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GLOSSARY

VPC — valley photonic crystal
TMM — transfer matrix model

I. NUMERICAL CALCULATION OF EDGE STATE DISPERSION AND EIGENMODES

The edge state eigenfrequencies f(k) as well as eigenmodes Ek(r) that are localized at the domain wall between
two mirror-symmetric valley photonic crystals (VPCs) were calculated for an in-plane wavevector k with the freely
available MIT Photonic Bands solver [1]. It determines the Bloch eigenmodes of the full three dimensional photonic
crystal structure using a plane-wave basis set and periodic boundary conditions. We used a simulation supercell of
dimensions a× 28a× 10h, where h is the thickness of the free-standing silicon slab and a is the lattice constant of the
VPC patterned therein. This supercell was sufficiently large to avoid interactions between neighbouring supercells
in y and z. The calculations used an in-plane grid size of a/32 and out-of-plane grid size of a/16, which ensured
convergence of the eigenvalues to better than 0.1%. To account for surface passivation effects of the experimentally
employed silicon membrane of height h = 220 nm and to adapt the resulting eigenfrequencies to the experimentally
determined dispersion relation, the effective refractive index of silicon was modelled to be 3.36.
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Figure S1. Band structure calculations. a, Geometry of the photonic crystal membrane used in the eigenmode calculations,
with grey and white representing silicon and air, respectively. For better visibility, two unit cells are shown along the domain
wall. b Numerically calculated band structure of the edge state eigenmode (orange) as well as the upper and lower bulk bands
(red and blue, respectively) of the photonic crystal. The light cone is displayed as dark grey shading, while the bulk band region
has been shaded light grey. In addition to the topologically non-trivial edge mode, there exists a second mode confined to the
edge at large kx, shown in ochre. c Comparison of the fundamental Brillouin zone of the experimentally retrieved dispersion
relation and the numerically calculated edge state eigenfrequencies (black dashed line) as well as bulk bands (grey dashed line
and shaded region), highlighting the excellent overlap between experiment and simulation. The light line is given by the solid
grey line.
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The lattice constant was chosen as a = 503 nm, and the base length of the triangular holes in each unit cell,
determined from SEM images, was d1 = 0.70a and d2 = 0.45a for the large and small triangle, respectively. Both
triangular holes were modeled with a corner rounding of r = 42 nm to account for fabrication-related deviations from
their ideal structure. We construct a bridge-type domain wall between two mirror-symmetric sub-lattices VPC1 and
VPC2 in the supercell, with the base of the large triangles facing each other. The periodic nature of the simulation
subsequently dictates the additional occurrence of the complementary domain wall (base of small triangles facing
each other) at the boundary of the supercell (see Fig. S1a). The calculated edge state eigenmodes located at this
complementary domain wall were filtered out, and the resulting band structure for the topologically protected edge
state as well as the bulk VPC eigenfrequencies determining the system’s band gap are shown in Figure S1b. The
latter were calculated for a single unit cell of one of the sub-lattices and subsequently mapped to the chosen interface
orientation by projecting the resulting bulk frequencies onto the kx direction. In addition to the edge state traversing
the band gap with a linear dispersion around the K-point, a second mode confined to the central domain wall is found
branching off the top bulk band for high in-plane k-values (shown in ochre in Fig. S1b). Comparing the calculated
band structure to the fundamental Brillouin zone of the experimentally retrieved dispersion relation, an excellent
agreement in both position of the band edge as well as edge state dispersion is found, with the mode dispersion of the
edge state extending into the light cone for kx < 0.31 · 2π/a (see Fig. S1c).

To verify the experimentally determined near-field structure of the edge mode (shown for a wavelength of λ =
1600 nm in Fig. S2a), the field distribution of the eigenstate was extracted from the simulation 20 nm above the
silicon membrane. The in-plane field amplitude distribution is displayed for an illustrative k-point of kx = 0.32 · 2π/a
in Fig. S2b. The corresponding eigenfrequency of the edge state at this k-point is f = 187.0 THz. It can be seen that
the mode symmetries of this numerically determined eigenmode match for the mode’s in-plane electric field amplitude
and the experimentally measured mode distribution.
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Figure S2. Comparison between a, the experimentally retrieved near-field amplitude map for λ = 1600 nm (f = 187.4 THz)
and b, the numerically calculated in-plane electric field distribution of the edge mode at kx/(2π/a) = 0.32 (f = 187.0 THz).

