
 

Supplementary Figure 1. Comparison of different metrics for GM12878 single cells amplified by 
different WGA methods. (A) Summary of experimental setup for comparison of different WGA 
methods. A total of four tube based amplification methods and two microfluidics based amplification 
methods were used. Unamplified DNA of a bulk sample was used as the control for this experiment. 
GE, Healthcare illustra GenomiPhi V2 DNA Amplification Kit (2 cells); MALBAC, MALBAC protocol 
based on Yikon Genomics MALBAC Single Cell WGA kit (3 cells); Repli_1.5h, Qiagen Repli-g single 
cell kit with 1.5 hours of amplification reaction (3 cells); Repli_8h, Qiagen Repli-g single cell kit with 8 
hours of amplification reaction (3 cells); C1-GE, Healthcare illustra GenomiPhi V2 DNA Amplification 
Kit on C1 Autoprep System (2 cells); C1-Repli, Qiagen Repli-g single cell kit on C1 Autoprep System 
(3 cells); pink tubes represent manual tube-based protocols, grey arrays represent microfluidics-
based protocols. (B) Plot of genome covered against sequencing depth. Color code of data points 
matches sample description in C. (C) Violin plot showing the error rate per read. The y-axis shows the 
error rate per read, the x-axis represents the number of reads. MDA methods tend to have lower 
mean error rates (indicated by the blue lines) compared to MALBAC. 

  



 

Supplementary Figure 2. Comparison of different metrics for GM12878 single cells amplified by two 
WGA methods (C1-GE and C1-REPLI) followed by exome sequencing. (A) Scatterplot showing p as 
the probability of an allele being detected versus Allelic Drop Out rate. (B) Lorenz curves of the ten 
samples colored based on the WGA method. (C) Box plot of Gini coefficients of the Lorenz curves (D) 
Bos plot of Evenness score 

 



 

Supplementary Figure 3. Quality control statistics of the lung cancer cells which passed QC (A) 
Scatterplot showing p as the probability of an allele being detected versus Allelic Drop Out rate.  (B) 
Lorenz curves of the cells (C) Box plot of Gini coefficients of the Lorenz curves (D) Box plot of 
Evenness score. In each plot the bulk sample performance is included for comparison 



 

Supplementary Figure 4. Flow chart shows the series of filters applied for the removal of low quality 
variants. The number of variants that remain after applying each filtering criteria are indicated in the 
bottom right corner of each box. The downstream filtering of the SNVs is indicated in Fig. 2E.   
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Supplementary Figure 5. Quality control of INDELs detected in single cells. (A) Contour plot used to 
determine the threshold for filtering of low quality INDELs. Red colour indicates region enriched for 
false positive variants, while blue indicates regions enriched for true positive variants. (B) The density 
plot shows the distribution of variant allele frequency (VAF) between true positives (TP) and false 
positives (FP). (C) The flow chart shows the sequence of serial filters applied to remove germline 
mutations. Numbers of variants that remained after each step are indicated on the right.  



 

Supplementary Figure 6. Pie chart indicating the reasons why somatic point mutations detected in 
bulk were not identified in single cells. The inner circle shows the explanation of their presence or 
absence in single cells at a higher level. This information is further subcategorised in the outer circle 
and linked to the filters employed. The top plot shows the proportion of variants in T1, while the 
bottom plot shows the distribution of variants in T2. Majority of the variants in the bulk (T1 and T2) 
were either not observed or seen in too few cells (red colour). The likelihood of detecting these 
variants in the single cells can be improved by increasing the number of cells sequenced. Green 
colour indicates the proportion of variants that were detected in both, bulk and single cells. Blue 
colour indicates the proportion of variants missed in the single cell due to bioinformatics/experimental 
limitations. Purple colour indicates the false positives that were detected in the bulk, based on 
evidence in the bulk normal and normal single cells. The colours for each category are the same for 
both plots.   



