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Supplementary text

I. POLARIZABILITIES OF ROTATING PARTICLES

In this note, we formulate a classical model, which is capable of describing the optical polarizabilities
of rotating particles of various geometries. By using this model, we successfully derive the optical polar-
izabilities of three distinctly different types of particles, namely, nanorods, nanocrosses, and nanodisks,
which we assume to be rotating as shown in fig. S1. The results reassuringly satisfy general rules such as
the optical theorem, as well as conservation of energy and angular momentum.

As shown in fig. S1, we further assume the particles to be thin along the z direction, around which

they are taken to be rotating with angular velocity ~Ω. The rotation of the particle is manifested by the
motion of the ionic potential in the material of which they are composed, which also imposes the rotation
onto the conduction electrons. The latter are in turn assumed to completely mediate the interaction
with external light. For the nanorod and nanocross in fig. S1 (B and C), the rotation is clearly observed
from their continuously changing surface boundaries, while for axially symmetric particles, such as the
nanodisk in fig. S1D, the rotation corresponds to a collective motion of electrons and ions with nonzero
total angular momentum.

We determine the optical responses of these rotating particles from the internal dynamics of conduction
electrons in the x-y plane under external light irradiation. In our model, we represent such oscillating
electrons by a single point particle of effective charge Q and mass m subject to the classical equation of
motion

mr̈ = −mω2
0r−mγ(ṙ− Ωrϕ̂) +mτ

...
r +QE± + Freact, (S1)

where r is the radial distance relative to the particle center in the lab frame, ω0 is the intrinsic oscillator
resonance frequency, γ is a phenomenological damping rate capturing the internal dissipation of electron
oscillation energy, the dissipation force is proportional to the velocity with respect to the center of mass
of the ionic background ṙ − Ωrϕ̂, Freact is the force imposed by the boundary defined by the particle
geometry (i.e., the trapping ionic potential), and the Abraham-Lorentz force mτ

...
r with τ = 2Q2/3mc3

introduces corrections due to radiation reaction.
As illustrated in fig. S1A, we represent the position vector in Cartesian coordinates as r = xx̂ + yŷ in

the lab frame and r = x′x̂′ + y′ŷ′ in the frame rotating with the particle (primed variables refer to the
rotating frame in what follows), with their respective unit vectors related through the transformation

x̂′ = cos(Ωt)x̂+ sin(Ωt)ŷ, ŷ′ = − sin(Ωt)x̂+ cos(Ωt)ŷ.

Using these relations, the transformation of the time derivative of any vector ~v from the lab frame to

the rotating frame is given by ~̇v = ~̇v′ + ~Ω× ~v. We can then apply this expression recurrently to find the
relation between different orders of the time derivative of the position vector r in the lab and rotating
frames as

r = r′, ṙ = ṙ′ + ~Ω× r′, r̈ = r̈′ + 2~Ω× ṙ′ − Ω2r′,
...
r =

...
r ′ + 3~Ω× r̈′ − 3Ω2ṙ′ − Ω2(~Ω× r′),

where we apply the fact that ~Ω is perpendicular to r. In this note, we use complex notation for time-
harmonic quantities. We are interested in the optical response of the rotating particles under circularly
polarized light. We write the electric field of right- (RCP, upper signs) and left-circularly polarized
(LCP, lower signs) light in the lab frame as E± = E±e−iωtû± in terms of the corresponding unit vectors

û± = (x̂ ± iŷ)/
√

2. In the rotating frame, the unit polarization vector û± is transformed into û′± =

(x̂′± iŷ′)/
√

2 and the electric field thus becomes E± = E±e−iω∓tû′±, which introduces a Doppler shift in



the light frequency according to û± = e±iΩtû′±. Together with the transformation of the time derivatives
described above, we can explicitly rewrite Eq. (S1) in the rotating frame as

