

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The short-term effects of cold spells on hospitalizations for chronic obstructive pulmonary disease: a time-series study in Beijing, China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039745
Article Type:	Original research
Date Submitted by the Author:	24-Apr-2020
Complete List of Authors:	Liu, Yanbo; Peking Union Medical College Hospital, Internal Medicine Chen, Yuxiong; Peking Union Medical College Hospital Kong, Dehui; Peking Union Medical College Hospital Liu, Xiaole; Peking Union Medical College Hospital Fu, Jia; Peking Union Medical College Hospital Zhang, Yongqiao; Peking Union Medical College Hospital Zhao, Yakun; Peking Union Medical College Hospital Chang, Zhen'ge; Peking Union Medical College Hospital Zhao, Xiaoyi; Peking Union Medical College Hospital Xu, Kaifeng; Peking Union Medical College Hospital Jiang, Chengyu; Chinese Academy of Medical Sciences and Peking Union Medical College State Key Laboratory of Medical Molecular Biology Fan, Zhongjie; Peking Union Medical College Hospital
Keywords:	Epidemiology < TROPICAL MEDICINE, PUBLIC HEALTH, Chronic airways disease < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
5
6
7
8
9
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
25
∠_) ⊃ 4
24
25
26
27
20
28
29
30
31
27
52
33
34
35
36
27
37
38
39
40
10
41
42
43
44
45
45
46
47
48
49
50
50
51
52
53
54
54 57
55
56
57
58
50
29
60

1

The short-term effects of cold spells on hospitalizations for chronic obstructive pulmonary disease: a time-series study in Beijing, China Authors: Yanbo Liu^{1#}, Yuxiong Chen^{1#}, Dehui Kong¹, Xiaole Liu¹, Jia Fu¹, Yongqiao Zhang¹, Yakun Zhao¹, Zhen'ge Chang¹, Xiaoyi Zhao², Kaifeng Xu¹, Chengyu Jiang³,

5 Zhongjie Fan^{1*}

6 Affiliation and Address:

⁷ ¹Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical

8 College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing

- 9 Dongcheng District, Beijing 100730, China.
- 10 ²Department of Physiotherapy, Peking Union Medical College Hospital, Peking Union
- 11 Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing
- 12 Dongcheng District, Beijing 100730, China.
- 13 ³The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical
- 14 Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking
- 15 Union Medical College, Beijing 100005, China.
- 16 *#*These authors contributed equally to this work.
 - 17 *Corresponding author:

Zhongjie Fan, Department of Medicine, Peking Union Medical College Hospital, Peking
Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan
Wangfujing Dongcheng District, Beijing 100730, China (0086-13901199579,
<u>Fanzhongjie@pumch.cn</u>)

- 22 Keywords: cold spells, chronic obstructive pulmonary disease, hospitalizations, intensity
- 23 and duration

BMJ Open

3		
4	24	ABSTRACT
5 6 7	25	Objectives: Our work aimed at exploring the relationship between cold spells and chronic
8 9	26	obstructive pulmonary diseases (COPD) hospitalizations in Beijing, China, and assessing
10 11 12	27	the moderating effects of the intensities and the durations of cold spells, as well as
13 14	28	identifying the vulnerable.
15 16	29	Design: Time-series study.
17 18 19	30	Setting: We obtained time-series data of COPD hospitalizations, meteorological
20 21	31	variables and air quality index in Beijing, China during 2012–2016.
22 23	32	Participants: All COPD hospitalizations among permanent residents in Beijing, China
24 25 26	33	in cold seasons (November to March) during 2012-2016 were included. (n=84,571).
27 28	34	Primary and secondary outcome measures: A quasi-Poisson regression with a
29 30	35	distributed lag model was fitted to investigate the short-term effects of cold spells on
32 33	36	COPD hospitalizations by comparing the counts of COPD admissions during cold
34 35	37	spell days with those during non-cold spell days.
36 37 38	38	Results: Cold spells under different definitions were associated with increased risks of
39 40	39	COPD hospitalizations, with the maximum cumulative relative risk (CRR) over three
41 42	40	weeks (lag0-21). The cumulative effects at lag0-21 increased with the intensities and the
43 44 45	41	durations of cold spells. Under the optimal definition, the most significant single-day
46 47	42	relative risk (RR) was found on the days of cold spells (lag0) with RR=1.042 (95%CI:
48 49	43	1.013, 1.072), and the CRR at lag0-21 was 1.394 (95%CI: 1.193, 1.630). The elderly
50 51 52	44	(aged≥65) were more vulnerable to the effects of cold spells on COPD hospitalizations.
53 54	45	Conclusion: Cold spells are associated with increased COPD hospitalizations in Beijing,
55 56	46	with the cumulative effects increased with their intensities and durations. The elderly are
57 58 59	47	at particular risk of COPD hospitalizations triggered by cold spells.

ells and COPD ions on COPD efinition on the talizations in egies. d information on
ells and COPD ions on COPD efinition on the talizations in egies. d information on
ells and COPD ions on COPD efinition on the talizations in regies. d information on s may lead to
ions on COPD efinition on the talizations in regies. d information on
ions on COPD efinition on the talizations in egies. d information on s may lead to
efinition on the talizations in regies. d information on s may lead to
talizations in regies. d information on s may lead to
talizations in egies. d information on s may lead to
egies. d information on s may lead to
d information on s may lead to
s may lead to
ndings.
ed that human
sity and duration
1] Although the
warming, a few
id Arctic
tremely cold
l spells on human
e reported
pacts of cold
ti 1

Page 5 of 30

BMJ Open

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
ע∠ 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
<u>4</u> 2	
עד∠ ⊿ר	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
55	
56	
57	
58	
59	
60	

73	Chronic obstructive pulmonary disease (COPD) is one of the common respiratory
74	diseases characterized by poorly reversible limitation of airflow.[7] Owing to its high
75	prevalence, morbidity, mortality and economic burden globally, COPD has been an
76	important public health concern and will remain a huge challenge for healthcare
77	practitioners in the foreseeable future.[8] Thus, it is crucial to identify the risk factors of
78	COPD, to improve strategies on prevention and intervention. Given the projected climate
79	change, extreme temperature events potentially pose threats to COPD patients. Many
80	epidemiological studies have indicated that COPD has higher rates of exacerbation and
81	hospitalization in cold seasons.[9-11] We hypothesized that cold spells, defined as
82	prolonged periods of extremely cold weather, may be more relevant to COPD
83	hospitalizations. However, few studies have been carried out on the very issue.[12]
84	As the world's' largest country by population, China shoulders the enormous burden of
85	COPD. A national cross-sectional study from 2012 to 2015 showed that the prevalence of
86	COPD among Chinese adults aged 20 years and older was 8.6% (99.9 million
87	patients).[13] On the other hand, with most areas located in mid-latitudes, China has
88	experienced several severe cold spells in recent years. The cold spells in 2008 resulted
89	in a significantly higher all-cause mortality in subtropical China and estimated losses
90	exceeding \$22.3 billion.[14, 15] Moreover, the public now has a better perception of the
91	potential risks of extreme temperatures in China, especially those with chronic
92	conditions.[16] So it is of great value to assess the association between cold spells and
93	COPD hospitalizations to build prevention and adaption strategies in China.
94	Cold spells have been defined differently due to the heterogeneity of climate and
95	people's adaptive capacities in different regions. Previous studies suggested that the
96	effects of cold spells varied by different cold spell characteristics and individual-specific
97	factors.[17, 18] We have three main objectives in this work: (1) to illuminate the short-

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
50	
51	
57	
52	
52	
54 57	
22	
50	
5/	
58	
59	
60	

1 2

98	term effects of cold spells on the risk of hospitalizations for COPD with time-series
99	methods. (2) to investigate the modification effect of cold spell intensities and durations
100	by fitting different definitions. (3) to identify potentially vulnerable populations through
101	stratified analyses. The results could help better understand the relationship between
102	extremely cold events and COPD hospitalizations, and provide scientific evidence in
103	policymaking for the prevention and the intervention of COPD.
104	

105 MATERIALS AND METHODS

106 Data collection

107 Beijing, the capital of China, is located in the northern part of China (39°56′N,

108 116°20′E). The area covers 16410.54 km², with more than 21 million population in 2016.
109 Beijing has a typical semi-humid continental monsoon climate with four distinctive

110 seasons.

111 Daily hospitalizations for COPD from January 1, 2012, to December 31, 2016, were 112 collected from Beijing Municipal Health Commission Information Center covering all the 113 secondary and tertiary hospitals in Beijing. All case files consisted of the following 114 information: admission date, discharge date, age, gender, address, diagnosis and 115 International Classification of Diseases 10th revision (ICD-10) diagnostic code. Those 116 among Beijing residents with COPD as the primary discharge diagnosis (coded as J44) 117 were included in the study. The study was approved by the ethical committee of Peking 118 Union Medical College Hospital. All the data for the analysis were anonymous at 119 collection. 120 We collected the daily 2012-2016 meteorological data in Beijing from the China Meteorological Data Sharing Service System, including daily mean temperature (°C), 121 122 daily mean relative humidity (%) and daily mean air pressure (hPa). For the same period,

BMJ Open

123	the daily air quality index (AQI) was obtained from the China National Environmental
124	Monitoring Centre. The AQI value denotes the maximum value of individual air quality
125	indexes (IAQI) of six monitored air pollutants (particulate matter with aerodynamic
126	diameter<2.5µm, particulate matter with aerodynamic diameter<10µm, nitrogen dioxide,
127	sulfur dioxide, carbon monoxide, and ozone). Considering the impact of influenza on
128	COPD exacerbations,[19] we also accessed the data on influenza isolates from the
129	Chinese National Influenza Center. Influenza epidemics (a binary variable representing
130	days with relatively high influenza incidence) were defined when the proportion of
131	isolates positive for influenza exceeded 30% of the maximum seasonal level (Influenza
132	surveillance season was defined from the 27 th week of the previous year to the 26 th week
133	of the following year).[20]
134	
135	Cold spell definitions
136	The definition of cold spells varied across the research field due to distinct climatic
137	features and temperature variations in different regions. As to the prior studies, cold
138	spells were usually defined based on their temperature thresholds and durations.[4, 12,
139	21] Instead of specific temperatures as thresholds, percentiles of temperature were
140	shown to have a better model fit according to quasi-Poisson Akaike Information Criterion
141	(Q-AIC).[4] Moreover, some researchers suggested that daily mean temperature is
142	superior to the minimum or maximum temperature as an indicator to define cold spells
143	because it reflects the exposure throughout the day rather than a short period.[17, 22]
144	Therefore, we defined cold spell episodes as days when daily mean temperature at or
145	below the 10 th . Eth or 2 rd perceptile for at least 2, 2 or 4 conceptive down of the study
	below the 10 th , 5 th of 3 th percentile for at least 2, 3 of 4 consecutive days of the study
146	period.[18] To avoid the possible biases caused by a few extreme summer events, we

Page 8 of 30

BMJ Open

3 4	148	previous year to March of the following year) for each year.[6, 12, 17] The cold spell was
5 6 7	149	treated as a dichotomous variable, with a value of 1 during the cold spell period. The
7 8 9	150	statistical analyses were performed separately for each definition of cold spells.
10 11	151	
12 13	152	Statistical methods
14 15 16	153	In the analyses, the dependent variable was the number of daily COPD
17 18	154	hospitalizations following a quasi-Poisson distribution. Hence, we adopted a distributed
19 20 21	155	lag model (DLM) [23] with a quasi-Poisson generalized linear regression model. To
21 22 23	156	investigate the effects of cold spells on COPD hospitalizations, we compared the counts
24 25	157	of COPD admissions during cold spell days with those during non-cold spell days, after
26 27	158	adjusting for relative humidity, atmospheric pressure, AQI, seasonality, long-term trends,
28 29 30	159	statutory holiday, influenza epidemics, and day of the week (DOW). The Q-AIC was
31 32	160	employed to choose the optimal cold spell definition and degrees of freedom (df). The
33 34	161	model was established as follows:
35 36	162	$Y_t \sim quasiPoisson(\mu_t)$
37 38	163	$Log(\mu_t) = \alpha + cb(CS_t, lag, df = 3) + ns(RH_t, df = 3) + ns(AP_t, df = 3) + ns(AQI_t, df = 3)$
39 40	164	$+ns(Time_t df = 3/per year) + \gamma DOW_t + \delta Holiday_t + \nu Influenza_t$,
41 42	165	where t is the day of observation; \mathbf{Y}_{t} is the expected number of hospitalizations for COPD
43 44 45	166	on day t; α is the intercept; CS _t denotes the cold spells on day t (0=non-cold spell days,
45 46 47	167	and 1=cold spell days); cb represents the cross-basis function, including a linear function
48 49	168	and a natural cubic spline function with 3 df to assess the linear and lagged effects of the
50 51	169	cold spells separately. We fitted a lag structure up to 21 days in the models to completely
52 53 54	170	capture the flexible lagged effects of cold spells exposure. ns refers to the natural cubic
55 56	171	spline function. ns with 3 df was applied for the mean relative humidity (RH_t), mean
57 58 59 60	172	atmospheric pressure (APt) and air quality index (AQIt), respectively. ns with 3 df per year