II. QUANTIFICATION OF CORNER REFLECTIVITY AND LOSS

Our main goal in this section is to quantify the back-scattering of topologically protected edge states – bound to a
VPC domain wall – from an Ω-shaped defect of four 120◦ corners (cf. Fig. 3b of the main manuscript) by comparing
the measured forward and backward propagating energies before and after the defect to an analytical model. We
introduce a transfer matrix model (TMM) approach and compare its results to the back-scattering observed in a
similarly shaped W1-type photonic crystal waveguide, which is based on one missing row of holes in a hexagonal
lattice. We extract the reflection coefficient Rsingle

c of an individual corner in the waveguide as a quantitative measure
of back-scattering, and quantify the associated loss Asingle

c which is dominated by out-of-plane scattering.
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Figure S3. Sketch of the experimentally investigated VPC with an Ω-shaped domain wall defect, as well as its representation
within a transfer matrix model. The effect of the Ω-shaped defect onto the field amplitudes is approximated by complex reflection
and transmission coefficients rc and tc, and the distance between the detection points is associated with a propagation phase δ.

A. Transfer matrix model

We start from Bloch’s theorem for a photonic crystal domain wall (or waveguide) with periodicity a along the
x-direction, resulting in the Bloch state

Ekx(r) = eıkxx · ukx(r) , with ukx(r + aêx) = ukx(r), (S1)

where kx is the Bloch wavevector along the mode’s propagation direction, and ukx(r) represents its full spatial field
distribution.

To compare the mode at different positions along the domain wall, we separate a complex scaling amplitude ak
from the mode’s periodic distribution, resulting in

Ekx(r) = ake
ıkxx · u′kx(r), (S2)

with u′kx a fixed function, independent of the unit cell or time at which the mode field is evaluated. The full spatial
information in each unit cell is thus effectively reduced to the scalar complex amplitude value ak.

The complex amplitude together with the reciprocal nature of the employed photonic crystals enable us to describe
back-scattering sites along the domain wall as interfaces with complex amplitude reflection and transmission coef-
ficients rc and tc, respectively. Furthermore, we introduce a loss channel Ac, incorporating out-of-plane scattering
losses, via

Rc + Tc = 1−Ac , (S3)

where Rc = |rc|2, Tc = |tc|2.
Without loss of generality, we consider the forward and backward propagating field amplitudes f1, f2 and b1, b2 to

denote the value of ak at specific positions on the sample as shown in Fig. S3, and get

b1 = rcf1 e
i2δ + tcb2 e

iδ (S4)

f2 = tcf1 e
iδ + rcb2 , (S5)

with the propagation phase δ = k · d given by the wavenumber k and distance d between the two detection points 1
and 2, which are placed immediately after an interface. Equations S4, S5 can be cast into the compact form(

f1
b1

)
= Mc

(
f2
b2

)
, (S6)

where

Mc =
1

tc

(
e−iδ 0

0 eiδ

)(
1 −rc
rc t2c − r2c

)
(S7)

is the transfer matrix describing light propagation from position 1 to 2 in the multilayer stack.The propagation through
a series of N layers can then be written as a single matrix M̃ , given by

M̃ =

N∏
i=1

Mi . (S8)
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Here, Mi are the transfer matrices of the individual layers (with corresponding distances and reflection/transmission
coefficients).

It is straightforward to relate any field amplitudes in a TMM to each other by appropriate transfer matrix multi-
plications. The experimentally determined energy densities on which we base our analysis are given by Fn = |fn|2,
Bn = |bn|2 (n = 1, 2) and are repeated from Fig. 4b-e of the main manuscript in Fig. S4 over an excitation frequency
window of ca. 4 THz. If we want to achieve a full overlap of these energy densities with predictions from the TMM
model, we not only need to take into account the four 120◦ corners of the tailored topologically protected defect, but
additionally all scattering sites after the defect. These include scattering at the transition from the VPC domain wall
to an intermediate PhC waveguide, the subsequent transition to a silicon strip waveguide, and scattering at potential
fabrication defects. Since these additional interfaces are not protected by the mirror symmetry of the VPC lattice, it
is expected that their reflection coefficients dominate the entire system.
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Figure S4. Experimentally retrieved energy of the forward (F2) and backward (B1, B2) propagating modes before and after the
Ω-shaped defect, normalized to F1. The backward mode intensities are shifted by 1 for better visibility. a, VPC edge state. b,
W1 waveguide.