ẍ′ = −(ω2
0 − Ω2)x′ − 2Ωẏ′ − γẋ′ + τ(

...
x ′ − 3Ωÿ′ − 3Ω2ẋ′ + Ω3y′) +

1

m
(QE± + Freact) · x̂′, (S2)

ÿ′ = −(ω2
0 − Ω2)y′ + 2Ωẋ′ − γẏ′ + τ(

...
y ′ + 3Ωẍ′ − 3Ω2ẏ′ − Ω3x′) +

1

m
(QE± + Freact) · ŷ′, (S3)

where the intrinsic resonance frequency
√
ω2

0 − Ω2 captures the effect of the centrifugal force, whereas the
Coriolis force (second term on the right) directly couples the velocities in the two orthogonal directions.
In what follows, we apply this model to calculate the optical response of rotating particles in different
geometries.

A. Nanorod

Equation of motion. As shown in fig. S1B, we assume that the rotating nanorod to be always oriented
along x̂′. This implies that the reaction force Freact is always oriented along ŷ′. Noticing that the
frequency of incident circularly polarized light becomes ω∓ in the rotating frame, we write the position
vector of the effective charge as r′ = ρe−iω∓tx̂′, whose time evolution is readily determined by solving
Eq. (S2) as

ρ = QE±/
√

2md∓,

where

d∓ = ω2
0 − Ω2 − ω∓(ω∓ + iγ)− iτω∓(ω2

∓ + 3Ω2).

The position vector then becomes

r =
Q√

2md∓
E±e−iω∓tx̂′

=
Q

2md∓
E±e−iωt(û± + û∓e±2iΩt). (S4)

Interestingly, in addition to the oscillatory component with the same frequency as the incident light, the
coordinate vector r also contains components with shifted frequency ω ∓ 2Ω in the lab frame. With r
explicitly given by Eq. (S4), we now calculate the time-averaged powers due to each of the force terms
in Eq. (S1), which lead to different types of cross sections, as we discuss next.

Extinction. The extinction cross section of the particle σext is determined by the time-averaged power
of the work done by the light electric field, Pext = 〈QE · ṙ〉, which does not receive contributions from
the components of r with shifted frequencies. With the light intensity written as I = c|E±|2/8π (notice
that we use the convention Eext(t) = Re{Eexte−iωt} for the time dependence of light of frequency ω), we
find

σext =
Pext

I
=

2πQ2ω

mc
Im{ 1

d∓
}. (S5)

Scattering. Scattered light is extracted from the electron oscillation through the work done by the
Abraham-Lorentz force (the third term in Eq. (S1)). The scattering power is then given by Psca =



−mτ 〈...r · ṙ〉, which readily leads to a total scattering cross section

σsca =
Psca

I
=
πQ2

mc

1

|d∓|2
τ [ω4 + (ω ∓ 2Ω)4]. (S6)

Alternatively, this expression for the scattering cross section can also be found by calculating the
emission of the induced electric dipole in the rotating nanorod, p = Qr = pω + pω∓2Ω, where pω
and pω∓2Ω are contributed by the two terms in Eq. (S4) associated with frequencies ω and ω ∓ 2Ω,
respectively. As the incident light frequency is ω, the emissions produced by pω and pω∓2Ω correspond
to elastic and inelastic scattering, respectively. The corresponding radiated powers are obtained using
well-established expressions relating them to the emitting dipoles: Pω = ω4|pω|2/3c3, which results
in an elastic scattering cross section σω = πQ2τω4/mc|d∓|2, consistent with the first term in Eq.
(S6); and similarly, Pω = (ω ∓ 2Ω)4|pω∓2Ω|2/3c3, which leads to the inelastic scattering cross section
σω∓2Ω = πQ2τ(ω ∓ Ω)4/mc|d∓|2, corresponding to the second term in Eq. (S6).