 

 

Supplementary Figure 7. Boxplot comparing the VAF of variants detected in bulk. The red colour 
boxplot shows the distribution of VAF of variants in bulk that were not seen in any single cells, while 
the blue colour boxplot shows the VAF of variants in bulk that were detected in both, bulk and single 
cells. In both T1 and T2 tumours, variants that were not seen in any single cells tend to have a lower 
VAF in the bulk compared to those that were observed.   

 

 

  



 



 



 



Supplementary Figure 8. Examples of chromosomal copy number changes detected in bulk sectors and supported by single cell data are shown. The copy 
number changes observed in the bulk are shown on the left side of the figure with chromosome coordinates increasing from left to right (p arm left, q arm 
right), while the heatmap on the right shows the copy number profiles observed in single cells with chromosome coordinates increasing from top to bottom (p 
arm top, q arm bottom) and individual cells arranged from left to right corresponding to individual columns. (A) The q arm of chromosome 1 was amplified in 
both bulk sectors. This observation was also seen in cells derived from both tumour sectors but not in the normal cells. (B) Deletion of q arm in chromosome 
6 was observed in both tumour sectors and supported in the single cells from both sectors as well. (C) Sector specific copy number changes were observed 
in chromosome 7. The p arm was amplified in tumour sector 1, while the entire chromosome 7 was amplified in tumour sector 2. The observation in bulk was 
supported in the single cells. Cells derived from tumour sector 1 had an amplification of the p arm, while cells derived from tumour sector 2 showed an 
amplification of the entire chromosome.  

 



 

Supplementary Figure 9. Clustering of single cells using hierarchical clustering based on the 
Pearson correlation coefficient derived from the normalized coverage profiles.  



 

Supplementary Figure 10. Comparison of somatic variants detected by Monovar and SoVaTSiC 
filters. (A) Venn diagram shows shared point mutations between bulk tumours and variants detected 
in single cells by SoVatSiC and Monovar. The variants detected by Monovar were obtained after 
applying the filters recommended by the Monovar authors as well as our filters. (B) Comparison of 
variants in single cells detected by SoVaTSiC and Monovar with the phylogenetic tree.    

 

  



Supplementary Figure 11. Somatic variants detected using SoVaTSiC and Monovar on bladder 
cancer dataset. (A) Description of quality control steps for single cells. Gaussian Mixture Model 
(GMM) was used to cluster the single cells based on exonic coverage. The low coverage clusters 
were removed from further analysis (cells with coverage ≤ 0.5). In addition, cells were removed based 
on the allelic dropout rate (ADO) rate.  (B) Contour plot used to determine the threshold for filtering of 
low quality INDELs. Red colour indicates region enriched for false positive variants, while blue 
indicates regions enriched for true positive variants. (C) The flow chart shows the sequence of serial 
filters applied to the SoVaTSiC calls to remove germline mutations. Numbers of variants that 
remained after each step are indicated on the right. (D) Phylogenetic tree based on SoVaTSiC 
mutation calls depicts the relationship between single cells derived from tumour tissue. The root of the 
tree (denoted by N) consists of putative normal contaminant cells. In this dataset, none of the tumour 
cells were determined to be normal contaminants. The tree shows that there are three different 
tumour clones present within the tumour, with two later clones (boxed by the blue and red rectangle) 
deriving from an earlier clone. The size of each node is proportional to the number of cells it 
represents, with the colour representing their source. (E) Venn diagram shows the shared somatic 
point mutations detected in the bulk tumour, tumour single cells detected by SoVaTSiC and Monovar.     



 

Supplementary materials 

Tube-bases whole genome amplification 

For manual, tube-based whole genome amplification, the following kits were used according to the 

manufacturer’s recommendations: illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare Life 

Sciences), MALBAC Single Cell WGA kit (Yikon Genomics), Repli-g single cell kit (Qiagen). For the 

Repli-g single cell kit, 8 hours of amplification time is recommended. In parallel experiments to the 8 

hour amplification, 1.5 hour amplification time has been performed. 

