the IC score.
33 34 35 36 37	58	
38 39 40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		4
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59 Introduction

The increasing global burden of disability associated with the rapid aging of the population has challenged the health care system ¹. To cope with the demands of increasing numbers of frail community-dwelling older persons with multiple complex needs, the implementation of integrated care healthcare model is necessary². The World Health Organization (WHO) has proposed an innovative approach known as the Integrated Care for Older People (ICOPE). This approach centers around the concept of raising intrinsic capacity (IC) and functional ability to achieve healthy aging. Recommendations for the development of comprehensive approaches for the maintenance of IC and functional ability, including quality integrated care, have also been made. Moreover, the importance of integrated care in improving quality of life in the older population has been recently highlighted ^{3,4}, including reducing frailty in community-dwelling older people ⁵.

According to the WHO ICOPE guidelines, IC comprises an individual's physical and mental capacities at any given time ⁴. This novel concept of IC has shifted the notion of "healthy aging" from a disease-centered to a function-centered paradigm, creating opportunities for earlier intervention to delay disability and care-dependency. The WHO proposes five components for the assessment of IC, namely locomotion, cognition, vitality, sensory, and psychology ^{3,4} Since each component is associated with adverse health events in older people recent studies have focused on these components in combination ⁶⁻¹⁶. As so, our in-depth understanding of the trajectory of IC decline may enable us to design t innovative methods for the promotion of healthy aging ¹⁷, even during a catastrophic event such as the coronavirus disease ¹⁸. Although the concept of IC has been used in several studies worldwide ^{12,15,16}, no studies have been conducted in China. Therefore, to facilitate the evaluation of integrated care approaches for older patients, this study focuses on (1)

Page 7 of 36

1

BMJ Open

2
3
4
5
د د
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
27
5Z
33
34
35
36
37
38
20
29
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
52
54
55
56
57
58
59
60
00

the prevalence of IC and the factors associated with IC decline and (2) the associations between IC and geriatric conditions such as frailty, disability, falls, fractures, and immobility in a population-based nationally representative sample of community-dwelling older people in China.

84

- 85 Methods
- 86 *Participants*

Data were obtained from the China Comprehensive Geriatric Assessment Study (CCGAS, 2011– 87 88 2012), a population-based face-to-face survey of adults aged 60 years or over from rural and urban areas of China. Further details regarding the CCGAS have been reported ^{19–21}. For the CCGAS, 89 90 seven cities (Beijing, Xi'an, Harbin, Chengdu, Chongqing, Changsha, and Shanghai) from seven 91 different provinces were chosen based on well-established cluster, stratification, and random 92 selection statistical sampling techniques. These cities represent China's six main regions (northern, 93 middle, eastern, northwestern, southwestern, and northeastern). A total of 6,867 older adults were included in the CCGAS. A total of 5,823 participants with complete IC data were included in our 94 current study and 1,040 were excluded because of missing data. A comparison of included and 95 96 excluded participants' characteristics is shown in supplementary table S1. All participants provided informed consent and the study design was approved by the ethics review board of 97 Xuanwu Hospital Capital Medical University. 98

99

101

100 Demographics, lifestyles, and diseases

Data included sociodemographic characteristics, anthropometric measurements, health status, 6

personal habits, and mental health. Medical conditions including a self-reported history of chronic disease diagnosed by a doctor and geriatric syndromes were recorded. Low income was defined as monthly income < 2,000 Yuan, no exercise was defined as exercising for < 3 hours per week, and meat intake was measured by asking participants if they had meat diet ≥ 2 times per week.

107 IC construct

108 IC was assessed using the five components recommended by the WHO ^{3,22} as described below:

1)Locomotion: It was assessed by a short physical performance battery (SPPB) which comprised of various tests ²³. The balance test comprised three parts: standing unsupported for 10 seconds with feet together; a semi-tandem stand; and a full-tandem stand. Participants who were unable to complete each part received a score of 1; otherwise, they were scored 0. The chair-stand test was performed with the participant seated in a chair, with feet flat on the floor and arms held flat against their sides with elbows at 90° . Participants who were able to stand up five times from the chair received a score of 1, those who partially completed this task scored 0.5, and those who could not stand up at all scored 0. A 20-meter walking test was also conducted: those who were able to walk 20 meters scored 1, those who walked less than 20 meters scored 0.5, and those could not walk at all scored 0. The total score range for the SPPB was 0-5.

2) Cognition: It was assessed by the Mini-Mental State Examination (MMSE), with a total score
range of 0–30 ²⁴. The thresholds for participants who were illiterate or who were educated up to
elementary school, middle school, and high school or above were 17, 20, and 24, respectively.
Participants who scored below the threshold value for their education group were regarded as

mildly cognitively impaired (score of 1), and those who scored below 15 were regarded asmoderately to severely cognitively impaired (score of 0).

3) Vitality: It was assessed by body mass index (BMI), which was calculated by dividing weight in kilograms by height in meters squared. BMI cutoffs were based on the Malnutrition Universal Screening Tool (MUST) ²⁵. A BMI above 20kg/m^2 received a score of 2, 18.5–20 kg/m² was scored 1, and ≤18.5 kg/m² was scored 0.

4) Sensory: It was assessed by a self-reported visual and hearing impairment. Vision capacity was considered intact when the participant did not report "eyesight problems" that interfered with their activities and were not identified by the interviewer as being functionally blind. Hearing capacity was considered intact when the participant did not report "hearing problems or deafness" that interfered with their activities, and was not identified by the interviewer as being profoundly deaf. Participants with both visual and hearing impairments received a score of 0, those with either vision or hearing impairment received a score of 1, and those with intact vision and hearing capacities scored 2.

5) Psychology: It was measured by the 30-item Geriatric Depression Scale (GDS-30) with a total
score range of 0–30 ²⁶. Scores from 0 to 10 represent an intact psychological (score of 2), scores
from 11 to 20 represent mild depression (score of 1), and scores from 21 to 30 represent moderate
to severe depression (score of 0).

For each of the five components, participants were scored either 0 (representing severe decline), 1
(representing mild decline), or 2 (representing intact IC). The total score of IC ranged from 0–10;
higher scores indicated better performance.