Absorption. Among the remaining terms in Eq. (S1), only the second term −mγ(ṙ − Ωrϕ̂) (i.e.,
dissipation) and the reaction force Freact produce a nonzero contribution to the time-averaged power.
For the nanorod, as we show below, the dissipation force −mγ(ṙ − Ωrϕ̂) does not contribute a time-
averaged torque exerted on the particle, so it only acts by transferring energy from electron oscillations to
thermal degrees of freedom. The reaction force Freact directly changes the rotation of the ionic potential,
and therefore, it alters the mechanical energy. Importantly, the reaction force Freact disappears in the
nanodisk, as it contains freely moving electrons, and therefore, the dissipation force also changes the
mechanical energy of the particle.

The time-averaged power due to the dissipation force is Pdis = 〈mγ(ṙ−Ωrϕ̂) · ṙ〉, where r = ρe−iω∓tx̂′

and, for the rotating nanorod, we have ϕ̂ = ŷ′. By expressing ŷ′ in the lab frame as in Eq. (S4), we can
finally obtain Pdis and the corresponding dissipation cross section

σdis =
2πQ2

mc

1

|d∓|2
γω2
∓. (S7)

To find the power and cross section of the energy converted to mechanical motion, we first need to
determine the reaction force Freact acting on the electrons. Since Freact is always along ŷ′, by setting all
terms related to y′ to zero, we find from Eq. (S3)

Freact = ∓ QE±√
2d∓

[i(ω2
0 − ω2) + γω∓ + τ(ω ∓ 2Ω)3]e−iω∓ ŷ′.

The power Preact = −〈Freact · ṙ〉 describes the part of energy that is extracted from electron oscillations
and converted into mechanical motion. We find its corresponding cross section to be

σreact = ±2πQ2

mc

1

|d∓|2
Ω[γω∓ + τ(ω ∓ 2Ω)3]. (S8)

The absorption cross section should be the sum of dissipation and mechanical cross sections, that is,

σabs = σdis + σreact =
2πQ2

mc

1

|d∓|2
[γω∓ω ± τΩ(ω ∓ 2Ω)3]. (S9)

Effective polarizability. The rotating nanorod is not optically isotropic, so that in the lab frame it
sustains a dipole of shifted frequency pω∓2Ω, and consequently, the total dipole p is not simply propor-
tional to the incident electric field vector E. However, we still can define an effective polarizability of the
rotating nanorod, which relates the electric field to the elastic electric dipole moment pω = α±(ω)E±,

α±(ω) =
Q2

2m

1

d∓
.



With this effective polarizability, the extinction cross section in Eqs. (S5) and the elastic scattering
cross section shown by the first term in Eq. (S6) can be simply written in the well-known forms
σext = 4πkIm{α±(ω)} and σω = 8πk4 |α±(ω)| /3, respectively. In addition, the inelastic cross section
(second term in Eq. (S6)) can similarly be written as σω∓2Ω = 8π(ω ∓ 2Ω)4 |α±(ω)| /3c4.

Energy and angular momentum conservation. Energy conservation is implied in Eq. (S1), since
the different powers discussed above are calculated for each of the terms in Eq. (S1) yielding a nonzero
time-averaged contribution. Energy conservation, simply stated as Pext = Psca +Pabs, can be equivalently
written in terms of the cross sections as σext = σsca + σabs, which is rigorously satisfied when inserting
the expressions given in Eqs. (S5), (S6), and (S9).

Conservation of angular momentum in the system leads to an optical torque acting on the particle.
Following similar procedures as for the calculation of different powers, we now rigorously evaluate the
time-averaged torque contributed by each terms in Eq. (S1) according to 〈r× F〉 for forces F given by QE,

−mγ(ṙ−Ωrφ̂), mτ
...
r , and Freact. Using the relation û±×û∓− = ∓iẑ, we find, after some straightforward

algebra, all torque components to reduce to

Mext = ±Q
2

4m
|E±|2Im{ 1

d∓
}ẑ, (S10a)

Mdis = 0, (S10b)