Detecting somatic CNVs from bulk lung cancer exome sequencing 

Sequencing reads were counted and GC normalization was done using Excavator2’s 

EXCAVATORDataPrepare.pl script. A bin size of 50,000 bp was used to partition the off-target 

regions. Somatic CNVs from bulk sequencing were detected using Excavator2 (D'Aurizio et al. 2016) 

with default parameters. CNV regions were annotated by PennCNV (Wang et al. 2007) to identify 

genes that were affected by copy number changes.  

Detecting copy number variations from single cell lung cancer exome sequencing 

In the single cells, sequencing reads within exonic target regions were counted and GC normalization 

was performed using Excavator2 EXCAVATORDataPrepare.pl script. To identify regions of copy 

number changes, we adopted the method by Patel et al. to detect copy number variations from single 

cell RNA-seq (Patel et al. 2014). The exonic target regions were sorted based on their chromosomal 

location and a moving average of 2001 exonic target regions was used to estimate the copy number 

changes per chromosome in each cell. The following formula was used to estimate the copy number 

for each region per chromosome in each cell: 
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Where i is the estimated average copy number change at target region i and j is the exonic region 

adjacent to i.  

For each cell, a z-score is obtained per copy number region using the following formula: 



<=1"+*	,-	+*./"&	/

= 1"#$	&'()*+	,-	+*./"&	/	"0	1*22	3 − (*7/,&	1"#$	&'()*+	,1+"==	,22	+*./"&=
=7	,1+"==	,22	+*./"&=  

equation S2 

The Euclidean distance between each cell was calculated using the dist() function in R and 

hierarchical clustering using the hclust() function in R was employed to cluster the single cells based 

on the copy number profiles. Three prominent clusters were observed (Figure 3D). To further validate 

this grouping, we calculated the pearson correlation between cells using the z-score and cluster the 

cells using hierarchical clustering. Using both methods, cells that were previously clustered at the root 

of the somatic variant tree were clustered together with normal cells (Figure 3D and Supplementary 

Figure 9).  

Lastly, to validate this approach, we compared the copy number profiles observed to those detected 

in the bulk tumour sectors. The individual cells show general concordance with the sector of origin in 

both shared as well as sector specific changes (Supplementary Fig 8A-C).  

Quality control of lung single cells after exome sequencing 

Exome sequencing was carried out on 66 single cells from T1, 95 single cells from T2, and 39 single 

cells from the far normal following the C1-GE protocol. Low quality single cells were removed based on 

their allelic dropout (ADO) rate, false negative (FN) rate, and percentage of genome covered (≥ 5 reads).  

The percentage of genome covered (≥ 5 reads) was computed using GATK DepthOfCoverage using 

mapped reads which have a minimum mapping quality of 20.  

Prior to estimating the ADO and the FN rate for each cell, a set of consensus heterozygous germline 

variant site in the three bulk samples was used as the true variant set. These heterozygous sites had 

to fulfil the following criteria: (1) minimum depth of 8 (SNVs) and 5 (INDELs) in all tissues; (2) minimum 

genotype quality of 30 (SNVs) and 20 (INDELs) for all tissues; (3) each allele is covered by at least 3 

reads in all tissues; (4) variant had a minimum variant allele frequency of 0.2 in all tissues.  