Page 9 of 30

1 2

BMJ Open

3 4	173	was used to control the seasonality and long-term trends. DOW_t is a categorical variable
5 6 7	174	indicating the day of the week on day t, and γ is the coefficient. Holiday_t is a binary
7 8 9	175	variable (0=non-statutory holiday, and 1=statutory holiday) and δ is the coefficient.
10 11	176	Influenzat is a dichotomous variable with the value of "1" for the influenza epidemic on
12 13	177	day t, and ν is the coefficient. The statistical methods, maximum lag days and
14 15 16	178	confounding factors included in the model were commonly utilized and described in
17 18	179	previous publications.[4, 14, 17, 18, 24, 25]
19 20	180	To observe the variation trend of lagged effects, we calculated the single-day lagged
21 22 22	181	effects (from lag0 to lag21) and cumulative effects (lag0, lag0-7, lag0-14 and lag0-21) of
23 24 25	182	cold spells on COPD hospitalizations, respectively. To identify the susceptible
26 27	183	subpopulations for more targeted public health interventions, we further conducted
28 29	184	subgroup analyses to investigate the potential modification effects by gender (male and
30 31 32	185	female) and age (0-64 years old and ≥65 years old) under the optimal definition of cold
33 34	186	spells. The statistical differences of the risk estimates between the subgroups were
35 36	187	examined by the Z-test with the following equation:
37 38 30	188	$Z = (E_1 - E_2) / \sqrt{(SE_1^2 + SE_2^2)}$
40 41	189	where Z represents the Z-test value; E_1 and E_2 denote the effect estimates of two
42 43	190	categories; SE ₁ and SE ₂ are corresponding standard errors of E ₁ and E ₂ .
44 45	191	
40 47 48	192	Sensitivity analysis
49 50	193	We performed the sensitivity analyses by altering the df with 3–5 df per year of the
51 52	194	long-term trend, 3–5 df of the relative humidity, 3-5 df of the air pressure, 3-5 df of the
53 54 55	195	AQI and 3–5 df of the lag dimension in the DLM under the optimal definition of cold
55 56 57	196	spells. We used R software version 3.6.1 with the "dlnm" and "splines" packages to run
58 59	197	the analyses. All statistical tests were two-sided and values of p <0.05 were considered
60		8

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 21	
3 I 2 2	
2∠ 22	
22 24	
25	
36	
30	
38	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

198 statistically significant.

199

1 2 3

200 Patient and public involvement

201 Patients were not involved in development of the research question and outcome

202 measures, study design or conduct of this study.

203

204 RESULTS

205 Data description

206 Table 1 shows the descriptive statistics of the study population, meteorological

207 variables and AQI during the cold seasons (November to March) from 2012 to 2016 in

208 Beijing. There was a total of 84,571 COPD hospitalizations throughout the study period.

209 Among these cases, 63.6% were males and 36.4% were females. 83.9% of all patients

210 were aged 65 years and above. The average of daily mean temperature, relative

211 humidity, air pressure, and AQI were 0.9°C (range, -16.0-18.0°C), 46.6% (range, 8.0-

212 98.0%), 1025.3hPa (range, 1005.0-1044.0hPa) and 126.3 (range, 17.0-485.0),

213 respectively.

214 Table 2 shows the overview information of cold spells under different definitions. More

215 days were defined as cold spell days with higher temperature thresholds and shorter

- 216 duration. We observed the most cold spell episodes and days in four years with the
- 217 definition of periods for at least 2 days and daily mean temperature below or at the 10th
 - 218 percentile (-6°C). In contrast, there were only 2 cold spell episodes and 10 cold spell days
- 219 if we defined cold spells as periods for 4 or more consecutive days when daily mean
- 220 temperature was below or at the 3rd percentile (-8°C).

221

222 Effects of cold spells under different definitions Page 11 of 30

1 2

BMJ Open

3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
31
27
32
33
34
35
36
37
38
20
10
40
41
42
43
44
45
46
17
47
4ð
49
50
51
52
53
54
55
55
50
57
58
59

60

223 Figure 1 depicts the lag structures of associations between cold spells under 9 different 224 definitions and COPD hospitalizations of the total population. All cold spells had impacts 225 on the risks of hospitalizations for COPD and most trends of their lagged effects were 226 non-linear with two patterns. One was that the relative risk (RR) of hospitalizations for 227 COPD reached maximum on the days (lag0) of cold spells, then decreased and 228 remained significant for 10-16 days (lag10-lag16). The other one was that the RR 229 became significant on the 3rd or 4th day (lag3 or lag4) after exposure to cold spells, then 230 gradually reached the maximum at about the 8th day (lag8) and lasted till the 15th-17th 231 days (lag15-lag17).

232 Table 3 shows the cumulative effects of cold spells on COPD hospitalizations under 233 different definitions. For each definition, the cumulative relative risk (CRR) increased with 234 longer cumulative lags, with the highest CRR at lag0-21. Among 9 different definitions, 235 the CRRs of cold spells at lag0-21 increased as the definition had a longer duration or 236 lower temperature threshold. The maximum CRR over lag0-21 when the temperature 237 threshold was set at the 10th percentile appeared at the duration≥4 consecutive days. In 238 comparison, the CRR values of the duration≥3 consecutive days and ≥2 consecutive 239 days were lower. Likewise, when the duration was set for at least 4 consecutive days, the 240 maximum CRR over lag0-21 appeared at the temperature range defined as ≤3rd 241 percentile, while the CRR of temperature threshold at the 5th and 10th percentile were 242 lower. The lowest Q-AIC value (7769.8) indicating the best model fit was observed in 243 Model 3 (Table 2). Hence, the optimal cold spell definition was daily mean temperature 244 \leq 10th percentile (-6°C) with at least 4 consecutive days during the study period. The 245 optimal model was able to find the most significant single-day lagged effect earliest (lag0) 246 and remained significant till the 14th day (lag14) (Figure 1). 247 Table 4 and Figure 2 reveal the results for the subgroup analyses of gender and age

based on the optimal cold spell definition. The effects of cold spells were similar between males and females, with the most significant single-day lagged effect both occurred at lag0 (Z=0.041, P=0.48). The cumulative effects at lag0-21 of two genders also differed slightly (Z=-0.730, P=0.23). Additionally, in the subgroups stratified by the age, the most significant single-day lagged effect and cumulative effect for people aged≥65 years were at lag0 and at lag0-21, respectively. However, no significant effect of cold spells was observed in those aged 0-64 years. The results of sensitivity analyses indicated that the effect estimates of cold spells under the optimal definition on COPD hospitalizations were still robust. (See Supplementary Materials, Tables S1–S5).

258 DISCUSSION

In this study, we showed that cold spells were associated with increase hospitalizations for COPD. The adverse impacts of cold spells varied with their durations and intensities. Based on the statistical model fit, the optimal definition of cold spells was daily mean temperature less than or equal to the 10th percentile lasting for at least 4 consecutive days during the study period. The elderly seemed more sensitive to cold spells than the younger, while the susceptibility difference between genders was not noticeable. Our finding is in accordance with previous studies reporting an excess of COPD hospitalizations, [12] emergency visits [26] and mortality [4, 6, 26] associated with cold spells. For instance, Monteiro et al. reported significant effects of cold spells identified by various indices on COPD hospitalizations with a lagged effect of at least two weeks.[12] Several underlying mechanisms may explain for elevated COPD morbidity and mortality attributable to extremely cold events. Firstly, cold exposure has been found to be related to a decline in lung function (FEV₁, FVC and PEF) among COPD patients.[27, 28] Secondly, Koskela et al. reported that cold air could directly induce bronchoconstriction,

Page 13 of 30

BMJ Open

leading to excessive dyspnea in patients with COPD.[29] Thirdly, cold exposure may
suppress the immune response and increase susceptibility to viral infections in
humans.[30] Meanwhile, the transmission efficiency of the influenza virus is inversely
correlated with ambient temperature.[31] Fourthly, the cold temperature may provoke
airway inflammation and mucin hypersecretion in airway epithelium, which results in
COPD morbidity and mortality by blocking airways and causing recurrent infections.[32,

We found that the CRR values of COPD hospitalizations increased with longer duration and higher intensity of cold spells. Some prior studies have similar findings,[17, 18] indicating that both the duration and the intensity affect the health risks of cold spells. According to the minimum Q-AIC value criterion, the optimal definition of cold spells was the daily average temperature at or below the 10th percentile with 4 or more consecutive days. Compared with other definitions, this one had a lower intensity and longer duration, and the most significant single-day lagged effect of cold spells on COPD hospitalizations appeared earliest (lag0). Our results agree with a study in Porto showing that the moderately low temperature with long periods contributed greater to COPD exacerbation than extremely low temperature with shorter-lasting days.[12] However, studies on some other diseases defined the optimal cold spell definitions with a threshold at the 5th percentile or at least 2 days duration, [18, 24] indicating different definitions may apply to different outcomes. In addition, some studies reported the temporal changes of people's adaption capacities to cold spells during recent decades under climate change.[5, 34] Overall, more effective cold spell definitions and warning systems adapted to regional climate, specific diseases, and dynamic changes of the population's sensitivity should be

further studied and implemented in the future.