145 Adverse outcomes

Physical function was assessed as activities of daily living (ADL) and instrumental activities of daily living (IADL). The list of activities consisted of 14 items (eating, grooming, dressing, transferring in and out of bed, bathing, walking inside the house, using the toilet, cooking, managing finances, driving or using public transportation, shopping, walking 250 meters, cutting toenails, and climbing stairs) and a participant's performance for each item was classified as independent, partially dependent, or completely dependent. Those with one or more impaired ADL or IADL functions were defined as disabled. Frailty was assessed using a frailty index, derived from the standard Comprehensive Geriatric Assessment (CGA) instrument (FI was primarily based on six domains: demographic characteristics, physical health, physical functions, living behavior and social functions, mental health, and cognitive functions)²⁷. Frailty was defined by a score of $\geq 0.25^{28}$. Fractures were defined as a self-reported history of spontaneous fractures occurring in the past two years and falls were defined as those that occurred twice in the past year. Immobility was self-reported.

160 Bias

A door-to-door survey was conducted by formally trained interviewers using the CGA to ensure homogeneous reporting. Quality control procedures included regular field supervision and daily review of collected data. EpiData was used to establish the database and input and automatically verify the data.

BMJ Open

Study size

The sample size was estimated to measure the prevalence of IC decline in older adults. Assuming an IC decline prevalence of approximately 30% with a precision margin of 2%, the estimated sample size was 2,016. Assuming a 15% refusal or absence, we estimated a sample size adjusted

to 2,372.

Statistical methods

All statistical analyses were performed using SPSS (Chicago, IL, USA, version 11.0). Count data were expressed as percentages. Chi-square tests, t-tests, and one-way analysis of variance were performed. Those with a P-value less than 0.05 were included in the multivariable model. The weighted percentages were determined using the national standard population composition ratio based on the Sixth National Census (2010). A forward stepwise logistic regression was conducted to explore the association between the included factors and IC decline or between IC decline and adverse outcomes. A P-value of < 0.05 was considered statistically significant.

Results

Patient and public involvement

Patients and the public were not involved in the planning and design of this study.

3	
1	
5	
s c	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
Δ5	
75 76	
40 47	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

1

185	Of the total 5,823 older adults, the average IC score was 9.14±1.304, the median (IQR) score was
186	10(1), and 2,506 had IC decline, yielding a prevalence of 43.0% (weighted 39.9%). A total of
187	3,317 (57.0%), 1,512 (26.0%), 636 (10.9%), 271 (4.7%), 75(1.3%), and 12 (0.2%) participants
188	showed decline in 0, 1, 2, 3, 4, and 5 domains, respectively. The prevalence of IC decline was
189	higher in women than in men (43.0% vs. 36.7%, $P = 0.004$). The prevalence of IC decline among
190	older adults in rural areas was higher, by 1.36 times than in urban areas ($P < 0.001$). The prevalence
191	of IC decline increased with age, with the highest decline observed in individuals aged ≥ 80 years
192	(66.6%) and the lowest in those aged 60–64 years (28.6%; $P < 0.001$; Table 1). The number of
193	participants with decline in the locomotion, cognition, vitality, sensory, and psychological domains
194	was 1,039 (17.8%), 646 (11.1%), 735 (12.6%), 824 (14.2%), and 713 (12.2%), respectively. For
195	each domain, the prevalence was higher in females and those in rural areas, and increased with
196	age, although there was no association between psychological domain and age (Table S2).
197	We observed differences in the prevalence of IC decline among the six regions: 57.7% in Western

China, 38.3% in Northern China, 33.7% in Northwest China, 36.1% in Middle China, 16.9% in Eastern China, and 19.8% in Northeast China (Figure 1A). The prevalence of IC decline was higher in northern than southern regions (46.9% vs. 36.7%, P < 0.001; Figure 1B). The IC score decreased in older age groups (9.53±0.88 for the 60–64 years age group, 49.37±1.06 for the 65–69 years age group, 9.18±1.22 for the 70–74 years age group, 8.96±1.39 for the 75–79 years age group, 8.35±1.73 for the 80 years and over age group (P < 0.001; Figure 1C) and was higher in men than in women (9.24±1.19 vs. 9.06±1.38, P < 0.001; Figure 1D).

Next, we observed the prevalence of IC decline in different regions according to geography, sex,
and age. In urban areas, the weighted prevalence of IC decline differed across the six regions, with

Page 13 of 36

BMJ Open

western urban regions showing the highest rates and eastern urban regions showing the lowest rates: 43.1% in Western China, 36.1% in Middle China, 33.7% in Northwest China, 30.7% in Northern China, 19.8% in Northeast China, and 11.8% in Eastern China. Older adults living in rural areas included those residing in Beijing and Chengdu, and the prevalence of IC decline was higher in Chengdu than in Beijing (74.1% vs. 47.2%, P < 0.001). The prevalence of IC decline among the six regions was different when analyzed according to sex and age, with western regions showing the highest rate in both genders, in those aged < 75 years, and those aged ≥ 75 years; the eastern regions showing the lowest rates in both genders and those aged < 75 years; and east-north regions showing the lowest rates in those aged ≥ 75 years (P < 0.001; Figure 2).

When comparing socio-psychological factors, chronic diseases, and geriatric syndromes, a high prevalence of IC decline was observed in illiterate participants (P < 0.001), those with low income (P < 0.001), who were unmarried (P < 0.001), did not exercise (P < 0.001), consumed less meat diet (P < 0.001), and consumed alcohol (P = 0.043). Those with chronic diseases such as coronary heart disease (P < 0.001), stroke (P < 0.001), kidney disease (P = 0.002), chronic obstructive pulmonary disease (P < 0.001), and osteoarthritis (P < 0.001), as well as geriatric syndromes (P < 0.001) 0.001) had a higher prevalence of IC decline, while there was a lower prevalence in older adults without diabetes (P = 0.044; Table S3). The prevalence of IC decline among individuals with ≥ 5 chronic diseases was approximately two times higher than among individuals without chronic disease (62.5% vs. 30.9%, P < 0.001).

With IC decline as the dependent variable and the above factors as independent variables, forward logistic analysis showed that older age (P < 0.001), northern region (P < 0.001), low education (P < 0.001), being unmarried (P < 0.001), low income (P < 0.001), less exercise (P = 0.003), less meat

intake (P = 0.003), insomnia (P < 0.001), memory decline (P < 0.001), urinary incontinence (P = 0.001), constipation (P = 0.001), slowness (P < 0.001), chronic obstructive pulmonary disease (P < 0.001), and osteoarthritis (P < 0.001) were independently associated with IC decline in older adults (Table 2).

We further compared the frequency of adverse clinical outcomes between non-IC decline and IC decline groups. Participants with IC decline were much more likely to be frail (22.2% vs. 1.2%, P < 0.001), disabled (15.0% vs. 1.0%, P < 0.001), and have falls (7.9% vs. 1.8%, P < 0.001), fractures (4.7% vs. 2.2%, P < 0.001), and be immobile (20.4% vs. 3.4%, P < 0.001). Logistic regression showed that, after adjustment for age, sex, area, district, marriage, education, waist-hip ratio, smoking, alcohol consumption, exercise, income, and chronic diseases, IC decline was independently associated with risks of frailty (adjusted OR = 19.021, P < 0.001), disability (adjusted OR = 8.611, P < 0.001), falls (adjusted OR = 3.053, P < 0.001), fractures (adjusted OR = 1.656, P = 0.003), and immobility (adjusted OR = 4.403, P < 0.001; Table 3).