The ADO rate per cell was calculated using the following formulas using only positions that were 

covered by at least 5 reads: 
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The FN rate per cells was calculated using the following formula using only positions that were covered 

by at least 5 reads: 
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The percentage of genome covered (≥ 5 reads) was used as the first quality control criteria. The cells 

exhibited a bimodal distribution of coverage (Figure 2B). As such, a Gaussian mixed model (GMM) 

was applied twice to remove single cells based on the percentage of genome covered (≥ 5 reads). The 

GMM was generated using the mixtools R package (Benaglia et al. 2009). The single cells were 

separated into three groups, namely cells with coverage less than 10%, cells with coverage between 

10% to < 42%, and cells with coverage greater or equal to 42%. Cells belonging to the first two 

categories were excluded from further analysis. Lastly, the remaining cells were removed if they hadFN 

rates greater than 0.45 or ADO rates greater than 0.35. This gave a total of 66 cells consisting of 27 far 

normal cells, 18 cells from T1and 21 cells from T2 were retained for further analysis 

Variant detection from single cells exome sequencing 

Variants from qualified tumour and normal single cells were detected via GATK haplotypeCaller version 

3.5 using the following parameter: Mapping quality (MQ) ≥ 40, Base quality (BQ) ≥ 20. Joint genotyping 

and variant recalibration were performed on all tumour and normal cells together to produce a single 

VCF file containing all potential variant sites. Variant sites which passed the variant recalibration were 

retained. After variant recalibration, tri-allelic sites, singletons, and variants within 10bp of each other 

were removed to reduce the false positive rate. For SNVs, genotypes with read depth (DP) < 5, 

genotype quality (GQ) < 30, and variant allele frequency (VAF) < 0.15 were removed. Variant genotypes 

which failed the GQ filter were re-examined by comparing the difference in Phred likelihood score (PL) 

between the homozygous reference genotype and the maximum of heterozygous genotype and 

homozygous alt genotype. If the difference is greater than 30, the genotype will be retained. For INDELS, 



genotypes with DP< 5, GQ < 40, and VAF < 0.2 were removed. The thresholds used for filtering of 

genotypes were determined by using variant calls in the three bulk samples. The variants detected in 

the bulk samples were used to predefine a truth set and a true negative sites set. The truth set was 

created using consensus variants in bulk normal and tumour sectors which satisfied the criteria (DP ≥ 

8 and GQ ≥ 30 for SNVs, and DP ≥ 5 and GQ ≥ 20 for INDELs). The true negative sites sets were 

generated using sites whereby no variant was seen in all three bulk samples and were covered with 

sufficient coverage (DP ≥ 8 for SNVs and DP ≥ 5 for INDELs) in at least one bulk. 

Using the two variant sets defined by the bulk samples, the variants identified in the single cells were 

used to form the true positives and false positives set. The true positives set was defined as variants 

detected in each single cell that were also seen in the truth set. On the other hand, the false positives 

set was defined as variants detected in the single cells that were found at the true negative sites.  

Lastly, by comparing the density of three features namely, DP, GQ, and VAF between the true positives 

and the false positives set, a threshold was determined for each feature.  

Putative somatic variants were filtered based on the following criteria: (I) variants were seen in less 

than 3 cells; (II) variants were detected in germline bulk normal tissue; (III) alternative allele was 

observed in more than one percent of total reads in germline bulk normal tissue pileup data; (IV) 

variants were detected in normal single cells (we require somatic variant sites to be homozygous 

reference for all normal cells and have at least 3 normal cells covered); (V) variants were seen in 

normal single cells which failed QC. The final somatic variants were annotated using ANNOVAR.  

Phylogenetic analysis of lung cancer single cells 

OncoNEM was used to infer the phylogeny between lung cancer single cells. In order to estimate the 

false positive rate (FPR) and false negative rate (FNR) based on the data, a maximum likelihood 

approach was used to identify the best combined parameter across a range of values for both false 

positives and false negatives. For the false positives estimation, we used a range of values from 0.01 

to 0.15, while a range of values from 0.01 to 0.2 was used for the false negative estimation. Based on 

the maximum likelihood approach, a false positive rate of 0.025 and a false negative rate of 0.14 was 

estimated to give the highest scoring tree. Using the estimated FNR and FPR, the phylogenetic tree 

was estimated.   



