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Transparent Methods
Quality-oriented data selection
Quality-oriented data selection identifies the quality of datasets by calculating the deviations in the multi-lab experimental mea-
surements of the compounds. Using the quality information, the highest quality dataset is reserved as the test set and the poor
quality datasets are removed from the training set. To assess the quality of each dataset, the following steps have been applied:

• Compounds that have multi-lab measurement data have been identified.

• The average of the measured solubility values of compounds have been calculated.

• The deviations of measurement data from the average values have been calculated.

• The SDs of the constituting datasets have been calculated.

The SDs for each dataset (from A to I) have been calculated using Eq. 1:
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where n is the total number of compounds that have multi-lab measurement data, xi is the experimentally measured solubility
value of compound i, and x̄ is the average of multi-lab solubility values of the compound.

The SDs of the combinatorial datasets (i.e. ”non-AF” and ”All”) have been calculated using Eq. 2:
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where N is the total number of compounds in the dataset, Z is the total number of constituent datasets, SDj is the SD of
dataset j, and Tj is the total number of compounds that have been included from dataset j.

Data pre-processing
To prepare the datasets for training, we removed the compounds from datasets when they met any of the following criteria:

• The compound exists in the test set (dataset E).

• The compound does not contain carbon atom.

• The compound contains adjoined mixtures.

• The compound contains charged atoms.

The remaining numbers of compounds found in each training sub-dataset, obtained after the completion of data pre-processing,
have been shown in Table 1 (Filtered Size).

Descriptor selection
To generate the molecular descriptors, we used the Mordred Python package [1]. Currently, there are more than 1800 2D and
3D descriptors in the Mordred catalog. To determine the most relevant descriptors, we applied the following feature selection
methods:

• Least absolute shrinkage and selection operator (LASSO): A regression analysis method that enhances the prediction
accuracy and interpretability of the statistical model. To learn the best descriptors (i.e. variables) the LASSO regularization
eliminates the irrelevant descriptors by forcing their coefficients to zero.

• Pearson correlation coefficient (PCC): Selects the descriptors that have PCC with LogS higher than a defined threshold
parameter.

For both methods, we tested different parameter sets that change the strictness of selections. The results of these different
configurations are provided in Table S2-S11.

Out of the generated 123 descriptors using Mordred, 58 have been selected by LASSO regularization. The correlation matrix
of the selected chemical descriptors is shown in Figure S2. The complete list of the selected descriptors, including their names
and descriptions, are shown in Table S1.



Machine learning algorithms
We employed the following ML algorithms in combination with the scikit-learn and xgboost Python packages.

• Artificial neural network (ANN)

• Random forest (RF)

• Extreme gradient boosting (XGB)

ANN is a network consisting of several layers that are connected to each other through the neurons it contains. ANN learns
non-linear functions by modifying the coefficients between neurons via a back-propagation algorithm. In the current work, the
ANN configuration employs single hidden layer with 500 neurons and a tanh activation function. RF is an ensemble of decision
trees that use bootstrap aggregating of the instances and a random sampling of the features. Our RF configuration consists of 1000
trees with the maximum depth. XGB is a regularized gradient boosting algorithm that creates a strong learner from an ensemble of
many weak trees that are trained sequentially. Our XGB configuration consists of 1000 trees with a maximum depth of six. Other
parameters of the models are used with their default values. Lastly, our consensus model is based on a combination of the above
three ML models and an arithmetic averaging of the predictions by these models.

Configuration of the AqSolPred
The best performing AqSolPred model has been achieved by using the following configuration:

• Training set: non-AF (4399 data instances)

• Features: 58 2D descriptors as selected by LASSO with α = 0.01

• ML Algorithm: A consensus of ANN, RF, and XGB models

Chemical space visualization
We used tailored similarity for the visualization of the chemical space based on 58 LASSO-selected descriptors. We applied t-SNE
from scikit-learn Python package to reduce the data into two-dimensions with the following two parameters, while the remaining
parameters are used with their default values:

• Perplexity: 50

• Random state: 1



Supplemental Figures

Figure S1. The normalized distribution of solubility for the train dataset (non-AF) and the test dataset (E), Related to Figure 3.

Figure S2. The correlation matrix of a total of 58 LASSO-selected chemical descriptors, Related to Table 3.



Supplemental Table

Table S1. The names and descriptions of a total of 58 LASSO-selected descriptors, Related to Table 3.

ID Name Description ID Name Description
1 nHeavyAtom number of heavy atoms 30 NssssC number of ssssC
2 nHBAcc number of hydrogen bond acceptor 31 SsCH3 sum of sCH3
3 nHBDon number of hydrogen bond donor 32 SdCH2 sum of dCH2
4 nRot rotatable bonds count 33 SssCH2 sum of ssCH2
5 nBonds number of all bonds in non-kekulized structure 34 StCH sum of tCH
6 nBondsO num of bonds connecting to heavy atom in non-kekulized structure 35 SdsCH sum of dsCH
7 nBondsS number of single bonds in non-kekulized structure 36 SaaCH sum of aaCH
8 nBondsD number of double bonds in non-kekulized structure 37 SsssCH sum of sssCH
9 TopoPSA(NO) topological polar surface area (use only nitrogen and oxygen) 38 StsC sum of tsC
10 TopoPSA topological polar surface area 39 SdssC sum of dssC
11 LabuteASA Labute’s Approximate Surface Area 40 SaasC sum of aasC
12 bpol bond polarizability 41 SaaaC sum of aaaC
13 nAcid acidic group count 42 SssssC sum of ssssC
14 nBase basic group count 43 SsNH2 sum of sNH2
15 ECIndex eccentric connectivity index 44 SssNH sum of dNH
16 GGI1 1-ordered raw topological charge 45 SaaN sum of aaN
17 SLogP Wildman-Crippen LogP 46 SsssN sum of sssN
18 SMR Wildman-Crippen MR 47 SaasN sum of aasN
19 BertzCT Bertz CT 48 SsOH sum of sOH
20 BalabanJ Balaban’s J index 49 SdO sum of dO
21 WPol Wiener polarity index 50 SssO sum of ssO
22 Zagreb1 Zagreb index (version 1) 51 SaaO sum of aaO
23 ABCGG atom-bond connectivity index 52 SsF sum of sF
24 nHRing hetero ring count 53 SdsssP sum of dsssP
25 naHRing aromatic hetero ring count 54 SdS sum of dS
26 NsCH3 number of sCH3 55 SddssS sum of ddssS
27 NssCH2 number of ssCH2 56 SsCl sum of sCl
28 NaaCH number of aaCH 57 SsI sum of sI
29 NaaaC number of aaaC 58 C C atoms count
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