243 Discussion

In this nationally representative population based cross-sectional study, the weighted prevalence of IC decline was as high as 39.9% in community-living Chinese older adults aged ≥ 60 years, which is approximately five times higher than the prevalence of frailty in the same population ²⁹. The frequency of participants with a decline in IC domains varied from 11.1% (cognition) to 17.8% (locomotion). These findings highlight the need to focus on functional trajectories rather than the traditional disease-centered approach. However, well-established concepts such as frailty (which is related as an increasingly problematic consequence of population aging), threaten the Page 15 of 36

BMJ Open

sustainability of healthcare resources as most people seek healthcare attention only when they are at their worst health state. Furthermore, studies have reported that current integrated care models have not significantly reduced healthcare utilization nor consistently reduced mortality ³⁰. Thus, healthcare model such as ICOPE with IC as its core of may support the modernization of current healthcare systems and at the same time be more personalized. Results of ongoing ambitious INSPIRE study conducted in Europe which is based on the ICOPE model ³¹ will have strong implications for the effectiveness of the IC approach.

Our study demonstrated that the prevalence of IC decline among participants was higher in northern than southern regions of China. Furthermore, there were differences in the prevalence of IC decline among the six regions, which was consistent with previous studies in which the incidence of frailty ³² and prevalence of disability ²⁰ was more common in the north than the south, indicating the importance of implementing the ICOPE protocol, especially in northern China. We found that the IC score decreased in older age groups, while longitudinal studies showed that the effect of age on the incidence of ADL dependency was modified by IC ¹⁵.

Logistic regression showed that factors such as age, region, low education, unmarried status, low income, less exercise, less meat intake, insomnia, memory loss, urinary incontinence, constipation, slowness, chronic obstructive pulmonary disease, and osteoarthritis were independently associated with IC decline in older adults, demonstrating that efforts to develop strategies and health policies to identify and manage modifiable variables are urgently required. A longitudinal study in New Zealand showed that neighborhood environments and IC interact to affect the quality of life in older persons ³³. Since the above factors are independently associated with an individual's IC, multidomain and complex interventions provide a better option for the prevention and

management of IC decline. Accordingly, the WHO recommends screening using instruments such
as the ICOPE screening tool as the first step at the primary care level followed by a suitable care
plan^{3,4,34}.

We demonstrated that after adjusting for sociodemographic variables, age-related factors, and chronic conditions, IC decline was independently associated with risk of frailty, disability, falls, fractures, and immobility, which is in line with the finding that IC predicted the incidence of loss of ADLs and IADLs¹⁵, and further indicates that evaluations of IC implementation may be extremely important to avoid further deterioration (which could be a severe frailty state). The term frailty refers to health deficits of an aging individual while IC emphasizes on positive health aspects, therefore, IC may be considered as an evolution of frailty in certain respects ³⁵. It is also noteworthy that the World Report on Ageing and Health proposes the concept of IC as central for healthy aging ⁴, thus, the concept of IC could serve as a bridge between geroscience and healthy aging ¹⁴. Furthermore, an IC approach has the benefit of tracing trajectories for progression to adverse clinical outcomes such as frailty and disability, and testing the effectiveness of interventions implemented at the individual level. Thus, an IC model is of great significance for facing the unmet needs of older adults.

This study has several limitations. First, the primary limitation is being unable to establish causality due to the cross-sectional design. Further longitudinal studies with a larger sample size are urgently required. Second, vitality was defined by BMI instead of specific nutritional assessment, which may have affected some of the results. Since most of the diabetic patients in our study had a higher BMI, this could explain the lower IC decline in participants with diabetes. Third, we used a composite total score instead of a weighted score, so further statistical approaches

Page 17 of 36

BMJ Open

should be conducted to compute IC scores. Fourth, self-reporting for hearing impairment may misestimate hearing loss (although WHO recommends whisper test for assessing hearing loss).
Fifth, 1,040 participants who were unable to complete the IC assessment were excluded in this study. The excluded participants who were older and frailer, had more chronic diseases, and lower scores in each domain (Table S1), which may have misestimated the prevalence of IC decline.

To the best of our knowledge, this study is the first nationally representative large sample of population-based older people focusing on IC in China. Most of the components of IC were assessed using unified measured performance tests, thus avoiding response or interviewer bias. Standardized protocols, as well as regularly and randomly performed internal quality checks of the data, were used to avoid the quality disadvantage of the multi-center design.

In conclusion, this study provided a preliminary understanding of the IC status of Chinese older adults. Our results indicate that efforts promoting IC to delay functional dependence should focus on negative social factors, poor lifestyle, chronic diseases, and geriatric syndromes. This study also validated the IC concept in Chinese population. In fact, China has already implemented the ICOPE approach into clinical practice and launched a pilot multi-center study called "China Aging. Resilience and Intrinsic Capacity Study (CARICS)" to identify and manage IC decline to improve well-being among community-living older adults. We hope that this approach of IC will be a fundamental tool towards healthy ageing worldwide.

Funding: This work was supported by the following grants: National Key R&D Program of China
(2020YFC2008604, 2018YFC1312001), the National Natural Science Foundation of Beijing
(7202059), Beijing Municipal Hospital Scientific Research Training Project (PX2020036), Beijing
Municipal Health Commission (Jing2019-2), and Milstein Medical Asian American Partnership
Foundation Project Award in Geriatrics.

Acknowledgments: We acknowledge all the people who participated in the CCGAS from the following hospitals: Xuanwu Hospital, Beijing Hospital, Beijing Institute of Geriatrics, General Hospital of PLA, Peking University Third Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xijing Hospital of The Fourth Military Medical University, The First Affiliated Hospital of Harbin Medical University, West China Hospital of Sichuan University, First Affiliated Hospital of Chongqing Medical University, Xiangya Hospital of Central South University, The Third Xiangya Hospital of Central South University, and Ruijin Hospital of Shanghai Jiao Tong University School of Medicine.

Author contributions: LM and ZT conceived of the research, reviewed related literature, oversaw analysis and was responsible for the final drafting of the paper. JC, FS, LZ and YL contributed to conceptualisation, reviews of related literature and drafting of the paper. All authors reviewed and approved the final manuscript submitted for publication.