Msca = ∓Q
2

8m

|E±|2
|d∓|2

[τω3 − τ(ω ∓ 2Ω)3]ẑ, (S10c)

Mreact = ∓Q
2

4m

|E±|2
|d∓|2

[γω∓ + τ(ω ∓ 2Ω)3]ẑ, (S10d)

where Mext is the driving torque imparted by the incident light, whereas Mdis, Msca, and Mreact are the
frictional torques produced by dissipation, Abraham-Lorentz, and boundary-reaction forces, respectively.
Because of Eq. (S1), the total torque acting on the electrons must be zero, so any change in angular
momentum must be transferred to either the lattice or radiation. Additionally, the torque acting on
the particle must nearly entirely end up in the ions because of their large mass compared with the
electrons. Therefore, the reactions of both Mdis and Mreact contribute to the torque acting on the ions
M = −(Mdis + Mreact). Reassuringly, the power transferred to the ions as a result of this torque (i.e.,

Preact = 〈M〉 · ~Ω) is fully consistent with Eq. (S8).
We now provide an intuitive explanation of the total torque M acting on the particle. The total input

number of photons can be directly written in terms of the extinction cross section as N = σextI/h̄ω, and
considering that each circularly polarized photon carries angular momentum ±h̄, the total input angular
momentum is Mext = ±σextI/ω, which is consistent with Eqs. (S10). Similarly, absorption directly results
in transfer of angular momentum from photons to the particle, thus producing a torque ±σabsI/ω. In
contrast, elastic scattering maintains the angular momentum of the incident photons. As shown in Eq.
(S4), the inelastic dipole pω∓2Ω reverses the chirality of the incident light, so each scattered photon carries
angular momentum of ∓h̄, in contrast to the incident photons with angular momentum ±h̄. Taking into
account the energy shift of inelastically emitted photons, we find the torque due to inelastic scattering
to be ±2Iσω∓2Ωω∓/ω(ω ∓ 2Ω). Putting these results together, the total torque acting on the particle
therefore becomes

M = ±I
(
σext

ω
+
σω∓2Ω

ω

2ω∓
ω ∓ 2Ω

)
ẑ, (S11)

which reproduced the result obtained based on Eqs. (S10).



B. Nanocross

Equation of motion. We consider a thin rotating nanocross formed by two perpendicular nanorods,
which are fixed along directions x̂′ and ŷ′, as shown in fig. S1C. Compared with the nanorod, the nanocross
is optical isotropic, because it sustains two orthogonal degenerated dipolar modes. We denote the two
dipoles along x̂′ and ŷ′ as p1 and p2, respectively, and assume that the effective charge in each of the
dipoles is Q, evolving according to the position vectors, r1 = ρ1e−iω∓tx̂′ and r2 = ρ2e−iω∓tŷ′. To find the
optical response of the nanocross, we apply Eq. (S4) to both p1 and p2. The two charges are confined
to the two perpendicular branches of the cross, so the direct velocity coupling described by the second
term on the right of Eq. (S4) disappears. However, the two dipoles are not totally independent, since the
reactive Abraham-Lorentz force produces coupling due to interference of the far-field radiation associated
with each of them. For a circularly polarized incident field E± = E±e−iω∓tû′±, the equations of motion
of the two charges reduce to

ρ1(ω2
0 − Ω2 − ω2

∓ − iω∓γ)− iτ(ω3
∓ρ1 − 3iΩω2

∓ρ2 + 3Ω2ω∓ρ1 + Ω3ρ2) =
Q√
2m

E±,

ρ2(ω2
0 − Ω2 − ω2

∓ − iω∓γ)− iτ(ω3
∓ρ1 + 3iΩω2

∓ρ1 + 3Ω2ω∓ρ2 − Ω3ρ1) = ± Q√
2m

E±,

as obtained from Eqs. (S2) and (S3) for p1 and p2, respectively.