In the subgroup analyses based on the optimal cold spell definition, we found that the

3 4	298	effects of c
5 6 7	299	≥65 years)
7 8 9	300	studies.[4,
10 11	301	prevalence
12 13	302	that since a
14 15 16	303	64, giving ı
17 18	304	the opposit
19 20 21	305	outdoors, v
22 23	306	terms of ge
24 25	307	which corre
26 27	308	Our stud
28 29 30	309	hospitaliza
31 32	310	urgent to p
33 34	311	patients in
35 36 37	312	take practi
38 39	313	systems w
40 41	314	governmer
42 43	315	cold spells
44 45 46	316	As for indiv
47 48	317	could redu
49 50	318	patients wh
51 52 53	319	COPD exa
54 55	320	taking mec
56 57	321	with COPE
58 59 60	322	The main

1 2

298	effects of cold spells on COPD hospitalizations were more significant in the elderly (aged
299	≥65 years) than people aged 0–64 years. This finding is consistent with previous
300	studies.[4, 35, 36] The reasons may point to reduced thermoregulatory ability, higher
301	prevalence of chronic diseases[17, 26] and impaired immunity[37] in the elderly. Note
302	that since aging is one of the risk factors of COPD, most patients in our study were over
303	64, giving more power to achieve statistical significance. However, some studies showed
304	the opposite results.[6] It was speculated that the younger tend to spend more time
305	outdoors, which increase opportunities for exposure to extremely cold temperature. In
306	terms of gender, we found similar impacts of cold spells among males and females,
307	which corresponds with previous studies.[4, 35, 36]
308	Our study showed substantial effects of cold spells on the risk of COPD
309	hospitalizations with a lagged effect of about 3 weeks. As a result, it is meaningful and
310	urgent to provide effective and practical guidelines for preventions, particularly for COPD
311	patients in response to cold spells in China. Both the government and individuals should
312	take practical actions. The meteorological departments should improve early warning
313	systems with timely forecast and publication of extremely cold events. Moreover, the
314	government should exert great efforts to raise public awareness of the health hazards of
315	cold spells and ensure adequate public and medical services coping with cold spells.[4]
316	As for individuals, it has been reported that staying indoor and wearing warm clothing
317	could reduce mortality in extremely cold weather.[38] Tseng et al. suggested that COPD
318	patients who received inhaled medicine were less affected by cold temperature-related
319	COPD exacerbation.[36] Therefore, keeping warm, minimizing the outdoor activities and
320	taking medication regularly are vital measures to fight against cold spells for individuals
321	with COPD.

in strengths of our study are as follows: Firstly, to the best of our knowledge,

Page 15 of 30

1

BMJ Open

foundations for

2		
3 4	323	this is the first study to investigate the relationship between cold spells and COPD
5 6 7	324	hospitalizations in China. Secondly, we controlled the confounding factors of air pollution
7 8 9	325	and influenza infections, which were not considered by some previous studies. Existing
10 11	326	literature has shown that both air pollutants and influenza may influence the health
12 13	327	effects of low temperatures.[38, 39] Thirdly, we identified the elderly more vulnerable to
14 15 16	328	cold spells by stratified analyses, which guide more targeted prevention strategies.
17 18	329	Meanwhile, the study also has several limitations: Firstly, as an ecological study, the
19 20	330	association between cold spells and COPD hospitalizations does not imply causality.
21 22	331	Secondly, different socio-economic status or other factors on an individual level might be
23 24 25	332	confounding factors and were not considered in the association. Thirdly, the
26 27	333	meteorological variables and AQI were all from monitoring stations, not reflecting the
28 29	334	individual level of exposures. Moreover, people are more likely to stay indoors with
30 31 32	335	heating system during extremely cold days in northern China, so inevitable exposure
33 34	336	measurement errors may lead to bias. Lastly, the data from only one city weakens the
35 36	337	extrapolation validity of the study.
37 38	338	
39 40 41	339	CONCLUSION
42 43	340	Our study demonstrates that short-term exposure to cold spells is associated with an
44 45	341	increased risk of COPD hospitalizations. The cumulative effects increased with the
46 47 48	342	intensities and the durations of cold spells. The elderly are more vulnerable to COPD
49 50	343	hospitalizations during cold spell periods. These findings provide scientific foundations fo
51 52	344	comprehensive public health strategies to reduce cold spell-related COPD
53 54 55	345	hospitalizations in Beijing, China.
55 56 57	346	
58 59	347	Contributors: YL and YC are joint first author and designed the study. ZF obtained the
60		14

original data and funding. DK, XL, JF, YZ and ZC preprocessed the data. YL, YC, and YZ
analyzed the data. YL and YC drafted the manuscript. XZ, KX, CJ and ZF reviewed and
edited the manuscript. All authors have read and approved the final manuscript. ZF is the
study guarantor.

352 Funding: This work was supported by National Key Research and Development Plan

- 353 [2017YFC0211703], National 973 Project [2015CB553400], Chinese Academy of Medical
- 354 Sciences (CAMS) Initiative for Innovative Medicine [CAMS 2016ZX310181-5/4, CAMS
- 355 2017-I2M-2-001], and National Natural Science Foundation [91643208, 41450006].
- **Competing interests:** None declared.
- 357 Ethical approval: This study was approved by the ethical review committee of Peking
- 358 Union Medical College Hospital.
- 359 Data sharing statement: No additional data are available.

2								
3 4	360	REFERENCES						
5	361	1 IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I,						
6 7	362	II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change						
8	363	[Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151						
9 10	364	pp.						
11	365	2 Cohen J, Screen JA, Furtado JC, et al. Recent Arctic amplification and extreme mid-						
12 13	366	latitude weather. <i>Nature Geoscience</i> 2014; 7 :627-37.						
14	367	3 Zhang J, Tian W, Chipperfield MP, et al. Persistent shift of the Arctic polar vortex towards						
15 16	368	the Eurasian continent in recent decades. <i>Nature Climate Change</i> 2016; 6 :1094-9.						
17	369	4 Chen J, Yang J, Zhou M, et al. Cold spell and mortality in 31 Chinese capital cities:						
18	370	Definitions, vulnerability and implications. <i>Environment international</i> 2019; 128 :271-8.						
19 20	371	5 Lee W, Choi HM, Lee JY, et al. Temporal changes in mortality impacts of heat wave and						
21	372	cold spell in Korea and Japan. <i>Environment international</i> 2018; 116 :136-46.						
22 23	373	6 Han J, Liu S, Zhang J, et al. The impact of temperature extremes on mortality: a time-						
24	374	series study in Jinan, China. <i>BMJ open</i> 2017; 7 :e014741.						
25 26	375	7 Rabe KF, Watz H. Chronic obstructive pulmonary disease. <i>The Lancet</i> 2017; 389 :1931-						
27	376	40.						
28	377	8 Lopez-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology						
30	378	2016; 21 :14-23.						
31	379	9 Donaldson GC, Goldring JJ, Wedzicha JA. Influence of season on exacerbation						
32 33	380	characteristics in patients with COPD. <i>Chest</i> 2012; 141 :94-100.						
34	381	10 McCormack MC, Paulin LM, Gummerson CE, et al. Colder temperature is associated						
35 36	382	with increased COPD morbidity. <i>Eur Respir J</i> 2017; 49 .						
37	383	11 Chaturvedi S, Tseng C-M, Chen Y-T, et al. The Effect of Cold Temperature on Increased						
38 39	384	Exacerbation of Chronic Obstructive Pulmonary Disease: A Nationwide Study. PloS one						
40	385	2013;8.						
41 42	386	12 Monteiro A, Carvalho V, Gois J, et al. Use of "Cold Spell" indices to quantify excess						
43	387	chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March						
44 45	388	2000-2007): case study in Porto. International journal of biometeorology 2013; 57 :857-70.						
46	389	13 Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive						
47	390	pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-						
48 49	391	sectional study. <i>The Lancet</i> 2018; 391 :1706-17.						
50	392	14 Xie H, Yao Z, Zhang Y, et al. Short-term effects of the 2008 cold spell on mortality in						
51 52	393	three subtropical cities in Guangdong Province, China. Environmental health perspectives						
53	394	2013; 121 :210-6.						
54 55	395	15 Zhou B, Gu L, Ding Y, et al. The Great 2008 Chinese Ice Storm: Its Socioeconomic-						
56	396	Ecological Impact and Sustainability Lessons Learned. Bulletin of the American						
57 58	397	Meteorological Society 2011;92:47-60.						
59	398	16 Ban J, Huang L, Chen C, et al. Integrating new indicators of predictors that shape the						
60		16						

3	399	public's perception of local extreme temperature in China. The Science of the total
5	400	<i>environment</i> 2017; 579 :529-36.
6 7	401	17 Wang L, Liu T, Hu M, et al. The impact of cold spells on mortality and effect modification
8	402	by cold spell characteristics. Scientific reports 2016;6:38380.
9	403	18 Gao J, Yu F, Xu Z, et al. The association between cold spells and admissions of
10 11	404	ischemic stroke in Hefei, China: Modified by gender and age. The Science of the total
12	405	<i>environment</i> 2019; 669 :140-7.
13 14	406	19 Wedzicha JA, Seemungal TAR. COPD exacerbations: defining their cause and
15	407	prevention. <i>The Lancet</i> 2007; 370 :786-96.
16 17	408	20 Cowling BJ, Wong IO, Ho LM, et al. Methods for monitoring influenza surveillance data.
18	409	Int J Epidemiol 2006; 35 :1314-21.
19 20	410	21 Song X, Wang S, Li T, et al. The impact of heat waves and cold spells on respiratory
20	411	emergency department visits in Beijing, China. The Science of the total environment
22	412	2018; 615 :1499-505.
23 24	413	22 Guo Y, Jiang F, Peng L, et al. The association between cold spells and pediatric
25	414	outpatient visits for asthma in Shanghai, China. <i>PloS one</i> 2012; 7 :e42232.
26 27	415	23 Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-
28	416	linear models. <i>Stat Med</i> 2014; 33 :881-99.
29 30	417	24 Cheng Q, Wang X, Wei Q, et al. The short-term effects of cold spells on pediatric
31	418	outpatient admission for allergic rhinitis in Hefei, China. The Science of the total environment
32 33	419	2019; 664 :374-80.
33 34	420	Liang Z, Wang P, Zhao Q, et al. Effect of the 2008 cold spell on preterm births in two
35	421	subtropical cities of Guangdong Province, Southern China. The Science of the total
30 37	422	environment 2018;642:307-13.
38	423	26 de'Donato FK, Leone M, Noce D, et al. The impact of the February 2012 cold spell on
39 40	424	health in Italy using surveillance data. <i>PloS one</i> 2013; 8 :e61720.
41	425	27 Lin Z, Gu Y, Liu C, et al. Effects of ambient temperature on lung function in patients with
42 43	426	chronic obstructive pulmonary disease: A time-series panel study. The Science of the total
44	427	environment 2018; 619-620 :360-5.
45 46	428	28 Donaldson GC, Seemungal T, Jeffries DJ, et al. Effect of temperature on lung function
47	429	and symptoms in chronic obstructive pulmonary disease. <i>Eur Respir J</i> 1999; 13 :844-9.
48 40	430	29 Koskela HO, Koskela AK, Tukiaineu HO. Bronchoconstriction due to cold weather in
49 50	431	COPD. The roles of direct airway effects and cutaneous reflex mechanisms. Chest
51 52	432	1996; 110 :632-6.
52 53	433	30 Shephard RJ, Shek PN. Cold exposure and immune function. Can J Physiol Pharmacol
54	434	1998; 76 :828-36.
55 56	435	31 Lowen AC, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on
57	436	relative humidity and temperature. <i>PLoS pathogens</i> 2007; 3 :1470-6.
58 59	437	32 Li M, Li Q, Yang G, et al. Cold temperature induces mucin hypersecretion from normal
60		4-

Page 19 of 30

1 2		
3	438	human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8
4 5	439	(TRPM8)-mediated mechanism. <i>J Allergy Clin Immunol</i> 2011: 128 :626-34.e1-5.
6	440	33 Juan Y. Haigiao W. Xie W. et al. Cold-inducible RNA-binding protein mediates airway
7 8	441	inflammation and mucus hypersecretion through a post-transcriptional regulatory mechanism
9	442	under cold stress <i>Int J Biochem Cell Biol</i> 2016; 78 :335-48
10 11	443	34 Chung Y Noh H Honda Y <i>et al</i> Temporal Changes in Mortality Related to Extreme
12	444	Temperatures for 15 Cities in Northeast Asia: Adaptation to Heat and Maladaptation to Cold
13	445	American journal of epidemiology 2017: 185 :907-13
14 15	446	35 Ma W. Yang C. Chu C. <i>et al.</i> The impact of the 2008 cold shell on mortality in Shanghai
16	110	China International journal of biometeorology 2013:57:179-84
17 18	148	36 Tseng CM Chen XT Ou SM <i>at al</i> The effect of cold temperature on increased
19	440	ovacorbation of chronic obstructive pulmonary disease: a patienwide study. <i>PlaS and</i>
20	449	2012: 0:oF7066
21 22	450	2013, 6 .e57000.
23	451	37 Goodwin JS. Decreased immunity and increased morbidity in the eldeny. <i>Nutl Rev</i>
24 25	452	1995;541-4; discussion 54-6.
26	453	38 Donaldson GC, Ermakov SP, Komarov YM, <i>et al.</i> Cold related mortalities and protection
27 28	454	against cold in Yakutsk, eastern Siberia: observation and interview study. BINJ 1998;317:978-
28	455	
30	456	39 Qiu H, Tan K, Long F, et al. The Burden of COPD Morbidity Attributable to the Interaction
31 32	457	between Ambient Air Pollution and Temperature in Chengdu, China. International journal of
33	458	environmental research and public health 2018;15.
34 35	459	40 Huynen MM, Martens P, Schram D, et al. The impact of heat waves and cold spells on
36	460	mortality rates in the Dutch population. <i>Environmental health perspectives</i> 2001; 109 :463-70.
37		
38 39		
40		
41 42		
43		
44 45		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
55 56		
57		
58 59		
60		40
		18

2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
3/
25
22
36
37
38
39
40
41
42
43
11
44
45
46
47
48
49
50
51
52
52
55
54 57
55
56
57
58
59

60

1

Table 1 Statistic summary of daily hospitalizations for COPD, meteorological variables
and air quality index in cold seasons (November-March) in Beijing, China, 2012–2016.