- **Data sharing statement:** No additional data are available.
- **Conflict of interest**: None declared.
 - **Patient consent for publication**: Not required.

334 Ethical approval: All study participants provided informed consent, and the study design was

1		
2		
3	225	annexed by the othics review beand of Vyanyy Uconital Conital Medical University
4	335	approved by the ethics review board of Auanwu Hospital Capital Medical University.
5		
6		
7	336	
, 8		
0		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
55		
57		
57		
20		
59		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.yhtml
00		i or peer rettert only intep//onl/openionl/one/ubout/guidenites/Attilli

3 4	337	Refe	erences	
5 6 7	338	1.	Prince MJ, Wu F, Guo Y, et al. The burden of disease in older people and implications for	r
8 9 10	339		health policy and practice. Lancet. 2015;385(9967):549-62.	
11 12 13	340	2.	Stoop A, Lette M, Ambugo EA, et al. Improving Person-Centredness in Integrated Care	
14 15	341		for Older People: Experiences from Thirteen Integrated Care Sites in Europe. Int J Integr	
16 17	342		Care [Internet] 2020 [cited 2020 Jul 3];20(2):16. Available from:	
18 19 20	343		https://www.ijic.org/article/10.5334/ijic.5427/	
21 22 23	344	3.	Integrated Care for Older People: Guidelines on Community-Level Interventions to	
24 25	345		Manage Declines in Intrinsic Capacity [Internet]. 2017 [cited 2020 Jul 3]; Available from	
26 27 28	346		https://pubmed.ncbi.nlm.nih.gov/29608259/	
29 30	347	4.	World Health Organization. Ageing and health [Internet]. 2018 [cited 2018 Jun	
32 33	348		23];Available from: http://www.who.int/news-room/fact-sheets/detail/ageing-and-health	
34 35 36	349	5.	Ruby Yu, Cecilia Tong JW. Effect of an integrated care model for pre-frail and frail olde	r
37 38	350		people living in community. Age Ageing [Internet] 2020 [cited 2020 Jul 3]; Available	
39 40	351		from: https://academic.oup.com/ageing/article-	
41 42 43	352		abstract/doi/10.1093/ageing/afaa087/5848668?redirectedFrom=fulltext	
44 45 46	353	6.	Framework Implementation of the INSPIRE ICOPE-CARE Program in Collaboration	
40 47 48	354		with the World Health Organization (WHO) in the Occitania Region. J Frailty Aging	
49 50 51	355		2020;1–7.	
52 53 54	356	7.	Alexia Charles, Fanny Buckinx, Médéa Locquet, Jean-Yves Reginster, Jean Petermans,	
55 56 57 58	357		Bastien Gruslin OB. Prediction of Adverse Outcomes in Nursing Home Residents	19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 21 of 36

1

BMJ Open

2			
3 4	358		According to Intrinsic Capacity Proposed by the World Health Organization The
5 6	359		Journals of Gerontology: Series A Oxford Academic. J Gerontol A Biol Sci Med Sci
7 8 0	360		[Internet] 2019 [cited 2020 Jun 15];Available from:
9 10 11	361		https://academic.oup.com/biomedgerontology/advance-article-
12 13 14	362		abstract/doi/10.1093/gerona/glz218/5575908?redirectedFrom=fulltext
15 16	363	8.	Giudici KV, de Souto Barreto P, Guerville F, et al. Associations of C-reactive protein and
17 18 19	364		homocysteine concentrations with the impairment of intrinsic capacity domains over a 5-
20 21	365		year follow-up among community-dwelling older adults at risk of cognitive decline
22 23	366		(MAPT Study). Exp Gerontol 2019;127.
24 25			
25 26 27	367	9.	Daskalopoulou C, Chua KC, Koukounari A, Caballero FF, Prince M, Prina AM.
27 28 29	368		Development of a healthy ageing index in Latin American countries - A 10/66 dementia
30 31	369		research group population-based study. BMC Med Res Methodol [Internet] 2019 [cited
32 33	370		2020 Nov 30];19(1):226. Available from:
34 35 36	371		https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0849-y
37 38	372	10.	Giudici K V., de Souto Barreto P, Beard J, et al. Effect of long-term omega-3
39 40 41	373		supplementation and a lifestyle multidomain intervention on intrinsic capacity among
42 43	374		community-dwelling older adults: Secondary analysis of a randomized, placebo-controlled
44 45	375		trial (MAPT study). Maturitas [Internet] 2020 [cited 2020 Nov 30];141:39-45. Available
46 47 48	376		from: https://pubmed.ncbi.nlm.nih.gov/33036701/
49 50 51	377	11.	Huang CH, Umegaki H, Makino T, et al. Effect of Various Exercises on Intrinsic Capacity
52 53	378		in Older Adults With Subjective Cognitive Concerns. J Am Med Dir Assoc [Internet]
54 55	379		2020 [cited 2020 Nov 30];Available from: https://pubmed.ncbi.nlm.nih.gov/32768376/
50 57 58			20
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 36

1 2				
3 4	380	12.	Gutiérrez-Robledo LM, García-Chanes RE, Pérez-Zepeda MU. Allostatic Load as a	
5 6	381		Biological Substrate to Intrinsic Capacity: A Secondary Analysis of CRELES. J Nutr He	al
7 8 9	382		Aging 2019;23(9):788–95.	
10 11 12	383	13.	Ma L, Liu P, Zhang Y, Sha G, Zhang L, Li Y. High Serum Tumor Necrosis Factor	
13 14	384		Receptor 1 Levels Are Related to Risk of Low Intrinsic Capacity in Elderly Adults. J Nu	tr
15 16	385		Heal Aging [Internet] 2020 [cited 2020 Nov 30];1-3. Available from:	
17 18 10	386		http://www.who.int/news-room/fact-	
20				
21 22	387	14.	Barreto P de S, Guyonnet S, Ader I, et al. The Inspire Research Initiative: A Program for	•
23 24	388		Geroscience and Healthy Aging Research going from Animal Models to Humans and the	e
25 26	389		Healthcare System. J Frailty Aging [Internet] 2020 [cited 2020 Jun 25];1-8. Available	
27 28 20	390		from: https://link.springer.com/article/10.14283/jfa.2020.18	
30				
31 32	391	15.	Beard JR, Jotheeswaran AT, Cesari M, Araujo De Carvalho I. The structure and predicti	ve
33 34	392		value of intrinsic capacity in a longitudinal study of ageing. BMJ Open	
35 36 27	393		2019;9(11):e026119.	
37 38				
39 40	394	16.	Ramírez-Vélez R, Correa-Bautista JE, García-Hermoso A, Cano CA, Izquierdo M.	
41 42	395		Reference values for handgrip strength and their association with intrinsic capacity	
43 44	396		domains among older adults. J Cachexia Sarcopenia Muscle 2019;10(2):278-86.	
45 46	397	17	Cesari M. Araujo de Carvalho I. Amuthavalli Thivagarajan I. et al. Evidence for the	
47 48	571	17.	Cesuri III, Filiago de Carvanio I, Filianavani Filiyagarajan 9, et al. Evidence foi die	
49 50	398		Domains Supporting the Construct of Intrinsic Capacity. Journals Gerontol Ser A	
51 52	399		[Internet] 2018 [cited 2018 Jun 22];Available from:	
53 54	400		https://academic.oup.com/biomedgerontology/advance-	
55 56				21
57 58				
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 23 of 36