The solution of these equations is readily found to be ρ1 = QE±/
√

2mb∓ and ρ2 = ±iρ1, where

b∓ = ω2
0 − Ω2 − ω∓(ω∓ + iγ)− iτω3.

The electric dipole in the nanocross is a superposition of the two components along the orthogonal
directions of the cross, that is,

p = Q(r1 + r2) =
Q2

√
2mb∓

E±e−iω∓t(x̂′ ± iŷ′) =
Q2

mb∓
E±e−iωtû±, (S12)

where we only observe an electric dipole at the incident frequency ω in the lab frame. This is consistent
with the intuition that rotating isotropic nanoparticles (e.g., molecules) do not produce rotational
inelastic (e.g., Raman) scattering. Compared with the nanorod, the electric dipoles and associated
radiation at frequencies ω± 2Ω from the two branches of the nanocross cancel each other, and therefore,
the Abraham-Lorentz force has no inelastic contribution, so that only the term τω3 appears in b∓.

Cross sections. For optically isotropic particles, the circular polarizabilities can be strictly defined by
p± = α±(ω)E±, so from Eq. (S12) we find

α±(ω) =
Q2

mb∓
.

Following a similar procedure as for the nanorod, we can calculate the power associated with the scattering
process of the rotating nanocross due to different terms in Eq. (S1), including the extinction power Pext =
Q
∑
i 〈E · ṙi〉, the scattering power Psca = mτ

∑
i 〈

...
r i · ṙi〉, and the power due to internal dissipation

Pdis = −mγ∑i(ṙi − Ωrϕ̂) · ṙi. Obviously, this requires adding the contributions from the two branches.
We finally find the following expressions for these cross sections:

σext =
4πQ2ω

mc
Im{ 1

b∓
}, σsca =

4πQ2

mc

1

|b∓|2
τω4, σdis =

4πQ2

mc

1

|b±|2
γω2
∓.

To calculate the power associated with the mechanical force, we need to find the reaction force by
considering the equations of motion of the charges evolving in each branch along perpendicular nanocross



directions. For example, for the branch aligned along x̂′, Eq. (S3) leads to

−iΩω∓ρ1 − iτ(ω3
∓ρ1 − 3iΩω2

∓ρ2 + 3Ω2ω∓ρ1 + Ω3ρ2) = ±i Q√
2m

E± + F react
1 ,

where we also include the Abraham-Lorentz force due to radiation from the other oscillator of coordinate
vector r2. Now, using the relations ρ1 = QE±/

√
2mb∓ and ρ2 = ±iρ1, we finally obtain the reaction

force due to the first branch,

Freact
1 = ∓ iQ√

2mb∓
E±(ω2

0 − Ω2 − ω2
∓ ∓ Ωω∓ − iγω∓)ŷ′.

The power due to energy conversion into mechanical rotation is then given by Preact,1 = −〈Freact
1 · ṙ1〉.

Similarly, we can find the power due to mechanical forces acting on the branch aligned along ŷ′, which
is simply equal to the effect of the torque on the first branch (i.e., Preact,2 = Preact,1) because of the
symmetry of the particle. Similar to the nanorod, we show below that the dissipation force does not
contribute to the torque acting on the ions, so the total mechanical power can be equivalently obtained

as Preact =
〈
Mreact · ~Ω

〉
= Preact,1 + Preact,2, where 〈M〉 = 2 〈Freact

1 × r1〉 is the torque acting on the

particle and the factor 2 accounts for the contribution from the branch along ŷ′. Using this expression
for Preact, we finally obtain the corresponding cross section

σreact =
4πQ2

mc

1

|b∓|2
γΩω∓.

Finally, the absorption cross section is given by σabs = σdis + σreact.

Energy and angular momentum conservation. We can easily prove that the cross sections found
above satisfy the well-known results σext = 4πkIm{α±(ω)} and σω = 8πk4 |α±(ω)| /3, and furthermore,
energy conservation stems from the fact that they satisfy the relation σext = σabs + σsca.