	Total	Mean	Min	P25	Media	P75	Max
		(SD)			n		
COPD cases	8457	111.7(41.0	22.0	78.0	113.0	141.0	226.0
	1)					
Gender							
Male	5382	71.1(25.8)	12.0	49.0	75.0	89.0	158.0
	9						
Female	3074	40.6(17.7)	7.0	27.0	39.0	53.0	110.0
	2						
Age							
0-64 years old	1360	18.0(8.3)	2.0	12.0	18.0	23.0	43.0
	0						
≥65 years old	7097	93.8(34.3)	19.0	67.0	95.0	118.0	189.0
	1						
Mean temperature	/	0.9(5.4)	-16.0	-3.0	0.0	4.0	18.0
(°C)							
Relative humidity (%)	/	46.6(20.4)	8.0	30.0	43.0	61.0	98.0
Air pressure (hPa)	/	1025.3(6.5	1005.	1021.	1026.0	1030.	1044.
)	0	0		0	0
Air quality index	/	126.3(89.2	17.0	61.0	97.0	170.0	485.0
)					

COPD, chronic obstructive pulmonary disease; P25, the 25th percentile; P75, the 75th percentile; SD,

standard deviation.

Model	Temperatur e threshold	Duratio n	Cold spell episodes	Cold spell days	Non-cold spell days	Q-AIC value
1	≤10% (-6°C)	≥2d	17	77	680	7819.6
2	≤10% (-6°C)	≥3d	11	65	692	7799.7
3	≤10% (-6°C)	≥4d	6	50	707	7769.8
4	≤5% (-7°C)	≥2d	8	37	720	7794.3
5	≤5% (-7°C)	≥3d	5	31	726	7786.6
6	≤5% (-7°C)	≥4d	3	25	732	7782.5
7	≤3% (-8°C)	≥2d	7	23	734	7786.5
8	≤3% (-8°C)	≥3d	5	19	738	7789.8
9	≤3% (-8°C)	≥4d	2	10	747	7804.4

Table 2 Overview information of cold spells under different definitions

Q-AIC, quasi-Poisson Akaike Information Criterion.

Table 3 Cumulative relative risk of cold spells under different definitions

on COPD hospitalizations of the total population in Beijing, 2012-2016.

Definition	CRR (95% CI)					
Definition	Lag0	Lag0-7	Lag0-14	Lag0-21		
≤10% & ≥2d	1.030 (1.002-	1.200 (1.087-	1.278 (1.134-	1.236 (1.055-		
	1.058)*	1.326)*	1.439)*	1.438)*		
≤10% & ≥3d	1.027 (1.000-	1.188 (1.084-	1.299 (1.166-	1.353 (1.161-		
	1.054)*	1.303)*	1.448)*	1.577)*		
≤10% &≥4d	1.042 (1.013-	1.249 (1.136-	1.343 (1.206-	1.394 (1.193-		
	1.072)*	1.374)*	1.496)*	1.630)*		
≤5% & ≥2d	1.012 (0.980-1.045)	1.173 (1.055-	1.344 (1.134-	1.354 (1.141-		
		1.304)*	1.439)*	1.608)*		
≤5% & ≥3d	1.031 (1.000-	1.235 (1.114-	1.381 (1.220-	1.428 (1.206-		
	1.063)*	1.369)*	1.563)*	1.692)*		
≤5% & ≥4d	1.042 (1.006-	1.268 (1.132-	1.404 (1.234-	1.511 (1.262-		
	1.079)*	1.421)*	1.598)*	1.809)*		
≤3% & ≥2d	0.982 (0.944-1.021)	1.113 (0.960-1.290)	1.412 (1.171-	1.444 (1.113-		
			1.703)*	1.873)*		
≤3% & ≥3d	1.009 (0.970-1.049)	1.217 (1.051-	1.525 (1.264-	1.659 (1.278-		
		1.411)*	1.841)*	2.154)*		
≤3% & ≥4d	0.992 (0.951-1.035)	1.201 (0.999-1.443)	1.644 (1.261-	1.889 (1.315-		
			2.145)*	2.712)*		

CI, confidence interval; CRR, cumulative relative risk.

**p*<0.05.

Table 4 Cumulative relative risk of cold spells on COPD hospitalizations

stratified by gender and age in Beijing, 2012-2016.

Subaroup	CRR (95% CI)					
Subgroup	Lag0	Lag0-7	Lag0-14	Lag0-21		
Male	1.042 (1.011-	1.243 (1.123-	1.316 (1.173-	1.342 (1.136-		
	1.074)*	1.375)*	1.477)*	1.586)*		
Female	1.041 (1.005-	1.257 (1.119-	1.383 (1.215-	1.476 (1.211-		
	1.077)*	1.411)*	1.574)*	1.783)*		
Age<65	1.017 (0.972-1.064)	1.120 (0.963-1.303)	1.159 (0.977-1.376)	1.107 (0.862-1.422)		
Age≥65	1.046 (1.017-	1.275 (1.158-	1.382 (1.240-	1.456 (1.244-		
	1.077)*	1.404)*	1.540)*	1.705)*		

CI, confidence interval; CRR, cumulative relative risk.

**p*<0.05.

Figure 1 Lag-response relationships between cold spells under different definitions and AECOPD hospitalizations of the total population in Beijing, 2012-2016.

161x159mm (300 x 300 DPI)

BMJ Open

and age in Beijing, 2012-2016.

159x157mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Materials

Supplementary Tables

Table S1 The cumulative effects of cold spells under the optimal definition using different degrees

 of freedom for lag dimension in the DLM model

Table S2 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for time per year in the DLM model

Table S3 The cumulative effects of cold spells under the optimal definition using different degreesof freedom for relative humidity in the DLM model

Table S4 The cumulative effects of cold spells under the optimal definition using different degreesof freedom for air pressure in the DLM model

Table S5 The cumulative effects of cold spells under the optimal definition using different degreesof freedom for air quality index in the DLM model

BMJ Open

Table S1 The cumulative effects of cold spells under the optimal definition using differen	degrees
of freedom for lag dimension in the DLM model	

df for lag	Croup		CRR (S	95% CI)	
dimension	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	T . 1	1.042	1.249	1.343	1.394
	Total	(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	(1.193-1.630)*
	Mala	1.042	1.243	1.316	1.342
	Iviale	$(1.011 - 1.074)^{*}$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586) [*]
Qa	Famala	1.041	1.257	1.383	1.476
3	remaie	(1.005-1.077)*	$(1.119 - 1.411)^{*}$	$(1.215 - 1.574)^{*}$	(1.211-1.783)*
	A 99465	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
	100265	1.046	1.275	1.382	1.456
	Age≥05	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	0.989	1.265	1.311	1.382
	TOLAI	(0.926-1.057)	$(1.149 - 1.392)^*$	(1.173-1.465)*	$(1.182 - 1.615)^{*}$
	Male	0.992	1.257	1.285	1.331
		(0.925-1.064)	(1.135-1.393)*	$(1.141 - 1.448)^{*}$	$(1.126 - 1.573)^{*}$
Λ	Female	0.983	1.274	1.347	1.462 (1.210-
4		(0.906-1.067)	(1.133-1.432)*	(1.178-1.540)*	1.766)*
	Age<65	0.919	1.151	1.106	1.091
		(0.827-1.022)	(0.988-1.340)	(0.926-1.320)	(0.850-1.401)
	Age≥65	1.003	1.288	1.355	1.446
		(0.938-1.073)	$(1.169 - 1.419)^{*}$	(1.211-1.515)*	(1.235-1.692)*
	Tatal	1.001	1.271	1.313	1.389
	Total	(0.888-1.128)	$(1.150 - 1.404)^{*}$	$(1.174 - 1.468)^{*}$	(1.185-1.628)*
	Mala	0.999	1.261	1.287	1.336
	IVIAIE	(0.880-1.136)	(1.134-1.403)*	$(1.141 - 1.451)^*$	(1.127-1.583)*
F	Famala	1.004	1.285	1.350	1.474
Э	remale	(0.868-1.161)	(1.137-1.451)*	(1.180-1.545)*	$(1.216 - 1.787)^{*}$
	A 99465	0.892	1.143	1.102	1.084
	Age<05	(0.737-1.080)	(0.975-1.341)	(0.922-1.317)	(0.840-1.398)
	Age≥65	1.023	1.297	1.358	1.456
		(0.907-1.155)	(1.172-1.434)*	(1.213-1.520)*	(1.240-1.710)*

Cl, confidence interval; df, degree of freedom; RR, relative risk.

**P*<0.05.

^aUsed in the study.

df for time	Group	CRR (95% CI)			
per year	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
		(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	(1.193-1.630)*
	Mala	1.042	1.243	1.316	1.342
	Male	$(1.011 - 1.074)^{*}$	(1.123-1.375)*	$(1.173 - 1.477)^{*}$	(1.136-1.586)*
Oa	Famala	1.041	1.257	1.383	1.476
3	remaie	(1.005-1.077)*	$(1.119 - 1.411)^{*}$	$(1.215 - 1.574)^{*}$	$(1.211 - 1.783)^{*}$
	ARCE	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
		1.046	1.275	1.382	1.456
	Aye≠05	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	1.023	1.150	1.218	1.233
	TOLAI	(0.992-1.055)	(1.033-1.280)*	$(1.078 - 1.376)^{*}$	(1.036-1.467)*
	Male	1.029	1.173	1.226	1.225
		(0.997-1.063)	(1.045-1.316)*	$(1.074 - 1.399)^{*}$	(1.015-1.480)*
Λ	Female	1.011	1.107	1.196	1.232
4		(0.974-1.050)	(0.971-1.262)	(1.034-1.385)*	(0.998-1.520)
	Age<65	1.010	1.077	1.105	1.056
		(0.961-1.061)	(0.906-1.280)	(0.907-1.345)	(0.795-1.401)
	Age≥65	1.026	1.166	1.244	1.272
		(0.995-1.058)	(1.046-1.300)*	(1.100-1.406)*	(1.067-1.517)*
	Tatal	1.022	1.144	1.208	1.222
	TOLAT	(0.990-1.056)	$(1.008 - 1.298)^{*}$	(1.031-1.415)*	(0.978-1.526)
	Mala	1.030	1.171	1.222	1.223
	Iviale	(0.994-1.066)	(1.021-1.343)*	(1.027-1.452)*	(0.960-1.559)
F	Fomalo	1.009	1.093	1.174	1.203
J	Ternale	(0.970-1.050)	(0.938-1.275)	(0.972-1.418)	(0.923-1.569)
	Ago<65	1.011	1.082	1.127	1.127
	Age <b5< td=""><td>(0.959-1.066)</td><td>(0.883-1.327)</td><td>(0.874-1.453)</td><td>(0.788-1.612)</td></b5<>	(0.959-1.066)	(0.883-1.327)	(0.874-1.453)	(0.788-1.612)
	Age≥65	1.025	1.158	1.227	1.245
		(0.992-1.059)	$(1.019 - 1.316)^*$	(1.045-1.440)*	(0.994-1.559)

Table S2 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for time per year in the DLM model

Cl, confidence interval; df, degree of freedom; RR, relative risk. $^{*}P$ <0.05.

P<0.05.

^aUsed in the study.