B. Effective corner reflectivity

Our aim is to arrive at a relation between the measured energy densities before and after the defect, and the intensity
reflection coefficient Rc and loss Ac. If we, in fair approximation, assume our devices to be mirror symmetric (as by
design), reciprocity dictates equal coefficients for forward and backward propagation through the full Ω-shaped defect.
We can thus combine the four individual corners into a single effective interface with complex amplitude reflection
and transmission coefficients rc and tc (see Fig. S3). We divide (S4), (S5) by f1 and take the absolute square to obtain

B1

F1
= Rc +

B2

F1
Tc +

(√
Rce

−iθrc
√
Tce

iθtc

√
B2

F1
eiθb2 e−iθf1 + c.c.

)

= Rc +
B2

F1
Tc + 2

√
Rc TcB2 F1 cos(θc − θ) (S9)

F2

F1
= Tc +

B2

F1
Rc + 2

√
Rc Tc

B2

F1
cos(θc + θ) . (S10)

Here, c.c. denotes the complex conjugate and we express complex quantities in their polar form (z =
√
Zeiθz ), with

the phase differences θc = θrc − θtc and θ = θb2 − θf1 . Using (S3), we cast (S9), (S10) into the form

B1 −B2

F1 −B2
= Rc −

AcB2 − 2
√
Rc(1−Rc)F1B2

F1 −B2
cos(θc − θ) (S11)

F1 − F2

F1 −B2
= Rc +

AcF1 − 2
√
Rc(1−Rc)F1B2

F1 −B2
cos(θc + θ) (S12)
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Equations (S11), (S12) represent the central result of the TMM analysis, and the corresponding data is presented in
Fig. S5.

Due to the expected strong influence of scattering events from outside the topological photonic crystal, as seen by
the strong correlation between the signals B1/F1 and B2/F1 in Fig. S4a, we utilize an effective averaging approach.
Such an approach is based on the linear slope of the VPC edge state dispersion. We can then disentangle the reflection
at the tailored Ω-shaped defect from any subsequent back-scattering events by averaging over a frequency range where
the interference effects between the latter lead to cosine-like intensity modulations with multiple full periods. Both
θc and θ in (S11), (S12) are oscillatory functions of frequency since they incorporate the propagation phases (cf. Eqs.
S4, S5). Therefore, by applying a frequency average over the experimental range of ca. 4 THz (denoted by 〈·〉) to
(S11), (S12), we average out the cosine modulation and solve for the mean effective defect reflectivity and loss

〈Rc〉 =
(B1 −B2 )F 1 − (F1 − F2 )B2

F1 +B2

(S13)

〈Ac〉 =
(F1 − F2 )− (B1 −B2 )

F1 −B2

, (S14)

where we defined the operator

· ≡
〈 ·
F1 −B2

〉
, (S15)

and assume no correlation in the spectral behavior of Ac and F1, B2. The resulting averages are displayed as straight
lines in Fig. S5, with their standard deviation indicated by the shaded regions.
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Figure S5. Evaluation of (S11), (S12) for the data shown in Fig. S4, where 〈Rc〉 and 〈Rc〉+ 〈Ac〉 according to (S13), (S14) are
indicated as red and blue dashed lines, respectively. The shaded region around the lines corresponds to the standard deviation
of the extracted mean values. a, VPC edge state. b, W1 waveguide.

C. Single corner reflectivity

From the mean effective interface values 〈Rc〉 and 〈Ac〉 via (S13), (S14), we infer an estimate for the coefficients
of the individual corners, i.e., when representing each of the four waveguide bends by a single interface in the TMM.
The distances between the interfaces are set to the design parameters, as indicated in Fig. S3. We model a waveguide
with four identical corners, then search for an

〈
Rsingle
c

〉
such that the mean effective 〈Rc〉 given by (S13) reproduces

the value extracted from the experiment. The single corner absorption is subsequently given by〈
Asingle
c

〉
= 1−

〈
Rsingle
c

〉
− 4
√

1− 〈Rc〉 − 〈Ac〉 . (S16)