Similar to the nanorod, the torque components acting on the rotating nanocross and associated with
the force terms in Eq. (S1) can be equally obtained from

∑1,2
i 〈ri × F〉, where F is chosen as −γmṙ,

τm
...
r , or Freact

i . We find

Mext = ±Q
2

2m
|E±|2Im{ 1

b∓
}ẑ, Msca = ∓Q

2

2m

|E±|2
|b∓|2

τω3ẑ, Mdis = 0, Mreact = ∓Q
2

2m

|E±|2
|b∓|2

γω∓ẑ.

Compared with the nanorod, the expression for Mext only differs in the definition of b± and a factor of
2 due to the fact that two charges are present in the nanocross. We note that the dissipation torque is
still zero, and the contribution of inelastic scattering is absent in Msca and Mreact. It is then easy to
verify that these expressions satisfy Mext = Msca + Mreact, thus guaranteeing conservation of angular
momentum. The total torque acting on the particle is M = −(Mdis + Mreact), which can be shown to
satisfy the general relation in Eq. (S11) by setting σω∓2Ω = 0.

C. Nanodisk

Equation of motion. For the nanodisk shown in fig. S1D, internal electrons can move freely and do not
experience forces stemming from a potential boundary (i.e., Freact = 0). We thus represent the electrons
as a free two-dimensional oscillator with a total charge of 2Q. For circularly polarized incident light, we
write the incident electric field as E± = E±e−iω∓tû′±, and due to the rotational symmetry of the particle,

the position vector of the effective charge should be r = ρe−iω∓tû′±. Indeed, by substituting E± and r
into Eqs. (S2) and (S3), we find that these equations reduce to the relation

ρ = QE±/mh∓,



where

h∓ = ω2
0 − Ω2 − ω2 − iγω∓ − iτω3.

Cross sections. The circular polarizabilities (for RCP and LCP illumination) of the rotating nanodisk
determined from the above equations reduce to

α±(ω) = Q2/mh∓.

Calculations similar to the cross sections of the rotating nanorod and nanocross can be carried out for
the rotating nanodisk. By evaluating the extinction power Pext, the scattering power Psca, and the power
of internal dissipation Pdis, we readily find

σext =
4πQ2

mc
ωIm{ 1

h∓
}, σsca =

4πQ2

mc

1

|h∓|2
τω4, σdis =

4πQ2

mc

1

|h±|2
γωω∓.

Energy and angular momentum conservation The above cross sections also satisfy σext =
4πkIm{α±(ω)} and σω = 8πk4 |α±(ω)| /3, and again, energy conservation is readily corroborated from
the expression σext = σabs + σsca that they satisfy.

We can also calculate different contributions to the torque acting on the electrons. We find

Mext = ±Q
2

2m
|E±|2Im{ 1

h∓
}ẑ, Msca = ∓Q

2

2m

|E±|2
|h∓|2

τω3ẑ, Mdis = ∓Q
2

2m

|E±|2
|h∓|2

γω∓ẑ,

from where we also find the total angular momentum to be conserved (i.e., Mext = Msca + Mdis). The
total torque acting on the rotating nanodisk is M = −Mdis, which also satisfies the general relation given
by Eq. (S11).

The dissipation force leads to a nonzero time-averaged torque acting on the particle. In contrast to the
nanorod and nanocross, the dissipation power Pdis includes also the contribution of energy conversion

into mechanical energy, as given by Pmech =
〈
M× ~Ω

〉
. The power of conversion to thermal energy is

then

Ptherm = Pdis − Pmech =
Q2

2m

|E±|2
|h∓|2

γω2
∓.