Page 29 of 30

BMJ Open

Table S3 The cumulative effects of cold spells under the optimal definition using different degrees
of freedom for relative humidity in the DLM model

df for rolativo		-	CPR (
humidity	Group	Lad		lad0-14	Lad0-2
namaty		1 042	1 249	1 343	1 394
	Total	$(1013-1072)^*$	$(1\ 136\ 1\ 374)^*$	(1 206-1 496)*	(1 193-1 6
		1 042	1 243	1.316	1.342
	Male	$(1 011 - 1 074)^*$	(1 123-1 375)*	$(1\ 173\ -1\ 477)^*$	(1 136-1 5
		1 041	1 257	1.383	1 476
3ª	Female	$(1.005 - 1.077)^*$	(1 119-1 411)*	$(1\ 215\ -1\ 574)^*$	(1 211-1 7
		1.017	1.120	1.159	1.107
	Age<65	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.4
		1.046	1.275	1.382	1.456
	Age≥65	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.7
	Total	1.041	1.248	1.343	1.392
		(1.012-1.071)*	(1.135-1.373)*	(1.205-1.495)*	(1.190-1.6
	Male	1.042	1.240	1.314	1.336
		$(1.011 - 1.073)^*$	(1.120-1.372)*	(1.170-1.475)*	(1.130-1.5
4	F amala	1.041	1.259	1.385	1.482
4	Female	$(1.006 - 1.078)^{*}$	(1.120-1.414)*	(1.217-1.578)*	(1.225-1.7
	A	1.017	1.119	1.158	1.105
	Age<05	(0.972-1.064)	(0.961-1.302)	(0.975-1.375)	(0.859-1.4
		1.046	1.274	1.381	1.455
	Aye≥00	$(1.017 - 1.076)^*$	(1.157-1.403)*	(1.239-1.540)*	(1.242-1.7
	Total	1.041	1.244	1.337	1.383
	TOLAI	$(1.012 - 1.071)^*$	$(1.131 - 1.369)^*$	(1.200-1.490)*	(1.182-1.6
	Malo	1.041	1.236	1.307	1.327
	IVIAIE	$(1.010 - 1.073)^{*}$	(1.116-1.368)*	$(1.164 - 1.468)^*$	(1.121-1.5
5	Female Age<65 Age≥65	1.040	1.256	1.381	1.474
5		$(1.005 - 1.077)^*$	$(1.117 - 1.411)^*$	(1.212-1.574)*	(1.218-1.7
		1.015	1.111	1.148	1.089
		(0.970-1.062)	(0.955-1.293)	(0.967-1.363)	(0.847-1.4
		1.046	1.271	1.377	1.448
		(1.016-1.076)*	(1.154-1.400)*	(1.234-1.536) [*]	(1.235-1.6)

Cl, confidence interval; df, degree of freedom; RR, relative risk. **P*<0.05.

^aUsed in the study.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

df for air	Croup	CRR (95% CI)			
pressure	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
		(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	$(1.193 - 1.630)^{*}$
		1.042	1.243	1.316	1.342
	IVIAIE	$(1.011 - 1.074)^{*}$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586)*
D a	Fomalo	1.041	1.257	1.383	1.476
3	remale	(1.005-1.077)*	$(1.119 - 1.411)^{*}$	(1.215-1.574)*	$(1.211 - 1.783)^{*}$
	A 99565	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
	100 > 65	1.046	1.275	1.382	1.456
	Aye≥03	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	1.042	1.248	1.342	1.393
	Total	(1.012-1.071)*	(1.134-1.373)*	(1.205-1.495)*	(1.192-1.629)*
	Male	1.042	1.240	1.313	1.340
		$(1.011 - 1.074)^{*}$	(1.120-1.373)*	$(1.170 - 1.475)^{*}$	(1.134-1.584)*
4	Female	1.041	1.259	1.385	1.478
4		(1.005-1.078)*	(1.120-1.414)*	$(1.216 - 1.578)^{*}$	(1.223-1.786)*
	Age<65	1.018	1.123	1.162	1.109
		(0.973-1.065)	(0.965-1.306)	(0.978-1.380)	(0.863-1.425)
	Age≥65	1.046	1.273	1.380	1.455
		$(1.016 - 1.076)^*$	(1.156-1.402)*	(1.238-1.539)*	(1.242-1.704)*
	Tatal	1.041	1.247	1.342	1.393
	TOLAT	$(1.012 - 1.071)^*$	(1.133-1.373)*	(1.204-1.495)*	(1.191-1.629)*
	Malo	1.042	1.240	1.314	1.341
	Ividie	$(1.011 - 1.074)^{*}$	(1.120-1.374)*	$(1.170 - 1.476)^*$	(1.134-1.585)*
5	Female	1.041	1.257	1.383	1.475
5	1 cmaic	(1.005-1.077)*	(1.118-1.413)*	(1.214-1.576)*	(1.220-1.784)*
	Age< 65	1.019	1.129	1.168	1.115
	196-00	(0.974-1.067)	(0.970-1.314)	(0.984-1.388)	(0.868-1.433)
	Age≥65	1.046	1.271	1.378	1.452
		$(1.016 - 1.076)^{*}$	(1.154-1.401)*	$(1.235 - 1.537)^{*}$	(1.240-1.701)*

Table S4 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for air pressure in the DLM model

Cl, confidence interval; df, degree of freedom; RR, relative risk. *P<0.05.

^aUsed in the study.

BMJ Open

df for AOI	Group	CRR (95% CI)			
u lu Aqi		Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
		(1.013-1.072)*	$(1.136 - 1.374)^{*}$	(1.206-1.496)*	(1.193-1.630)*
	Malo	1.042	1.243	1.316	1.342
	IVIAIC	$(1.011 - 1.074)^{*}$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586)*
o ^a	Fomalo	1.041	1.257	1.383	1.476
5	Ternale	(1.005-1.077)*	$(1.119 - 1.411)^{*}$	(1.215-1.574)*	(1.211-1.783)*
	100-65	1.017	1.120	1.159	1.107
	Age<03	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
	$\Lambda_{CO} > 65$	1.046	1.275	1.382	1.456
	Age≡00	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	1.042	1.249	1.342	1.393
	Total	(1.013-1.072)*	(1.135-1.374)*	(1.205-1.495)*	(1.192-1.629)*
	Male	1.042	1.242	1.315	1.342
		$(1.012 - 1.074)^*$	(1.123-1.375)*	$(1.171 - 1.476)^{*}$	(1.135-1.586)*
1	Female	1.041	1.257	1.382	1.475
4		(1.005-1.077)*	(1.119-1.412)*	(1.214-1.573)*	(1.221-1.783)*
	Age<65	1.018	1.120	1.157	1.106
		(0.973-1.065)	(0.963-1.303)	(0.974-1.373)	(0.861-1.421)
		1.046	1.275	1.381	1.456
	Aye≥05	$(1.017 - 1.077)^*$	(1.158-1.404)*	(1.239-1.539)*	(1.243-1.704)*
	Total	1.042	1.249	1.347	1.405
	TOLAT	$(1.013 - 1.071)^*$	(1.136-1.373)*	(1.210-1.500)*	(1.202-1.643)*
	Mala	1.042	1.242	1.320	1.355
	IVIAIC	$(1.011 - 1.074)^{*}$	(1.123-1.373)*	(1.177-1.480)*	$(1.148 - 1.601)^{*}$
5	Female	1.041	1.257	1.385	1.482
5		(1.005-1.077)*	(1.119-1.412)*	(1.216-1.577)*	(1.226-1.792)*
	Age<65	1.018	1.120	1.161	1.116
		(0.973-1.065)	(0.963-1.303)	(0.978-1.378)	(0.869-1.433)
	Ago > FF	1.046	1.275	1.386	1.468
	∧ye≈03	$(1.017 - 1.076)^{*}$	(1.159-1.403)*	$(1.243 - 1.545)^*$	(1.254-1.718)*

Table S5 The cumulative effects of cold spells under the optimal definition using different

 degrees of freedom for air quality index in the DLM model

AQI, air quality index; CI, confidence interval; df, degree of freedom; RR, relative risk. **P*<0.05.

^aUsed in the study.

BMJ Open

The short-term effects of cold spells on hospitalizations for acute exacerbation of chronic obstructive pulmonary disease: a time-series study in Beijing, China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039745.R1
Article Type:	Original research
Date Submitted by the Author:	10-Sep-2020
Complete List of Authors:	Liu, Yanbo; Peking Union Medical College Hospital, Department of Medicine Chen, Yuxiong; Peking Union Medical College Hospital, Department of Medicine Kong, Dehui; Peking Union Medical College Hospital, Department of Medicine Liu, Xiaole; Peking Union Medical College Hospital, Department of Medicine Fu, Jia; Peking Union Medical College Hospital, Department of Medicine Zhang, Yongqiao; Peking Union Medical College Hospital, Department of Medicine Zhao, Yakun; Peking Union Medical College Hospital, Department of Medicine Chang, Zhen'ge; Peking Union Medical College Hospital, Department of Medicine Zhao, Xiaoyi; Peking Union Medical College Hospital, Department of Medicine Jiang, Chengyu; Chinese Academy of Medical Sciences and Peking Union Medical College State Key Laboratory of Medical Molecular Biology Fan, Zhongjie; Peking Union Medical College Hospital, Department of Medicine
Primary Subject Heading :	Public health
Secondary Subject Heading:	Respiratory medicine, Epidemiology
Keywords:	Epidemiology < TROPICAL MEDICINE, PUBLIC HEALTH, Chronic airways disease < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	The short-term effects of cold spells on hospitalizations for acute exacerbation
2	of chronic obstructive pulmonary disease: a time-series study in Beijing, China
3	Authors: Yanbo Liu ^{1#} , Yuxiong Chen ^{1#} , Dehui Kong ¹ , Xiaole Liu ¹ , Jia Fu ¹ , Yongqiao
4	Zhang¹, Yakun Zhao¹, Zhen'ge Chang¹, Xiaoyi Zhao², Kaifeng Xu¹, Chengyu Jiang³,
5	Zhongjie Fan ^{1*}
6	Affiliation and Address:
7	¹ Department of Medicine, Peking Union Medical College Hospital, Peking Union Medical
8	College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing
9	Dongcheng District, Beijing 100730, China.
10	² Department of Physiotherapy, Peking Union Medical College Hospital, Peking Union
11	Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing
12	Dongcheng District, Beijing 100730, China.
13	³ The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical
14	Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking
15	Union Medical College, Beijing 100005, China.
16	*Yanbo Liu and Yuxiong Chen contributed equally to this work.
17	*Corresponding author:
18	Zhongjie Fan, Department of Medicine, Peking Union Medical College Hospital, Peking
19	Union Medical College & Chinese Academy of Medical Sciences, No.1 Shuaifuyuan
20	Wangfujing Dongcheng District, Beijing 100730, China (Fanzhongjie@pumch.cn)
21	Keywords: cold spells, acute exacerbation of chronic obstructive pulmonary disease,
22	hospitalizations, intensity and duration

Page 3 of 34

BMJ Open

2		
5 4 5	23	ABSTRACT
6 7	24	Objectives: Our work aimed at exploring the relationship between cold spells and acute
8 9	25	exacerbation of chronic obstructive pulmonary disease (AECOPD) hospitalizations in
10 11	26	Beijing, China, and assessing the moderating effects of the intensities and the durations
12 13 14	27	of cold spells, as well as identifying the vulnerable.
15 16	28	Design: A time-series study.
17 18	29	Setting: We obtained time-series data of AECOPD hospitalizations, meteorological
19 20 21	30	variables and air quality index in Beijing, China during 2012–2016.
22 23	31	Participants: All AECOPD hospitalizations among permanent residents in Beijing,
24 25 26	32	China in cold seasons (November to March) during 2012-2016 were included.
20 27 28	33	(n=84,571).
29 30	34	Primary and secondary outcome measures: A quasi-Poisson regression with a
31 32 22	35	distributed lag model was fitted to investigate the short-term effects of cold spells on
34 35	36	AECOPD hospitalizations by comparing the counts of AECOPD admissions during
36 37	37	cold spell days with those during non-cold spell days.
38 39 40	38	Results: Cold spells under different definitions were associated with increased risks of
41 42	39	AECOPD hospitalizations, with the maximum cumulative relative risk (CRR) over three
43 44	40	weeks (lag0-21). The cumulative effects at lag0-21 increased with the intensities and the
45 46 47	41	durations of cold spells. Under the optimal definition, the most significant single-day
48 49	42	relative risk (RR) was found on the days of cold spells (lag0) with RR=1.042 (95%CI:
50 51	43	1.013, 1.072), and the CRR at lag0-21 was 1.394 (95%CI: 1.193, 1.630). The elderly
52 53 54	44	(aged≥65) were more vulnerable to the effects of cold spells on AECOPD
55 56	45	hospitalizations.
57 58	46	Conclusion: Cold spells are associated with increased AECOPD hospitalizations in
59 60		

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17 18	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

47	Beijing, with the cumulative effects increased with their intensities and durations. The

48 elderly are at particular risk of AECOPD hospitalizations triggered by cold spells.