BMJ Open

1 2 3 4	401		article/doi/10.1093/gerona/gly011/4834876	
5 6 7	402	18.	Nestola T, Orlandini L, Beard JR, Cesari M. Covid-19 and Intrinsic Capacity. J Nutr Hea	ıl
8 9	403		Aging [Internet] 2020 [cited 2020 Jul 3];1–4. Available from:	
10 11 12	404		https://doi.org/10.15585/mmwr.mm6912e2.	
13 14 15	405	19.	Ma L, Zhang L, Zhang Y, et al. Cognitive Frailty in China: Results from China	
16 17	406		Comprehensive Geriatric Assessment Study. Front Med [Internet] 2017 [cited 2017 Oct	
18 19	407		18];4:174. Available from:	
20 21 22	408		https://www.frontiersin.org/articles/10.3389/fmed.2017.00174/abstract	
23 24 25	409	20.	Ma L, Li Z, Tang Z, et al. Prevalence and socio-demographic characteristics of disability	r
26 27	410		in older adults in China: Findings from China Comprehensive Geriatric Assessment	
28 29	411		Study. Arch Gerontol Geriatr [Internet] 2017;73:199–203. Available from:	
30 31 32	412		http://linkinghub.elsevier.com/retrieve/pii/S0167494316302813	
33 34 35	413	21.	Ma L, Tang Z, Zhang L, Sun F, Chan P. Prevalence of frailty and associated factors in th	e
36 37	414		community-dwelling population of China. J Am Geriatr Soc	
38 39 40	415		2017;DOI:10.1111/jgs.15214.	
41 42 43	416	22.	WHO Meeting of the Clinical Consortium on <i>Healthy Ageing</i> . WHO 2018;	
44 45 46	417	23.	Guralnik JM, Simonsick EM, Ferrucci L, et al. A Short Physical Performance Battery	
47 48	418		Assessing Lower Extremity Function: Association With Self-Reported Disability and	
49 50	419		Prediction of Mortality and Nursing Home Admission. J Gerontol [Internet] 1994 [cited	
51 52	420		2018 Aug 18];49(2):M85–94. Available from: https://academic.oup.com/geronj/article-	
55 55	421		lookup/doi/10.1093/geronj/49.2.M85	
56 57				22
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 Page 24 of 36

422	24.	Li H, Jia J, Yang Z. Mini-Mental State Examination in Elderly Chinese: A Population-	
423		Based Normative Study. J Alzheimers Dis [Internet] 2016 [cited 2018 Nov 16];53(2):44	87–
424		96. Available from:	
425		http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160119	
426	25.	M E. Screening for malnutrition: A multidisciplinary responsibility. Development and	Use
427		of the Malnutrition Universal Screening Tool ('MUST') for Adults. Redditch: BAPEN	
428		2003;	
429	26.	Chan ACM. Clinical validation of the Geriatric Depression Scale (GDS): Chinese versi	on.
430		J Aging Health 1996;8(2):238–53.	
431	27.	Ma L, Zhang L, Tang Z, et al. Use of the frailty index in evaluating the prognosis of old	ler
432		people in Beijing: A cohort study with an 8-year follow-up. Arch Gerontol Geriatr	
433		2016;64(3):172–7.	
434	28.	Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring	
435		frailty in elderly people. J Gerontol A Biol Sci Med Sci [Internet] 2007 [cited 2018 Apr	r
436		11];62(7):738–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17634321	
437	29.	Ma L, Tang Z, Zhang L, Sun F, Li Y, Chan P. Prevalence of Frailty and Associated	
438		Factors in the Community-Dwelling Population of China. J Am Geriatr Soc [Internet]	
439		2018 [cited 2018 Apr 15];66(3):559–64. Available from:	
440		http://www.ncbi.nlm.nih.gov/pubmed/29168883	
441	30.	Kasteridis P, Mason A, Street A. Evaluating integrated care for people with complex	
442		needs. J Health Serv Res Policy [Internet] 2020 [cited 2020 Jul 3];135581962093187.	
			23
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
	422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442	 422 24. 423 424 425 426 25. 427 428 429 26. 430 431 27. 432 433 28. 434 28. 435 436 437 29. 438 439 440 441 30. 442 	 Li H, Jia J, Yang Z, Mini-Mental State Examination in Elderly Chinese: A Population- Based Normative Study. J Alzheimers Dis [Internet] 2016 [cited 2018 Nov 16];53(2);4: 96. Available from: http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160119 M E. Sercening for malnutrition: A multidisciplinary responsibility. Development and I of the Malnutrition Universal Screening Tool ('MUST') for Adults. Redditch: BAPEN 2003; Chan ACM. Clinical validation of the Geriatric Depression Scale (GDS): Chinese versi J Aging Health 1996;8(2):238–53. Ma L, Zhang L, Tang Z, et al. Use of the frailty index in evaluating the prognosis of old people in Beijing: A cohort study with an 8-year follow-up. Areh Gerontol Geriatr 2016;64(3):172–7. Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci [Internet] 2007 [cited 2018 Apr 11];62(7):738–43. Available from: http://www.nebi.nlm.nih.gov/pubmed/17634321 Ma L, Tang Z, Zhang L, Sun F, Li Y, Chan P. Prevalence of Frailty and Associated Factors in the Community-Dwelling Population of China. J Am Geriatr Soc [Internet] 2018 [cited 2018 Apr 15];66(3):559–64. Available from: http://www.nebi.nlm.nih.gov/pubmed/29168883 Kasteridis P, Mason A, Street A. Evaluating integrated care for people with complex needs. J Health Serv Res Policy [Internet] 2020 [cited 2020 Jul 3];135581962093187.