II. ROTATIONAL DOPPLER COOLING LIMIT

According to Eqs. (S11) and (3), for a small rotation frequency Ω and an isotropic particle with
γ � τ−1, the torque exerted by linearly polarized light reduces to

M ≈ 8πΩ

c
∂ΩIm{α+(ω)}|Ω=0 = −βΩ,

so the dynamics of the particle angular momentum is governed by

JΩ̇ = −βΩ +Mfl(t),

where Mfl is the fluctuating torque, and the cooling torque βΩ introduces a frictional torque by analogy
to the frictional force in optical molasses. From the fluctuation-dissipation theorem, we can find the
Einstein relation that determines the steady-state temperature

kBTlim =
D

β
,



where D = γ
〈
∆L(t)2

〉
is the rotational diffusion coefficient. Considering that the dissipation of each

incident angular momentum introduces h̄2 into the deviation of the particle angular momentum
〈
∆L(t)2

〉
,

we find the diffusion coefficient

D =
2I

h̄
σext|Ω=0 × h̄2 =

8πh̄

c
Im{α+(ω)}|Ω=0.

The above Einstein relation for the particle rotation can be further recast as

kBTlim = h̄
Im{α}
∂ΩIm{α}

∣∣∣∣
Ω=0

. (S13)

We then use this relation to estimate the lowest temperature that is achievable by rotational Doppler
cooling. For nanocrosses and nanodisks with the polarizability of Eq. (2), the two terms in Eq. (S13) can
be explicitly found to be

Im{α}|Ω=0 =
γω

(ω2
0 − ω2)2 + γ2ω2

,

∂ΩIm{α}|Ω=0 =
γ(ω2

0 − ω2)2 − γ3ω2 + 4γω2(ω2
0 − ω2)m

[(ω2
0 − ω2)2 + γ2ω2]2

,

where m = 1 for crosses and m = 0 for disks. Inserting these two expressions into Eq. (S13), we find

kBTlim = h̄
[(ω2

0 − ω2)2 + γ2ω2]ω

(ω2
0 − ω2)2 − γ3ω2 + 4ω2(ω2

0 − ω2)m

γ�ω0−−−−→ [δ2 + (γ/2)2]ω0

δ2 − (γ/2)2 + 2δω0m
,

where δ = ω − ω0 is the frequency detuning, and the rightmost approximation corresponds to the low-
damping limit, γ � ω0. The lowest temperature is determined by the minimum of the right-hand side of
the above equation. In the low-damping limit γ � ω0, we find a Doppler cooling limit for the nanocross
given by kBTlim = h̄γ/2, which is achieved at δ = γ/2; this is similar to the translational Doppler limit
temperature. In contrast, in the limit γ � ω0, the Doppler cooling limit in the nanodisk is found to be
kBTlim = h̄ω0 for large frequency detuning δ → ∞. We note that for nanocrosses the Doppler cooling
limit determined by the more rigorous expression in the above equation decreases with γ, so the result
kBTlim = h̄ω0 that is found for γ � ω0 is indeed the lowest achievable temperature. However, for
nanodisks, the more rigorous temperature limit Tlim deceases as γ increases, so lower temperatures can
be found in particles with stronger dissipation.
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FIG. S1: Choice of coordinate systems for discussions. (A) Coordinate of the rotating frame (solid vectors)
and the laboratory frame (dashed vectors). (B to D) Illustration of the orientation of three types of rotating
particles in the rotating frame: nanorod (B), nanocross (C), and nanodisk (D).
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FIG. S2: Optical response of dissipationless rotating nanoparticles. (A to C) We consider a nanorod (A),
a nanocross (B) and a nanodisk (C) with RCP (red) and LCP (blue) incident light. (D) Time-averaged torque
acting on the rotating nanorod in (A) under linearly polarized illumination. In all cases, particles are rotating
with angular velocity Ω = 0.1ω0, and the radiative damping rate is τ−1 = 0.2ω0. All frequencies are normalized
to the particle resonance frequency ω0, the polarizability is normalized to α0 = Q2/mω2