49

1 2

50 Strengths and limitations of this study:

- 51 This study was the first to examine the association between cold spells and
- 52 AECOPD hospitalizations in China.
 - 53 The study assessed the effects of cold spells under different definitions on AECOPD
- 54 hospitalizations to find out the optimal cold spell definition on the issue.
- 55 The ecological design cannot imply causality definitely, while limited information on
- 56 individual-level factors and inevitable exposure measurement errors may lead to
- 57 bias.
- 58 The data from one specific city limited the extrapolation of the findings.
- 59

60 INTRODUCTION

61 The Intergovernmental Panel on Climate Change (IPCC) has predicted that human 62 activities and global climate change cause variations in frequency, intensity and duration 63 of many extreme weather events, including heatwaves and cold spells.[1] Although the 64 amount of cold spells may decrease over most land areas due to global warming, a few 65 recent studies found that the persistent shift of the Arctic polar vortex and Arctic 66 amplification associated with global warming could lead to increased extremely cold 67 events in mid-latitudes.[2, 3]. Over the last few years, the impacts of cold spells on 68 human health have gained growing attention from the public. Many studies have reported 69 positive relationships between cold spells and mortality[4-6] while the impacts of cold 70 spells on hospital visits or admissions are under-examined.

71 Chronic obstructive pulmonary disease (COPD) is one of the common respiratory

Page 5 of 34

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
17	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44	
45	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
ΟU	

72	diseases characterized by poorly reversible limitation of airflow.[7] Owing to its high
73	prevalence, morbidity, mortality and economic burden globally, COPD has been an
74	important public health concern and will remain a huge challenge for healthcare
75	practitioners in the foreseeable future.[8] Thus, it is crucial to identify the risk factors of
76	COPD to improve strategies on prevention and intervention. Given the projected climate
77	change, extreme temperature events potentially pose threats to COPD patients. Many
78	epidemiological studies have indicated that COPD has higher rates of exacerbation and
79	hospitalization with lower temperatures.[9-13] We hypothesized that cold spells, defined
80	as prolonged periods of extremely cold weather, may be more detrimental to COPD
81	patients, and could cause more hospitalizations for acute exacerbations (AECOPD).[14]
82	However, few studies have been carried out on the association between cold spells and
83	AECOPD hospitalizations.[15]
84	As the world's largest country by population, China shoulders the enormous burden of
85	COPD. A national cross-sectional study from 2012 to 2015 showed that the prevalence of
86	COPD among Chinese adults aged 20 years and older was 8.6% (an estimated of 99.9
87	million COPD patients).[16] On the other hand, with most areas located in mid-latitudes,
88	China has experienced several severe cold spells in recent years. The cold spells in
89	2008 resulted in a significantly higher all-cause mortality in subtropical China and
90	estimated losses exceeding \$22.3 billion.[17, 18] Moreover, the public now has a better

91 perception of the potential risks of extreme temperatures in China, especially those with

92 chronic conditions.[19] Since no relevant studies have been reported in China, it is of

93 great value to assess the association between cold spells and AECOPD hospitalizations

94 to build prevention and adaption strategies suitable to local conditions (e.g., climate type,

95 socio-demographic status of residents), which may be different from other regions.

96 Cold spells have been defined differently due to the heterogeneity of climate and

2	
2	
5	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
-1/ /0	
4ð	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
59	
60	
50	

97	people's adaptive capacities in different regions. Previous studies suggested that the
98	effects of cold spells varied by different cold spell characteristics and individual-specific
99	factors.[20, 21] we have three main objectives in this work: (1) to illuminate the short-term
100	effects of cold spells on the risk of hospitalizations for AECOPD with time-series
101	methods; (2) to investigate the effect modification of cold spell intensities and durations
102	by fitting different definitions and to explore the optimal cold spell definition in this region;
103	(3) to identify potentially vulnerable populations through stratified analyses. The results
104	could help better understand the relationship between extremely cold events and
105	AECOPD hospitalizations, and provide scientific evidence in policymaking for local
106	prevention and intervention of AECOPD.
107	
108	MATERIALS AND METHODS
109	Data collection
110	Beijing, the capital of China, is located in the northern part of China (39°56′N,
110 111	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016.
110 111 112	Beijing, the capital of China, is located in the northern part of China (39°56′N, 116°20′E). The area covers 16410.54 km², with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive
110 111 112 113	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons.
110 111 112 113 114	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were
 110 111 112 113 114 115 	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All
110 111 112 113 114 115 116	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All government and private hospitals at the secondary or tertiary level in Beijing are required
 110 111 112 113 114 115 116 117 	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All government and private hospitals at the secondary or tertiary level in Beijing are required to submit their discharge records to the database.[22, 23] Each record consists of the
 110 111 112 113 114 115 116 117 118 	Beijing, the capital of China, is located in the northern part of China (39°56′N, 116°20′E). The area covers 16410.54 km², with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All government and private hospitals at the secondary or tertiary level in Beijing are required to submit their discharge records to the database.[22, 23] Each record consists of the following information: admission date, discharge date, age, gender, address, diagnosis
 110 111 112 113 114 115 116 117 118 119 	Beijing, the capital of China, is located in the northern part of China (39°56′N, 116°20′E). The area covers 16410.54 km², with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All government and private hospitals at the secondary or tertiary level in Beijing are required to submit their discharge records to the database.[22, 23] Each record consists of the following information: admission date, discharge date, age, gender, address, diagnosis and International Classification of Diseases 10 th revision (ICD-10) diagnostic code. We
 110 111 112 113 114 115 116 117 118 119 120 	Beijing, the capital of China, is located in the northern part of China (39°56'N, 116°20'E). The area covers 16410.54 km ² , with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All government and private hospitals at the secondary or tertiary level in Beijing are required to submit their discharge records to the database.[22, 23] Each record consists of the following information: admission date, discharge date, age, gender, address, diagnosis and International Classification of Diseases 10 th revision (ICD-10) diagnostic code. We excluded the records with missing or wrong information on residential addresses. Only
 110 111 112 113 114 115 116 117 118 119 120 121 	Beijing, the capital of China, is located in the northern part of China (39°56′N, 116°20′E). The area covers 16410.54 km², with more than 21 million population in 2016. Beijing has a typical semi-humid continental monsoon climate with four distinctive seasons. Daily hospitalizations for AECOPD from January 1, 2012, to December 31, 2016, were collected from the Beijing Public Health Information Center (http://www.phic.org.cn/). All government and private hospitals at the secondary or tertiary level in Beijing are required to submit their discharge records to the database.[22, 23] Each record consists of the following information: admission date, discharge date, age, gender, address, diagnosis and International Classification of Diseases 10 th revision (ICD-10) diagnostic code. We excluded the records with missing or wrong information on residential addresses. Only those among Beijing residents admitted to hospitals with AECOPD as the primary

Page 7 of 34

1 2 BMJ Open

3	122	discharge diagnosis (ICD-10: .144) were included in the study [23] The study was
4 5		
6 7	123	approved by the ethical committee of Peking Union Medical College Hospital. All the data
, 8 9	124	for the analysis were anonymous at collection.
10 11	125	We collected the daily 2012–2016 meteorological data in Beijing from the China
12 13	126	Meteorological Data Sharing Service System, including daily mean temperature (°C),
14 15 16	127	daily mean relative humidity (%) and daily mean air pressure (hPa). For the same period,
17 18	128	the daily air quality index (AQI) was obtained from the China National Environmental
19 20	129	Monitoring Centre. The AQI value denotes the maximum value of individual air quality
21 22	130	indexes (IAQI) of six monitored air pollutants (particulate matter with aerodynamic
23 24 25	131	diameter<2.5 μ m (PM _{2.5}), particulate matter with aerodynamic diameter<10 μ m (PM ₁₀),
26 27	132	nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone). Considering the impact of
28 29	133	influenza viral infectious on AECOPD,[13, 24] we also accessed the data of virological
30 31 32	134	surveillance from the Chinese National Influenza Center (CNIC)
33 34	135	(http://www.chinaivdc.cn/cnic/). The CNIC monitors the activity of seasonal influenza
35 36	136	viruses in China and reports weekly positive rates of influenza isolations in the northern
37 38 30	137	and southern parts separately. In this study, the onset of influenza epidemics (a binary
40 41	138	variable representing days with relatively high influenza episodes)[25, 26] was defined as
42 43	139	when the proportion of isolates positive for influenza in any given week exceeded 30% of
44 45	140	the maximum weekly positive isolation rate in the whole surveillance season (Influenza
46 47 48	141	surveillance season was defined from the 27 th week of the previous year to the 26 th week
49 50	142	of the following year) in northern China.[27]
51 52	143	
53 54 55	144	Cold spell definitions
56 57	145	The definition of cold spells varied across the research field due to distinct climatic
58 59 60	146	features and temperature variations in different regions. As to the prior studies, cold

4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
 2∆	
2- 1 25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
50	
51	
57	
52	
22	
54	
55	
56	
5/	
58	
59	
60	

1 2 3

147	spells were usually defined based on their temperature thresholds and durations.[4, 15,
148	28] Instead of specific temperatures as thresholds, percentiles of temperature were
149	shown to have a better model fit according to quasi-Poisson Akaike Information Criterion
150	(Q-AIC).[6] Moreover, some researchers suggested that daily mean temperature is
151	superior to the minimum or maximum temperature as an indicator to define cold spells
152	because it reflects the exposure throughout the day rather than a short period.[20, 29]
153	Therefore, we defined cold spell episodes as days when daily mean temperature at or
154	below the 10 th , 5 th or 3 rd percentile for at least 2, 3 or 4 consecutive days of the study
155	period.[21] To avoid the possible biases caused by a few extreme summer events, we
156	restricted the study period to the five coldest adjacent months (from November of the
157	previous year to March of the following year) for each year.[6, 15, 20] The cold spell was
158	treated as a dichotomous variable, with a value of 1 during the cold spell period. The
159	statistical analyses were performed separately for each definition of cold spells.
160	

161 Statistical methods

162 In the analyses, the dependent variable was the number of daily AECOPD 163 hospitalizations following a quasi-Poisson distribution. Hence, we adopted a distributed 164 lag model (DLM) [30] with a quasi-Poisson generalized linear regression model. To 165 investigate the effects of cold spells on AECOPD hospitalizations, we compared the 166 counts of AECOPD admissions during cold spell days with those during non-cold spell 167 days, after adjusting for relative humidity, atmospheric pressure, AQI, seasonality, long-168 term trends, statutory holiday, influenza epidemics, and day of the week (DOW). The Q-169 AIC was employed to choose the optimal cold spell definition and degrees of freedom 170 (df). The model was established as follows:

171 $Y_t \sim quasiPoisson(\mu_t)$

Page 9 of 34

BMJ Open

2		
3	172	$Log(\mu_t) = \alpha + cb(CS_t, lag, df = 3) + ns(RH_t, df = 3) + ns(AP_t, df = 3) + ns(AQI_t, df = 3)$
4 5	173	$+ns(Time_{t}df = 3/per year) + \gamma DOW_{t} + \delta Holiday_{t} + \nu Influenza_{t}$,
6		
7 8	174	where t is the day of observation; \mathbf{Y}_{t} is the expected number of hospitalizations for
9 10	175	AECOPD on day t; α is the intercept; CS $_t$ denotes the cold spells on day t (0=non-cold
11 12	176	spell days, and 1=cold spell days); cb represents the cross-basis function, including a
13		
14 15	177	linear function and a natural cubic spline function with 3 df to assess the linear and
16 17	178	lagged effects of the cold spells separately. We fitted a lag structure up to 21 days in the
18 19	179	models to completely capture the flexible lagged effects of cold spells exposure. ns refers
20 21 22	180	to the natural cubic spline function. ns with 3 df was applied for the mean relative
22 23 24	181	humidity (RH _t), mean atmospheric pressure (AP _t) and air quality index (AQI _t),
25 26	182	respectively. ns with 3 df per year was used to control the seasonality and long-term
27 28	183	trends. DOW _t is a categorical variable indicating the day of the week on day t, and γ is
29 30 31	184	the coefficient. Holiday _t is a binary variable (0=non-statutory holiday, and 1=statutory
32 33	185	holiday) and δ is the coefficient. Influenzat is a dichotomous variable with the value of "1"
34 35	186	for the influenza epidemic on day t, and v is the coefficient. The statistical methods,
36 37 28	187	maximum lag days and confounding factors included in the model were commonly
39 40	188	utilized and described in previous publications.[4, 17, 20, 21, 31, 32]
41 42	189	To observe the variation trend of lagged effects, we calculated the single-day lagged
43 44	190	effects (from lag0 to lag21) and cumulative effects (lag0, lag0–7, lag0–14 and lag0–21) of
45 46 47	191	cold spells on AECOPD hospitalizations, respectively. To identify the susceptible
48 49	192	subpopulations for more targeted public health interventions, we further conducted
50 51	193	subgroup analyses to investigate the potential modification effects by gender (male and
52 53	194	female) and age (0-64 years old and ≥65 years old) under the optimal definition of cold
54 55 56	195	spells. The statistical differences of the risk estimates between the subgroups were
57 58	196	examined by the Z-test with the following equation:

2					
3	197	$Z = (E_1 - E_2) / \sqrt{(SE_1^2 + SE_2^2)}$			
4 5					
6 7	198	where Z represents the Z-test value; E_1 and E_2 denote the effect estimates of two			
8 9	199	categories; SE ₁ and SE ₂ are corresponding standard errors of E ₁ and E ₂ .			
10 11	200				
12 13	201	Sensitivity analysis			
14 15 16	202	We performed the sensitivity analyses by altering the df with 3–5 df per year of the			
17 18	203	long-term trend, 3–5 df of the relative humidity, 3-5 df of the air pressure, 3-5 df of the			
19 20	204	AQI and 3–5 df of the lag dimension in the DLM under the optimal definition of cold			
21 22 22	205	spells. We used R software version 3.6.1 with the "dlnm" and "splines" packages to run			
23 24 25	206	the analyses. All statistical tests were two-sided and values of $p < 0.05$ were considered			
26 27	207	statistically significant.			
28 29	208				
30 31 32	209	Patient and public involvement			
33 34	210	Patients were not involved in the development of the research question and outcome			
35 36	211	measures, study design or conduct of this study.			
37 38 39	212				
40 41	213	RESULTS			
42 43	214	Data description			
45 46	215	Table 1 shows the descriptive statistics of the study population, meteorological			
47 48	216	variables and AQI during the cold seasons (November to March) from 2012 to 2016 in			
49 50	217	Beijing. There was a total of 84,571 AECOPD hospitalizations throughout the study			
51 52 53	218	period. Among these cases, 63.6% were males and 36.4% were females. 83.9% of all			
54 55	219	patients were aged 65 years and above. The average of daily mean temperature, relative			
56 57	220	humidity, air pressure, and AQI were 0.9° C (range, -16.0-18.0°C), 46.6% (range, 8.0-			
58 59 60	221	98.0%), 1025.3hPa (range, 1005.0-1044.0hPa) and 126.3 (range, 17.0-485.0),			

BMJ Open

2		
3 4	222	respectively.
5		
6	223	Table 2 shows the overview information of cold spells under different definitions. More
/ 8	224	days were defined as cold shell days with higher temperature thresholds and shorter
9	224	days were defined as cold spen days with higher temperature thresholds and shorter
10	225	duration. We observed the most cold spell episodes and days in four years with the
11 12		
13	226	definition of periods for at least 2 days and daily mean temperature below or at the 10^{th}
14	007	
15 16	221	percentile (-6°C). In contrast, there were only 2 cold spell episodes (10 cold spell days) if
17	228	we defined cold spells as periods for 4 or more consecutive days when daily mean
18	220	we defined bold spend to periods for 4 of more bondebalive days when daily mean
19 20	229	temperature was below or at the 3 rd percentile (-8°C).
20 21		
22	230	
23 24	231	Effects of cold spells under different definitions
24 25	201	
26	232	Figure 1 depicts the lag structures of associations between cold spells under 9 different
27 20		
20 29	233	definitions and AECOPD hospitalizations of the total population. All cold spells had
30	224	impacts on the risks of heapitalizations for AECORD and most trands of their lagged
31 22	234	impacts on the fisks of hospitalizations for AECOPD and most trends of their lagged
32 33	235	effects were non-linear with two patterns. One was that the relative risk (RR) of
34		
35	236	hospitalizations for AECOPD reached a maximum on the days (lag0) of cold spells, then
30 37	007	
38	237	decreased and remained significant for 10-16 days (lag10-lag16). The other one was that
39 40	238	the RR became significant on the 3^{rd} or 4^{th} day (lag3 or lag4) after exposure to cold
40 41	200	the ray became significant on the or of a day (lage of lage) after exposure to bold
42	239	spells, then gradually reached the maximum at about the 8 th day (lag8) and lasted till the
43		
44 45	240	15 th -17 th days (lag15-lag17).
46	044	Table 2 shows the sumulative effects of cold shalls on AECODD beenitalizations under
47	241	Table 3 shows the cumulative effects of cold spells on AECOPD hospitalizations under
48 49	242	different definitions. For each definition, the cumulative relative risk (CRR) increased with
50		
51	243	longer cumulative lags, with the highest CRR at lag0-21. Among 9 different definitions,
52 53		
55 54	244	the CRRs of cold spells at lag0-21 increased as the definition had a longer duration or
55	245	lower temperature threshold. The maximum CPP over lage 21 when the temperature
56 57	240	iower temperature threshold. The maximum CKK over lago-21 when the temperature
58	246	threshold was set at the 10 th percentile appeared at the duration≥4 consecutive davs. In
59		
60		

3		
4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
' 1	5	
' 1	6	
י 1	7	
1 1	/ 0	
1	0 0	
ו ר	9	
2	1	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	0	
4	1	
4	ว	
л Л	2 2	
т 4	⊿	
+ ⊿	-T 5	
+ ∕	5 6	
+ /	7	
+ 1	/ 0	
+ 1	0 0	
4 F	2	
Э г	1	
Э г	1	
5	2	
5	5	
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	

60

1 2

247	comparison, the CRR values of the duration \geq 3 consecutive days and \geq 2 consecutive
248	days were lower. Likewise, when the duration was set for at least 4 consecutive days, the
249	maximum CRR over lag0-21 appeared at the temperature range defined as $\leq 3^{rd}$
250	percentile, while the CRRs of temperature threshold at the 5^{th} and 10^{th} percentile were
251	lower. The lowest Q-AIC value (7769.8) indicating the best model fit was observed in
252	Model 3 (Table 2). Hence, the optimal cold spell definition was daily mean temperature
253	\leq 10 th percentile (-6°C) with at least 4 consecutive days during the study period. The
254	optimal model was able to find the most significant single-day lagged effect earliest (lag0)
255	and remained significant until the 14 th day (lag14) (Figure 1).
256	Table 4 and Figure 2 reveal the results for the subgroup analyses of gender and age
257	based on the optimal cold spell definition. The effects of cold spells were similar between
258	males and females, with the most significant single-day lagged effect both occurred at
259	lag0 (Z=0.041, P=0.48). The cumulative effects at lag0-21 of the two genders also
260	differed slightly (Z=-0.730, P=0.23). Additionally, in the subgroups stratified by the age,
261	the most significant single-day lagged effect and cumulative effect for people aged≥65
262	years were at lag0 and lag0-21, respectively. However, no significant effect of cold spells
263	was observed in those aged 0-64 years. The results of sensitivity analyses indicated that
264	the effect estimates of cold spells under the optimal definition on AECOPD
265	hospitalizations were still robust. (See Supplementary Materials, Tables S1–S5).
266	
267	DISCUSSION
268	In this study, we showed that cold spells were associated with increase hospitalizations
269	for AECOPD. The adverse impacts of cold spells varied with their durations and

270 intensities. Based on the statistical model fit, the optimal definition of cold spells was daily

271 mean temperature less than or equal to the 10th percentile lasting for at least 4

Page 13 of 34

BMJ Open

consecutive days during the study period. The elderly seemed more sensitive to cold
spells than the younger, while the susceptibility difference between genders was not
noticeable.

Our finding is in accordance with previous studies reporting an excess of AECOPD hospitalizations, [15] emergency visits [33] and mortality [4, 6, 33] associated with cold spells. For instance, Monteiro et al. reported significant effects of cold spells identified by various indices on COPD hospitalizations with a lagged effect of at least two weeks.[15] Several underlying mechanisms may explain for elevated COPD morbidity and mortality attributable to extremely cold events. Firstly, cold exposure has been found to be related to a decline in lung function (FEV₁, FVC and PEF) among COPD patients.[34, 35] Secondly, Koskela et al. reported that cold air could directly induce bronchoconstriction, leading to excessive dyspnea in patients with COPD.[36] Thirdly, cold exposure may suppress the immune response and increase susceptibility to viral infections in humans.[37] Meanwhile, the transmission efficiency of the influenza virus is inversely correlated with ambient temperature.[38] Fourthly, the cold temperature may provoke airway inflammation and mucin hypersecretion in airway epithelium, which results in COPD morbidity and mortality by blocking airways and causing recurrent infections.[39, 40] We found that the CRR values of AECOPD hospitalizations increased with longer duration and higher intensity of cold spells. Some prior studies had similar findings,[20, 21] indicating that both the duration and the intensity affect the health risks of cold spells. According to the minimum Q-AIC value criterion, the optimal definition of cold spells was the daily average temperature at or below the 10th percentile with 4 or more consecutive days. Compared with other definitions, this one had a lower intensity and longer duration, and the most significant single-day lagged effect of cold spells on AECOPD

r	
Z	
3	
4	
5	
2	
6	
7	
8	
0	
9	
10	
11	
10	
12	
13	
14	
15	
15	
16	
17	
18	
10	
19	
20	
21	
 วา	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
20	
32	
33	
34	
25	
35	
36	
37	
20	
38	
39	
40	
11	
41	
42	
43	
ΔΛ	
4-	
45	
46	
47	
-+/	
48	
49	
50	
50 E 1	
эΙ	
52	
53	
5 J 5 A	
54	
55	
56	
55	
5/	
58	
59	
60	
00	

1

297	hospitalizations appeared earliest (lag0). Our results agree with a study in Porto showing
298	that the moderately low temperature with long periods contributed greater to COPD
299	exacerbation than extremely low temperature with shorter-lasting days.[15] However,
300	studies on some other diseases defined the optimal cold spell definitions with a threshold
301	at the 5 th percentile or at least 2 days duration, [21, 31] indicating different definitions may
302	apply to different outcomes. In addition, some studies reported the temporal changes in
303	people's adaption capacities to cold spells during recent decades under climate
304	change.[5, 41] Overall, more effective cold spell definitions and warning systems adapted
305	to regional climate, specific diseases, and dynamic changes of the population's sensitivity
306	should be further studied and implemented in the future.
307	In the subgroup analyses based on the optimal cold spell definition, we found that the
308	effects of cold spells on AECOPD hospitalizations were more significant in the elderly
309	(aged ≥65 years) than people aged 0–64 years. This finding is consistent with previous
310	studies.[4, 12, 42] The reasons may point to reduced thermoregulatory ability, higher
311	prevalence of chronic diseases[20, 33] and impaired immunity[43] in the elderly. Note
312	that since aging is one of the risk factors of COPD, most patients in our study were over
313	64, giving more power to achieve statistical significance. However, some studies showed
314	the opposite results.[6] It was speculated that the younger tend to spend more time
315	outdoors, which increase opportunities for exposure to extremely cold temperature. In
316	terms of gender, we found similar impacts of cold spells among males and females,
317	which corresponds with previous studies.[4, 12, 42]
318	Our study has significant public health implications for local prevention of AECOPD,
319	development of early warning systems and rational allocation of medical and health
320	resources to mitigate the COPD burden caused by cold spells. We showed substantial
321	effects of cold spells on the risk of AECOPD hospitalizations with a lagged effect of about