Page 25 of 36

1

BMJ Open

2 3 4	443		Available from: http://journals.sagepub.com/doi/10.1177/1355819620931872
5 6 7	444	31.	Takeda C, Guyonnet S, Sumi Y, Vellas B, Araujo de Carvalho I. Integrated Care for Older
8 9	445		People and the Implementation in the INSPIRE Care Cohort [Internet]. J. Prev.
10 11 12	446		Alzheimer's Dis. 2020 [cited 2020 Jul 3];7(2):70–4. Available from:
12 13 14	447		https://pubmed.ncbi.nlm.nih.gov/32236394/
15 16 17	448	32.	Xu W, Li YX, Wu C. Incidence of frailty among community-dwelling older adults: A
18 19 20	449		nationally representative profile in China. BMC Geriatr 2019;19(1).
21 22 23	450	33.	Stephens C, Allen J, Keating N, Szabó Á, Alpass F. Neighborhood environments and
23 24 25	451		intrinsic capacity interact to affect the health-related quality of life of older people in New
26 27 28	452		Zealand. Maturitas 2020;139:1–5.
29 30	453	34.	WHO Integrated care for older people (ICOPE): guidance for person-centred assessment
31 32 33	454		and pathways in primary care. WHO [Internet] 2020 [cited 2020 Jul 3]; Available from:
34 35	455		http://www.who.int/ageing/publications/icope-handbook/en/
36 37 38	456	35.	Belloni G, Cesari M. Frailty and Intrinsic Capacity: Two Distinct but Related Constructs.
39 40 41	457		Front Med 2019;
42 43	458		
44 45			
46 47	459		
48 49			
50			
51 52			
53			
54 55			
56			24
57 58			
59			For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml
00			i or peer review only integr/ onlyopen.only.com/site/ubout/guidelines.vititin

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
∠ I วว
22
23
24
25
26
27
28
29
30
21
21
5Z
33
34
35
36
37
38
39
40
/1
41
42 42
43
44
45
46
47
48
49
50
51
52
J∠ ⊑⊃
55
54
55
56
57
58
59
60

1

460

Captions for Tables and Figures

461 Table 1. Prevalence of declines in intrinsic capacity in older adults by sex, area, and age

462 Table 2. Stepwise forward logistic regression for associated factors with intrinsic capacity decline

Table 3. Multivariate logistic regression analysis (forward method) for intrinsic capacity decline
 associated with risk of adverse clinical outcomes

Figure 1. Intrinsic capacity in different regions, age, and sex groups. (A) The comparison of the weighted prevalence of IC decline among the six regions of China (Chi-square test, p < 0.01). (B) The comparison of the weighted prevalence of IC decline between North China and South China (Chi-square test, p < 0.01). (C) The comparison of the intrinsic capacity score among different age groups (One-way ANOVA, p < 0.01). (D) The comparison of the intrinsic capacity score between males and females (t-test, p < 0.01). Abbreviations: ANOVA, analysis of variance; IC, intrinsic capacity; IC decline, Intrinsic capacity decline.

Figure 2. The weighted prevalence of declines in intrinsic capacity in community-dwelling older adults living in the urban area (A1), rural area (A2), male (B1), female (B2), <75 ys (C1) and \geq 75 ys (C2). All were analyzed using the Chi-square test, p < 0.01.

475 Table S1. Comparison of characteristics between included and excluded participants

476 Table S2. Prevalence of each intrinsic capacity domain declined by sex, area, and age

477 Table S3. The effect of social factors, lifestyle and chronic conditions on intrinsic capacity decline

Page 27 of 36

BMJ Open

	Tota 1	Intrinsic capacity decline	Weighted		Numb	per of Declined	d Domains		
		n (%)	(%)	0	1	2	3	4	5
All sample	5823	2506(43.0)	39.9	3317(57.0)	1512(26.0)	636(10.9)	271(4.7)	75(1.3)	12(0.2
Sex*									
Male	2518	1030(40.9)	36.7	1488(59.1)	652(25.9)	266(10.6)	81(3.2)	27(1.1)	4(0.2
Female	3305	1476(44.7)	43.0	1829(55.3)	860(26.0)	370(11.3)	190(5.7)	48(1.5)	8(0.2
Area*									
Urban	3494	1243(35.6)	32.7	2251(64.4)	868(24.8)	275(7.9)	81(2.3)	18(0.5)	1(0)
Rural	2329	1263(54.2)	50.1	1066(45.8)	644(27.7)	361(15.5)	190(8.2)	57(2.4)	11(0.5
Age (ys)*									
60-64	1471	428(29.1)	28.6	1043(70.9)	309(21.0)	85(5.8)	30(2.0)	4(0.3)	0(0)
65-69	1179	414(35.1)	34.9	765(64.9)	271(23.0)	100(8.5)	34(2.9)	9(0.8)	0(0)
70-74	1165	515(44.2)	43.6	650(55.8)	337(28.9)	116(10.0)	46(3.9)	16(1.4)	0(0)
75-79	1119	562(50.2)	50.3	557(49.8)	325(29.0)	150(13.4)	62(5.5)	20(1.8)	5(0.4
$\geq \! 80$	889	587(66.0)	66.6	302(34.0)	270(30.4)	185(20.8)	99(11.1)	26(2.9)	7(0.8

480	Table 2. Stepwise forward logistic regression for associated factors with intrinsic capacity
481	decline

Factors	В	S.E.	Wald	df	Sig	OR	95% CI
Older age	0.647	0.093	48.426	1	< 0.001	1.910	1.592-2.291
North region	0.466	0.090	26.993	1	< 0.001	1.594	1.337-1.901
Low education	0.890	0.143	38.657	1	< 0.001	2.435	1.839-3.223
Unmarried	0.395	0.105	14.157	1	< 0.001	1.485	1.209-1.825
Low income	0.388	0.094	16.974	1	< 0.001	1.474	1.226-1.773
Less exercise	0.293	0.099	8.690	1	0.003	1.340	1.103-1.628
Less meat intake	0.260	0.089	8.532	1	0.003	1.296	1.089-1.543
Insomnia	0.453	0.095	22.735	1	< 0.001	1.572	1.305-1.894
Urinary incontinence	0.680	0.209	10.605	1	0.001	1.974	1.311-2.973
Constipation	0.408	0.126	10.605	1	0.001	1.504	1.175-1.924
Memory decline	0.714	0.083	73.427	1	<0.001	2.043	1.735-2.405
Slowness	0.407	0.102	15.908	1	<0.001	1.502	1.230-1.835
COPD	0.853	0.215	15.758	1	< 0.001	2.347	1.540-3.576
Osteoarthritis	0.534	0.095	31.785	1	< 0.001	1.706	1.417-2.054
Constant	-2.028	0.104	379.542	1	< 0.001	0.132	

482 Note: COPD, chronic obstructive pulmonary disease.

The variables not in the equation were sex, living areas, alcohol consumption, coronary heartdisease, diabetes, stroke and kidney disease.