0 , and the torque is
normalized to M0 = α0|E±|2/2. The nanorod (A) and nanocross (B) exhibit a CD similar to the dissipative
scenarios in Fig. 2, while the CD is absent in the nanodisk (C). A light wave cannot produce an optical torque
on dissipationless isotropic particles, such as the nanocross (B) and the nanodisk (C). However, an optical torque
can arise on anisotropic nanoparticles (such as the nanorod in (A)) due to inelastic scattering, and consequently,
linearly polarized illumination can lead to RDC and RDH in such particles.
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FIG. S3: Stability of a nanodisk at rest under linearly polarized illumination with frequency ω = ω0.
The blue, red and black curves correspond to the phase boundaries for γ = 0.25ω0, 0.35ω0 and 0.35ω0, respectively.
The vacuum and particle temperatures T0 and T1 are normalized to Θ0 = h̄ω0/kB.

Figure S3 shows the stability of a nanodisk at rest under linearly polarized illumination with a light
frequency ω = ω0 falling into the RDH regime according to Fig. 2F. Compared with nanocrosses and
nanorods, a higher particle temperature is required to break the rotational stability of the nanodisk.
Because the circular dichroism of the rotating nanodisk derives from internal dissipation according to
Adisk in Eq. (2), a disk with larger dissipation (i.e., larger γ) shows stronger circular dichroism, which
further leads to a decrease in the threshold particle temperature, as illustrated by the phase boundaries
shown for different γ’s. This is in contrast to nanorods and nanocrosses, in which a small γ results in
stronger circular dichroism and helps to reduce the threshold particle temperature.
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FIG. S4: Rotation frequency of a nanocross in equilibrium under laser pumping. The relative magni-
tudes of parameters ω0, γ, and τ are the same as in Fig. 2 and 3; namely, γ = 0.2ω and τ−1 = 0.02ω0, where
ω = 1.1ω0 is the laser frequency. We assume the vacuum at room temperature T0 = 300 K and T0 = 0.1Θ0, so the
particle resonance is located at h̄ω0 = 0.026 eV, corresponding to a photon wavelength of 4.8µm. According to
the phase diagram in Fig. 3A, for the chosen laser frequency ω = 1.1ω0, when the particle temperature T1 is above
0.13Θ0 ≈ 390 K, it starts rotating and eventually reaches an equilibrium rotation frequency Ω (black dots in Fig.
3C). The equilibrium frequency Ωeq is determined by the laser intensity I(T1) or the equilibrium temperature T1

at Ω = 0. In the absence of other frictional mechanisms such as gas collisions, the rotation of the particle can be
accelerated up to the THz regime.
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FIG. S5: Cooling and heating rotation of a silver nanorod. (A)Illustration of the studied silver nanorod,
with a geometric cross section C0 = 578.5 nm2. (B) Absorption cross section of the silver nanorod at rest for
different light frequencies, which shows a pronounced plasmon resonance peak. A linear polarization parallel
with the long axis of the nanorod is considered here. (C) Optical torque exerted by a linearly polarized light
on the nanorod rotating with a frequency Ω0 = 2π × 1 THz. The resulting acceleration of the particle rotation
Ω̇ = Mdr/Jrod is also scaled, where the moment of inertia of the nanorod is Jrod = 3.89×10−39 kg ·m2, calculated
based on the density of silver, 10.49 g/cm3. (D) Time evolution of the particle rotation for a laser with two
frequencies, ω = ωc and ω = ωh, working in the RDC and RDH regimes, respectively, where ωc and ωh are
indicated in (C), and the initial rotation frequency is assumed to be Ω = Ω0. In both (C) and (D), a moderate
light intensity I = 10 mW/µm2 is assumed. For such light intensity, the rotation of the nanorod accelerates or
decelerates by several orders of magnitude within a subsecond timescale. The minimum and maximum rotation
frequencies achievable in the cooling and heating effects are bounded by the RDC limit and the steady condition
shown in fig. S4, respectively.
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