The mean effective parameters extracted from our measurements of the VPC domain wall and W1 waveguide are
displayed in Fig. S5 and listed together with the single corner parameters in Tab. I. For the VPC edge state defect, we
obtain

〈
Rsingle
c

〉
≈ 0.1% and

〈
Asingle
c

〉
≈ 2%. While the value of

〈
Asingle
c

〉
might seem large for a topological photonic
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VPC edge state W1 waveguide
〈Rc〉 0.0026± 0.0010 0.191± 0.010
〈Ac〉 0.0804± 0.0014 0.304± 0.017〈
Rsingle

c

〉
0.0007 0.052〈

Asingle
c

〉
0.0208 0.105

Table I. Comparison of extracted effective mean corner reflectivity and loss for the Ω-shaped defect within the studied photonic
crystal waveguides, as well as the estimates for single corners.

insulator, topological protection is only given for in-plane propagation, with out-of-plane confinement in the silicon
slab solely provided by total internal reflection. If we apply the described model to the experimentally measured mode
amplitudes of a topologically trivial W1 photonic crystal waveguide, we obtain a corner reflectivity that is two orders
of magnitude higher with respect to the topologically protected system (

〈
Rsingle
c

〉
≈ 5%), while we also see roughly

a four-fold increase in out-of-plane scattering (
〈
Asingle
c

〉
≈ 11%). Such an increase in losses matches well with the

expected scaling behaviour with the modes’ group velocity of v−2g [2], with vg ≈ c/5.8 for the VPC edge state and
vg ≈ c/10.1 for the W1 waveguide mode.

In consequence, the extracted reduction of backreflection between the two waveguide systems highlights the inherent
advantage of topological photonic systems even in experimentally achievable conditions.

III. DISPERSION RELATION OF W1 PHOTONIC CRYSTAL WAVEGUIDE

To compare the robustness against reflection from a corner defect between the VPC edge state and a W1-type
photonic crystal waveguide, both modes need to be considered at comparable group velocities vg, since loss scales
with v−2g [2]. Thus, we experimentally determine the dispersion relation of the W1-type photonic crystal waveguide
(analogous to the VPC edge state dispersion from the main manuscript, shown in Fig. 2b), and show the bands
of forward and backward propagating Bloch modes spanning several Brillouin zones (BZs) in Fig. S6. One key
observation here is that the forward propagating mode in the fundamental BZ is located at negative kx, in accordance
with the mode’s expected behaviour [2]. In addition to the predicted band in forward and backward direction, bands
with half and a third of the dispersion slope of the fundamental mode appear. These were already observed in a
GaAs-based photonic crystal and attributed to a nonlinear interaction with the scanning near-field probe [3].

−4 −3 −2 −1 0 1 2 3 4
kx(2π/a)

196

197

198

199

200

201

202

F
re
qu
en
cy

(T
H
z)

|Fx(E)|2 of W1 PhC waveguide

−6

−5

−4

−3

−2

−1

0

n
or
m
.
lo
g 1

0
(|F

x
(E

)|2
)

Figure S6. Dispersion relation of the fundamental mode of a W1-type photonic crystal waveguide, retrieved via Fourier
transforms of near-field maps of the mode while scanning the excitation wavelength. The lattice constant of the investigated
photonic crystal is a = 420 nm, with a hole of radius r = 120 nm constituting the unit cell of the hexagonal lattice.

IV. INFLUENCE OF AMOUNT OF CORNERS ON BACKSCATTERING

In order to validate the experimental retrieval of the best estimate for a corner reflectivity from the introduced
transfer matrix model, we calculated the back-reflected energy densities for different numbers of corners using finite
difference time domain simulations (Lumerical FDTD). We construct a VPC interface and W1 photonic crystal
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waveguide with the same dimensions and a similar in-coupling scheme as used in the experiment. The lattice constant
a and sizes of the triangular holes in the unit cell of the VPC were thus chosen as a = 500 nm, d1 = 0.70a and
d2 = 0.45a, while the W1 waveguide was constructed with a lattice constant of a = 420 nm and hole radius of
r = 120 nm. To reduce the computational cost for the simulations, 2D calculations were performed with effective
refractive indices adapted to approximately match the experimentally retrieved band gaps around 190− 200 THz. In
this configuration, out-of-plane scattering is absent in the simulations in contrast to the experiment. We utilize a
broadband source in the feed waveguide to launch a pulse with a spectral range of 1450 nm− 1650 nm and temporal
width of ∆t ≈ 40 fs. The simulation domain was encapsulated by perfectly matched layers (PMLs) with sufficient
thickness to minimize unwanted reflections at the domain boundaries, and the simulation was performed for 10 ps to
allow for the pulse energy to adequately decay in the PMLs.