1
2
3
4
5
6
7
, 8
a
10
10
11
12
13
14
15
16
1/
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Λ <i>Λ</i>
45
45 16
47
77 /18
40 70
49 50
50
ט די
52
53
54
55

OR 95% CI P value OR 95% CI P value Frailty 19.625 14.044-27.423 <0.001 19.021 12.882-28.084 <0.001 Disability 12.628 8.750-18.225 <0.001 8.661 5.925-12.660 <0.001 Fall 3.671 2.699-4.993 <0.001 3.053 2.232-4.177 <0.001 Fracture 1.965 1.448-2.666 <0.001 1.656 1.195-2.295 0.003 Immobility 6.098 4.903-7.584 <0.001 4.403 3.500-5.538 <0.001 489 Reference: Non-intrinsic capacity decline. Model 1: Adjusted by age, sex, area and district. Model 2: Adjusted by age, sex, area district, marriage, education, waist hip ratio, smoking, alcohol consuming, exercise, income, and chronic diseases. 493 493 State of the second				Model 1			Model 2	
Frailty 19.625 14.044-27.423 <0.001			OR	95% CI	P value	OR	95% CI	P value
Disability 12.628 8.750-18.225 <0.001 8.661 5.925-12.660 <0.001 Fall 3.671 2.699-4.993 <0.001		Frailty	19.625	14.044-27.423	< 0.001	19.021	12.882-28.084	< 0.001
Fall 3.671 2.699-4.993 <0.001		Disability	12.628	8.750-18.225	< 0.001	8.661	5.925-12.660	< 0.001
Fracture 1.965 1.448-2.666 <0.001		Fall	3.671	2.699-4.993	< 0.001	3.053	2.232-4.177	< 0.001
Immobility 6.098 4.903-7.584 <0.001		Fracture	1.965	1.448-2.666	<0.001	1.656	1.195-2.295	0.003
 Reference: Non-intrinsic capacity decline. Model 1: Adjusted by age, sex, area, district, marriage, education, waist hip ratio, smoking, alcohol consuming, exercise, income, and chronic diseases. 		Immobility	6.098	4.903-7.584	< 0.001	4.403	3.500-5.538	< 0.001
 Model 1: Adjusted by age, sex, area and district. Model 2: Adjusted by age, sex, area, district, marriage, education, waist hip ratio, smoking, alcohol consuming, exercise, income, and chronic diseases. 	489	Reference: No	on-intrinsi	c capacity decline	,			
 Model 2: Adjusted by age, sex, area, district, marriage, education, waist hip ratio, smoking, alcohol consuming, exercise, income, and chronic diseases. 	490	Model 1: Adj	usted by ag	ge, sex, area and d	listrict.			
 alcohol consuming, exercise, income, and chronic diseases. 	491	Model 2: Adj	usted by ag	ge, sex, area, distr	ict, marriage,	education,	waist hip ratio, smo	king,
493		-	•	-	ahaania diga	9666	-	-
Change and a second sec	492	alcohol consu	iming, exer	rcise, income, and	chronic dise	ases.		
	492 493	alcohol consu	iming, exei	rcise, income, and	chronic dise	ases.		
	492 493	alcohol consu	iming, exer	rcise, income, and	chronic dise			
	492 493	alcohol consu	iming, exer	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exer	reise, income, and	enronic dise			
	492 493	alcohol consu	iming, exer	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exer	rcise, income, and	chronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exer	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronie dise			
	492 493	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492 493	alcohol consu	iming, exer	rcise, income, and	enronic dise			
	492	alcohol consu	iming, exe	rcise, income, and	enronic dise			
	492	alcohol consu	iming, exe	rcise, income, and	enronie dise			

Table 51. Comparison of	Included participants Exc	luded participants	P
Age (vs)	70.86±7.68	72.43±7.37	< 0.001
Sex (male) $(n, \%)$	2518(43.2)	450(43.1)	0.934
Education (Illiterate) (n, %)	1047(18.0)	208(20.1)	0.102
Hypertension (n, %)	3835(65.9)	744(71.3)	0.001
CHD (n, %)	1168(20.1)	291(28.0)	< 0.001
Diabetes (n, %)	862(14.8)	186(17.9)	0.011
Stroke (n, %)	579(9.9)	139(13.4)	0.001
Kidney disease	259(4.4)	50(4.8)	0.607
COPD	205(3.5)	49(4.7)	0.061
Osteoporosis	1597(27.4)	398(38.8)	< 0.001
mmobility	624(10.7)	189(18.2)	< 0.001
Frailty index	0.15±0.08	$0.20{\pm}0.12$	< 0.001
Locomotion score	1.77±0.53	1.26 ± 0.92	< 0.001
Psychological score	1.86±0.38	1.88 ± 0.36	0.122
5 0			
Cognition score	1.85±0.46	1.85 ± 047	0.913
Cognition score Vitality score Sensory score bbreviations: CHD, coronary	1.85±0.46 1.82±0.51 1.84±0.42 heart disease; COPD, chronid	1.85±047 1.88±0.42 1.76±0.47 c obstructive pulmona	0.913 <0.001 <0.001 ry disease.
Cognition score Vitality score Sensory score bbreviations: CHD, coronary	1.85±0.46 1.82±0.51 1.84±0.42 heart disease; COPD, chronid	1.85±047 1.88±0.42 1.76±0.47 c obstructive pulmona	0.913 <0.001 <0.001 ry disease.
Cognition score Vitality score Sensory score bbreviations: CHD, coronary	1.85±0.46 1.82±0.51 1.84±0.42 heart disease; COPD, chronid	1.85±047 1.88±0.42 1.76±0.47 c obstructive pulmona	0.913 <0.001 <0.001 ry disease.
Cognition score Vitality score Sensory score .bbreviations: CHD, coronary	1.85±0.46 1.82±0.51 1.84±0.42 heart disease; COPD, chroni	1.85±047 1.88±0.42 1.76±0.47 c obstructive pulmona	0.913 <0.001 <0.001 ry disease.
Cognition score Vitality score Sensory score bbreviations: CHD, coronary	1.85±0.46 1.82±0.51 1.84±0.42 heart disease; COPD, chroni	1.85±047 1.88±0.42 1.76±0.47 c obstructive pulmona	0.913 <0.001 <0.001 ry disease.