Detecting variants from bladder cancer dataset 

Raw sequencing reads of single cells obtained from a muscle-invasive bladder cancer patient (Li et al. 

2012) were downloaded from the NCBI short reads archive (SRA051489). The bulk sequencing of the 

tumour sector and adjacent normal tissue from the same patient were also downloaded. The 

downloaded raw reads (.sra) file were converted to FASTQ format using SRA Fastq-dump tool. BWA 

MEM version 0.7.10-r789 (Li 2013) with default parameters was used to align sequencing reads to the 

Human reference genome Hg19. Picard tool version 1.129 (Picard) was used to sort and mark 

duplicated reads. GATK version 3.5 (Van der Auwera et al. 2013) with default parameters was used to 

perform indel realignment and base recalibration to obtain the final bam files.  

Germline variants (SNVs and INDELs) in the tumour sector and adjacent normal tissue were detected 

using GATK haplotypeCaller followed by hard filtering recommended by GATK best practices for both 

SNVs and INDELs. Germline SNVs were further filtered by removing variants which have DP < 8 or GQ 

< 30. For germline INDELs, we removed variants which have DP < 5 or GQ < 20. Putative somatic 

SNVs were detected by comparing bulk tumour samples with the adjacent normal tissue via MuTect 

using the default parameters (Cibulskis et al. 2013) and were annotated using ANNOVAR (Wang, Li, 

and Hakonarson 2010). 

Variants in each single cells were detected using GATK haplotypeCaller with the following parameter 

(Mapping quality (MQ) ≥ 40, Base quality (BQ) ≥ 20). Joint genotyping was performed on all the 

tumour and normal cells together to produce a single VCF file containing all potential variant sites. 

Lastly, variant recalibration was performed to remove low quality variant sites. GATK variant recalibrator 

was used to filter the output at 99.9% sensitivity level for both SNVs and INDELs. Recalibration training 

databases used include dbSNP build 138, Omni 2.5M, 1000 genome phase 1 SNPs, Hapmap version 

3.3, and Mills and 1000 genome gold standard INDELs. For SNVs, annotations used for recalibration 

training include variant quality score by read depth (QD), strand bias (FS), mapping quality rank sum 

score (MQRankSum), read position rank sum score (ReadPosRankSum), and mapping quality (MQ). 

For INDELS, the annotations used for recalibration training include variant quality score by read depth 

(QD), strand bias (FS), mapping quality rank sum score (MQRankSum), and read position rank sum 

score (ReadPosRankSum). Lastly, only variant sites which were indicated as PASS by the 

VariantRecalibrator were retained for further analysis.  



Cell QC was performed according to the pipeline described for the lung cancer dataset. For the bladder 

cancer dataset, Gaussian mixture model was performed once using the percentage of genome covered 

with at least 5 reads. As a result, seven cells with percentage of genome covered less or equal to fifty 

percent were removed. In the second step of the cell QC, seven cells were removed due to high allelic 

dropout rate (ADO ≥ 0.50). This gives a total of 52 single cells, comprising of 9 normal cells and 43 

tumour cells. Compared to the original analysis by Li et al. (Li et al. 2012) whereby 11 cells were 

removed, 14 cells were removed in this analysis.The differences in the number of cells removed could 

be due to the different parameters that were utilized for the QC steps.   

Using the 52 good quality cells, joint genotyping and variant recalibration were performed to identify 

potential variant sites, and sites that passed the variant recalibration step were retained for further 

analysis. Using the sites, threshold to remove low quality genotypes were determined. For SNVs, we 

retained genotypes that have a minimum read depth (DP) of 5, minimum genotype quality (GQ) of 30, 

and minimum variant allele frequency (VAF) of 0.15. For INDELs, genotypes that have a minimum DP 

of 5, minimum GQ of 40, and minimum VAF of 0.2 were retained. For both SNVs and INDELs, variant 

genotypes which failed the GQ filter were re-examined by comparing the difference in phred likelihood 

score (PL) between the homozygous reference genotype and the maximum of the heterozygous 

genotype and homozygous alternate genotype. If the difference is greater than 30 for SNVs and 40 for 

INDELs, the genotype will be retained.  