The in-plane electric field components over an area of 20 × 20 unit cells along the interface/waveguide before the
corner(s) were subsequently extracted (see Fig. S7a-c for the different defect configurations) and used to calculate
the mode energy of the forward (F1) and backward (B1) traveling edge state or waveguide mode via their dispersion
relation, analog to the experimental realization. The resulting energy ratio ηR1

= B1/F1 is shown for the three
different configurations in Fig.S7a-c on a logarithmic scale to compare the QVHE-emulating VPC and W1 PhC
waveguide for each configuration, as well as in Fig. S7d,e on a linear scale to follow the evolution of the two modes
with increasing amount of corners. In the case of two and four 120◦ corners, the field energies F2, B2 were additionally
extracted from a similar area after the defect.

Looking at the variation in the energy ratio, we see that the oscillation amplitude of the back-reflected mode
energy increases as the amount of interface corners is increased. In addition, the interference between the different
corners leads to a distinct Fabry-Perot-type modulation pattern for the W1 waveguide (Fig. S7e), while an increase
of contributing oscillation periods can be seen for the VPC edge (Fig. S7d). The nearly flat reflection coefficient for
a single corner in the W1 waveguide of 〈ηRc

〉 = 0.288 highlights the dominating influence of the W1 corner over other
sources of backscattering, while the modulation seen in the VPC edge data for a single corner hints at a comparable
backscattering strength from the corner and the PMLs terminating the simulation domain.

Evaluating the shown energy ratios via the transfer matrix model of section II, we get an effective full reflectivity
of 〈Rc〉 = [0.2, 1.4, 3.9] · 10−5 for a system containing 1, 2 and 4 corners along the VPC interface, respectively. The
W1 waveguide system exhibits 〈Rc〉 = [0.288, 0.443, 0.571] for the same configurations. The relative low reflectivity
for the VPC suggests that in addition to backscattering caused by the introduced defects, the backward propagating
mode energy is affected by numerical as well as meshing artifacts in the simulations. These are negligible for the W1
simulations, which show a clear trend of increasing system reflectivity with number of corners. Using the reflectivity
〈Rc〉 for the W1 waveguide structures with 2 and 4 corners, we can estimate the single-corner reflectivity with the
approach of section IIC. This results in 〈Rsingle

c 〉 = [0.285, 0.284] for the two- and four-corner system. This is in good
agreement with the reflectivity 〈Rc〉 = 0.288 that was calculated directly for a single-corner system, corroborating the
approach of section IIC to estimate single-corner from full-defect reflectivity as we perform in the main text.

The extracted four orders of magnitude difference in reflectivity between the VPC edge state and the W1 waveguide
mode highlights the robustness of the former against the designed corner defects. While these 2D simulations achieve
an additional two orders of magnitude decrease in backscattering as compared to the experiment, we want to emphasize
here that no disorder in the position and size of the triangles constituting the VPC unit cells was taken into account
in the simulations. Typical state-of-the-art manufacturing techniques allow for disorder as small as σ ≈ 1 nm [4],
which is an order of magnitude larger than the grid size chosen in the shown numerical calculations. The discrepancy
between experimentally determined and numerically extracted corner reflectivity can thus be understood as an indirect
measure of the C3 symmetry-breaking disorder in the experimental system.
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Figure S7. Numerically calculated energy ratio ηR1 = B1
F1

of the backward (B1) and forward (F1) propagating mode for different
configurations of the guiding channel. A schematic of the simulation setup is shown above the corresponding ratio of a VPC
edge state and W1 waveguide mode for a, a single 120◦ corner, b, two corners (Z-shaped defect) and c, four corners (Ω-shaped
defect), where the mode amplitudes f1 and b1 are extracted from an area of 20 × 20 unit cells. To visualize the four orders
of magnitude difference, the retrieved energy ratio is plotted in logarithmic scale. d, Comparison between the three different
scenarios in (a-c) for the VPC edge state, and e, the W1 PhC waveguide mode.