Table S	2. Preval	ence of <mark>each int</mark>	rinsic capacity	domain declin	<mark>ed</mark> by sex, area,	and age
	Total	Locomotion	Cognition	Vitality	Sensory	Psychology
All sample	5823	1039(17.8)	646(11.1)	735(12.6)	824(14.2)	713(12.2)
Sex						
Male	2518	372(14.8)*	227(9.0)*	338(13.4)	371(14.7)	247(9.8)*
Female	3305	667(20.2)	419(12.7)	397(12.0)	453(55.0)	466(14.1)
Area						
Urban	3494	481(14.1)*	168(4.8)*	344(9.8)*	417(11.9)*	318(9.1)*
Rural	2329	548(23.5)	478(20.5)	391(16.8)	407(17.5)	395(17.0)
Age (ys)						
60-64	1471	106(7.2)*	72(4.9)*	116(7.9)*	114(7.7)*	177(12.0)
65-69	1179 🧹	129(10.9)	90(7.6)	123(10.4)	131(11.1)	136(11.5)
70-74	1165	197(16.9)	123(10.6)	141(12.1)	166(14.2)	144(12.4)
75-79	1119	256(22.9)	158(14.1)	154(13.8)	210(18.8)	138(12.3)
>80	889	351(39.5)	203(22.8)	201(22.6)	203(22.8)	118(13.3)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2	
5	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
30	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45 47	
46	
47	
48	
49	
50	
51	
57	
52	
23	
54	
55	
56	
57	
58	
59	
29	
00	

Table S3. The effect of social factors, lifestyle and chronic conditions on intrinsic capacity
decline

		uccinic			
	Total	IC decline, n	Weighted (%)	χ^2	Р
Social factors		(%)			
Education	5823				
Illiterate	1047	724(69.1)	67.7	355 086	<0.001
Not illiterate	4776	1782(37.3)	34.9	555.000	<0.001
Monthly income	5665	1702(37.3)	57.7		
<2000 Vuan	2658	1408(53.0)	49.6	227 561	<0.001
>2000 Yuan	3007	996(33.1)	30.0	227.301	<0.001
Marital status	5818	<i>))()()<i>)())())())())()<i>)())()<i>)())())()<i>)())()<i>)())()<i>)())()<i>)())())()<i>)())())()<i>)()<i>)()<i>)())()<i>)())()<i>)()<i>)())()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>)()<i>())<i>()()<i>)()<i>)()<i>()()<i>)()<i>()()<i>)()<i>)()<i>()<i>()()<i>)()<i>()()<i>)()<i>()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>)()<i>()()<i>()()<i>()()<i>()<i>()()<i>()()<i>()<i>()()<i>()()<i>()()<i>()<i>()()<i>()<i>()()<i>()<i>()()<i>()<i>()()<i>()<i>()()<i>()<i>()<i>()()<i>()<i>()<i>()()<i>()()<i>()<i>()()<i>()<i>()()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>()<i>((</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	50.0		
Married	<u>4493</u>	1738(38.7)	35.8	151 541	<0.001
Unmarried	1325	765(57.7)	56.8	151.541	\$0.001
	1323	105(51.1)	50.0		
Exercise	5808				
Ves	4594	1779(38 7)	36.1	168 600	<0.001
No	1214	722(50.7)	55.0	100.000	~0.001
Meat intake	5823	,22(3).3)	55.0		
Usually	3369	1322(39.2)	35.9	46 925	<0.001
Less	2454	1322(39.2) 1184(48.2)	45 8	40.925	\$0.001
Alcohol consumption	5823	1104(40.2)	-5.0		
Ves	4503	600(45.5)	40.7	4 081	0.043
No	5823	1906(42.3)	39.6	4.001	0.045
Smoking	1320	1700(42.3)	57.0		
Ves	1658	722(43.5)	38 7	0 241	0.623
No	4165	1784(42.8)	40.5	0.241	0.025
Thronic disease	7105	1704(42.0)	40.5		
Hypertension	5823				
Ves	2688	1127(41.9)	39.0	2 505	0.113
No	3135	1127(41.9) 1379(44.0)	40 7	2.505	0.115
CHD	5823	1377(44.0)	40.7		
Ves	1168	559(47.9)	46.0	13 823	<0.001
No	4655	1947(41.8)	38.5	15.025	<0.001
Diabetes	5823	1)+/(+1.0)	50.5		
Ves	862	344(39.9)	36.6	4 041	0 044
No	4961	2162(43.6)	40.5	1.011	0.011
Stroke	5823	2102(15.0)	10.5		
Ves	579	327(56.5)	53 3	47 323	<0.001
No	5244	2179(41.6)	38.5	77.525	\$0.001
Kidney disease	5823	2179(11.0)	50.5		
Yes	259	136(52.5)	50.6	9 907	0.002
No	5564	2370(42.6)	39.4	2.201	0.002
COPD	5823	2570(42.0)	57.T		
Yes	205	140(68 3)	66 7	55 288	<0.001
No	5618	2366(42.1)	39.0	22.200	-0.001

2						
3	Liver disease	5823				
4	Yes	253	107(42.3)	40.0	0.062	0.803
5	No	5570	2399(43.1)	38.7	0.002	0.005
6	Ostooarthritis	5873	2377(43.1)	50.7		
/	Vac	1507	955(52 5)	51.2	00 002	<0.001
8	ies	1397	633(33.3)	31.2	96.995	<0.001
9 10	No	4226	1651(39.1)	35.9		
10	Cancer	5823				
11	Yes	148	63(42.6)	39.7	0.013	0.909
12	No	5675	2443(43.0)	39.9		
14	Geriatric syndrome					
15	Insomnia	5823				
16	Yes	1427	830(58.2)	56.5	176.113	< 0.001
17	No	4396	1676(38.1)	34.9		
18	Memory decline	5823	~ /			
19	Yes	2629	1450(55.2)	52.6	286.447	< 0.001
20	No	3194	1056(33.1)	30.2		
21 22	Urinary incontinence	5823				
23	Yes	257	198(77.0)	76.3	126.654	< 0.001
24	No	5566	2308(41.5)	38.5		
25	Constipation	5823				
26	Yes	738	430(59.1)	56.6	87.043	< 0.001
27	No	5095	2076(40.8)	37.8		
28	Slowness	3306		0,10		
29	Ves	688	367(53.3)	50.2	54 008	<0.001
30	No	2618	991(37.9)	35.1	2 1.000	-0.001
32	Abbreviations: IC intrinsit	capacity:	ADI activities	of daily living	IADI	instrumento
					/ .	

Abbreviations: IC, intrinsic capacity; ADL, activities of daily living; IADL, instrumental ی, הסוב, יהטע, chronic obstructive activities of daily living; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease.

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1,2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-8
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(e) Describe any sensitivity analyses	N/A
Results			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	10
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	11-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	17
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.