Lastly, to determine somatic variations from the bladder cancer dataset, the filters that were used for 

the lung cancer dataset were employed. After removing variants that were within 10 bp of each other, 

tri-allelic sites, and singletons sites, putative somatic variants were filtered based on the following 

criteria: (I) variants were seen in less than 3 cells after removing low quality genotypes; (II) variants 

were detected in germline bulk normal tissue; (III) variants were detected in normal single cells (We 

require variant site to be homozygous reference for all normal cells and at least 3 normal single cells 

were covered.);  (IV) variants were seen in normal single cells which failed QC; (V) the alternate allele 

was observed in more than one percent of the total reads in germline bulk normal pileup data. With this, 

a total of 98 somatic SNVs and 53 somatic INDELs were detected. Phylogenetic analysis was 

performed using OncoNEM (Ross and Markowetz 2016) to determine the tumour evolution trajectory.  



Lastly, to compare the performance of our pipeline with that of Monovar, the aligned bam files were 

used for variant calling using Monovar. Monovar was run with default parameters using sequencing 

reads with mapping quality (MQ) ≥ 40 and base alignment quality (BAQ) ≥ 20. Variants within 10bp of 

each other and singletons were removed to reduce the variant false positives rate. Based on the 

recommendations given by the authors, variants with read depth less than 10 were removed. For 

variants with 10 ≥ DP < 20, a minimum of 3 alternative reads were required. For variants with 20 ≥ DP 

< 100, a minimum variant allele frequency of 0.15 is required. Lastly, for variants with DP ≥ 100, a 

minimum variant allele frequency of 0.10 is needed. In addition, putative somatic variants were filtered 

based on germline bulk tissues. Lastly, to ensure that the results were comparable with those detected 

by GATK, we applied the following filters: (I) variants were seen in less than 3 cells; (III) alternate allele 

was observed in more than one percent of total reads in germline bulk normal tissue pileup data; (IV) 

variants were detected in normal single cells (require sites to be homozygous reference for all normal 

cells and have at least 3 normal cells covered); (V) variants were seen in normal single cells which 

failed QC. 

Based on the comparison, Monovar detected 117 SNVs of which 70 (60%) overlap with the bulk tumour. 

On the other hand, SoVaTSiC detected 98 SNVs of which 70 (71.4%) overlap with the bulk 

(Supplementary Figure 11E). Of the 117 SNVs detected by Monovar, 28 were unique to Monovar. A 

close inspection of the 28 variants showed that 12 of them failed variant recalibration, 11 were not called 

by GATK, 1 was called as an INDEL, 3 were seen in less than 3 cells after filtering, and 1 was seen 

within 10bp of another variant.  

Phylogenetic analysis of bladder cancer single cells 

OncoNEM was used to infer the phylogeny between bladder cancer single cells. In order to estimate 

the false positive rate (FPR) and false negative rate (FNR) based on the data, a maximum likelihood 

approach was used to identify the best combined parameter across a range of values for both false 

positives and false negatives. For the false positives estimation, we used a range of values from 0.01 

to 0.15, while a range of values from 0.01 to 0.2 was used for the false negative estimation. Based on 

the maximum likelihood approach, a false positive rate of 0.1 and a false negative rate of 0.09 was 

estimated to give the highest scoring tree and these parameters were used to estimate the phylogenetic 

tree. 



Statistical analyses 

All statistical analyses were done using Microsoft Office Excel or R. Two sample t-test was used to 

compare the performance of different kits. Two sample t-test was also applied to compare the number 

of mutations observed in cells derived from tumour sector 1 and tumour sector 2. 

All p-values reported are based on the two-tailed tests.  
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