Page 15 of 34

1 2

BMJ Open

2	
ر ۲	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 5-	
55	
56	
57	
58	
59	
60	

322 3 weeks, urging for effective and practical guidelines for preventions, particularly for 323 COPD patients during cold spells in China. Both the government and individuals should 324 take practical actions. The meteorological departments should improve early warning 325 systems with timely forecast and publication of extremely cold events. Moreover, the 326 government should exert great efforts to raise public awareness of the health hazards of 327 cold spells and ensure adequate public and medical services coping with cold spells.[4] 328 As for individuals, it has been reported that staying indoor and wearing warm clothing 329 could reduce mortality in extremely cold weather.[44] Tseng et al. suggested that COPD 330 patients who received inhaled medicine were less affected by cold temperature-related 331 COPD exacerbation.[12] Therefore, keeping warm, minimizing the outdoor activities and 332 taking medications regularly are vital measures to fight against cold spells for individuals 333 with COPD, especially for the elderly. 334 The main strengths of our study are as follows: Firstly, to the best of our knowledge, 335 this is the first study to investigate the relationship between cold spells and AECOPD 336 hospitalizations in China. Secondly, we controlled air quality and influenza epidemics as 337 confounding factors, which were not included by some previous studies. Lee et al. have 338 reported that a higher influenza virus detection rate was correlated with AECOPD.[14] A 339 previous study from Beijing has found significant associations between short-term 340 exposures to air pollution and hospitalizations for AECOPD.[23] Existing literatures have 341 also shown that both air pollution and influenza epidemics could contribute to cold-related 342 health effects.[45, 46] Moreover, air pollutants may interact with viral infections to 343 precipitate AECOPD rather than acting alone. Feng and colleagues reported that ambient

344 PM_{2.5} was associated with influenza-like illness risk in Beijing in the flu season.[47]

345 Further research on the interactions among cold spells, air pollution and influenza on

346 AECOPD is therefore needed. Thirdly, we identified the elderly more vulnerable to cold

spells by stratified analyses, which guide more targeted prevention strategies. Meanwhile, the study also has several limitations: Firstly, as an ecological study, the association between cold spells and AECOPD hospitalizations does not imply causality. Secondly, different socio-economic status or other factors on an individual level might be confounding factors and were not considered in the association. Thirdly, the meteorological variables and AQI were all from monitoring stations, not reflecting the individual level of exposures. Moreover, people are more likely to stay indoors with heating systems during extremely cold days in northern China, so inevitable exposure measurement errors may lead to bias. Fourthly, due to the limited availability of local data, the positive rates of influenza isolations were from the northern part of China but not only Beijing. Further studies with local influenza data included as a continuous variable in the model are warranted. Lastly, the data from only one city weakens the evie extrapolation validity of the study.

CONCLUSION

Our study demonstrates that short-term exposure to cold spells is associated with an increased risk of AECOPD hospitalizations. The cumulative effects increased with the intensities and the durations of cold spells. The elderly are more vulnerable to AECOPD hospitalizations during cold spell periods. These findings provide scientific foundations for comprehensive public health strategies to reduce cold spell-related AECOPD hospitalizations in Beijing, China.

Contributors: ZF obtained the original data and funding. ZF, XJ, YL and YC designed the

study. DK, XL, JF, YZ and ZC preprocessed the data. YL, YC, and YZ analyzed the data.

YL and YC drafted the manuscript. XZ, KX, CJ and ZF reviewed and edited the

3 4	3
5 6	3
7 8 0	3
9 10 11	3
12 13	3
14 15	3
16 17	3
18 19 20	3
20 21 22	3
23 24	
25 26	
27 28	
29 30	
31 32 33	
33 34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51 52	
52 53 54	
54 55 56	
57 58	
59 60	

372 manuscript. All authors have read and approved the final manuscript. ZF is the study

373 guarantor.

374 Funding: This work was supported by National Key Research and Development Plan

375 [2017YFC0211703], National 973 Project [2015CB553400], Chinese Academy of Medical

376 Sciences (CAMS) Initiative for Innovative Medicine [CAMS 2016ZX310181-5/4, CAMS

377 2017-I2M-2-001], and National Natural Science Foundation [91643208, 41450006].

378 Competing interests: None declared.

379 Ethical approval: This study was approved by the ethical review committee of Peking

380 Union Medical College Hospital.

381 Data sharing statement: No additional data are available.

2		
3 4	382	REFERENCES
5	383	1 IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I,
6 7	384	II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
8	385	[Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151
9 10	386	pp.
11	387	2 Cohen J, Screen JA, Furtado JC, et al. Recent Arctic amplification and extreme mid-
12 13	388	latitude weather. <i>Nature Geoscience</i> 2014; 7 :627-37.
14	389	3 Zhang J, Tian W, Chipperfield MP, et al. Persistent shift of the Arctic polar vortex towards
15 16	390	the Eurasian continent in recent decades. Nature Climate Change 2016;6:1094-9.
10	391	4 Chen J, Yang J, Zhou M, et al. Cold spell and mortality in 31 Chinese capital cities:
18	392	Definitions, vulnerability and implications. Environment international 2019; 128 :271-8.
19 20	393	5 Lee W, Choi HM, Lee JY, et al. Temporal changes in mortality impacts of heat wave and
21	394	cold spell in Korea and Japan. <i>Environment international</i> 2018; 116 :136-46.
22 23	395	6 Han J, Liu S, Zhang J, et al. The impact of temperature extremes on mortality: a time-
24	396	series study in Jinan, China. <i>BMJ open</i> 2017; 7 :e014741.
25 26	397	7 Rabe KF, Watz H. Chronic obstructive pulmonary disease. <i>The Lancet</i> 2017; 389 :1931-
27	398	40.
28 20	399	8 Lopez-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology
30	400	2016; 21 :14-23.
31	401	9 Donaldson GC, Goldring JJ, Wedzicha JA. Influence of season on exacerbation
32 33	402	characteristics in patients with COPD. <i>Chest</i> 2012; 141 :94-100.
34	403	10 McCormack MC, Paulin LM, Gummerson CE, et al. Colder temperature is associated
35 36	404	with increased COPD morbidity. <i>Eur Respir J</i> 2017; 49 :1601501.
37	405	11 Chaturvedi S, Tseng C-M, Chen Y-T, et al. The Effect of Cold Temperature on Increased
38 39	406	Exacerbation of Chronic Obstructive Pulmonary Disease: A Nationwide Study. PloS one
40	407	2013; 8 : e57066.
41 42	408	12 Tseng CM, Chen YT, Ou SM, et al. The effect of cold temperature on increased
42 43	409	exacerbation of chronic obstructive pulmonary disease: a nationwide study. PloS one
44	410	2013; 8 :e57066.
45 46	411	13 Lee J, Jung HM, Kim SK, et al. Factors associated with chronic obstructive pulmonary
47	412	disease exacerbation, based on big data analysis. Scientific reports 2019;9:6679.
48 49	413	14 Hajat S, Armstrong B, Baccini M, et al. Impact of high temperatures on mortality: is there
50	414	an added heat wave effect? <i>Epidemiology (Cambridge, Mass)</i> 2006; 17 :632-8.
51 52	415	15 Monteiro A, Carvalho V, Gois J, et al. Use of "Cold Spell" indices to quantify excess
53	416	chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March
54 55	417	2000-2007): case study in Porto. International journal of biometeorology 2013;57:857-70.
56	418	16 Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive
57	419	pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-
58 59	420	sectional study. <i>The Lancet</i> 2018; 391 :1706-17.
60	-	

Page 19 of 34

1 2

BMJ Open

3	421	17 Xie H, Yao Z, Zhang Y, et al. Short-term effects of the 2008 cold spell on mortality in
4 5	422	three subtropical cities in Guangdong Province, China. Environmental health perspectives
6	423	2013; 121 :210-6.
7 8	424	18 Zhou B, Gu L, Ding Y, et al. The Great 2008 Chinese Ice Storm: Its Socioeconomic-
9	425	Ecological Impact and Sustainability Lessons Learned. Bulletin of the American
10 11	426	Meteorological Society 2011;92:47-60.
12	427	19 Ban J, Huang L, Chen C, <i>et al.</i> Integrating new indicators of predictors that shape the
13 14	428	public's perception of local extreme temperature in China. <i>The Science of the total</i>
15	429	<i>environment</i> 2017; 579 :529-36.
16 17	430	20 Wang L, Liu T, Hu M, et al. The impact of cold spells on mortality and effect modification
17	431	by cold spell characteristics. Scientific reports 2016;6:38380.
19	432	21 Gao J, Yu F, Xu Z, et al. The association between cold spells and admissions of
20 21	433	ischemic stroke in Hefei, China: Modified by gender and age. The Science of the total
22	434	environment 2019; 669 :140-7.
23 24	435	22 Liu X, Kong D, Fu J, et al. Association between extreme temperature and acute
25	436	myocardial infarction hospital admissions in Beijing, China: 2013-2016. <i>PloS one</i>
26 27	437	2018; 13 :e0204706.
28	438	23 Liang L, Cai Y, Barratt B, et al. Associations between daily air quality and hospitalisations
29 30	439	for acute exacerbation of chronic obstructive pulmonary disease in Beijing, 2013–17: an
31	440	ecological analysis. <i>The Lancet Planetary Health</i> 2019; 3 :e270-e9.
32	441	24 Wedzicha JA, Seemungal TAR. COPD exacerbations: defining their cause and
33 34	442	prevention. <i>The Lancet</i> 2007; 370 :786-96.25 Solimini AG, Renzi M. Association between Air
35	443	Pollution and Emergency Room Visits for Atrial Fibrillation. International journal of
36 37	444	environmental research and public health 2017; 14 :661.
38	445	26 Stafoggia M, Samoli E, Alessandrini E, et al. Short-term associations between fine and
39 40	446	coarse particulate matter and hospitalizations in Southern Europe: results from the MED-
41	447	PARTICLES project. Environmental health perspectives 2013;121:1026-33.
42 43	448	27 Cowling BJ, Wong IO, Ho LM, et al. Methods for monitoring influenza surveillance data.
44	449	Int J Epidemiol 2006; 35 :1314-21.
45 46	450	28 Song X, Wang S, Li T, <i>et al.</i> The impact of heat waves and cold spells on respiratory
40	451	emergency department visits in Beijing, China. The Science of the total environment
48	452	2018; 615 :1499-505.
49 50	453	29 Guo Y, Jiang F, Peng L, et al. The association between cold spells and pediatric
51	454	outpatient visits for asthma in Shanghai, China. <i>PloS one</i> 2012; 7 :e42232.
52 53	455	30 Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-
54	456	linear models. <i>Stat Med</i> 2014; 33 :881-99.
55 56	457	31 Cheng Q, Wang X, Wei Q, et al. The short-term effects of cold spells on pediatric
57	458	outpatient admission for allergic rhinitis in Hefei, China. <i>The Science of the total environment</i>
58 59	459	2019; 664 :374-80.
60		
		18

Page 20 of 34

BMJ Open

32 Liang Z, Wang P, Zhao Q, et al. Effect of the 2008 cold spell on preterm births in two subtropical cities of Guangdong Province, Southern China. The Science of the total environment 2018;642:307-13. 33 de'Donato FK, Leone M, Noce D, et al. The impact of the February 2012 cold spell on health in Italy using surveillance data. *PloS one* 2013;8:e61720. 34 Lin Z, Gu Y, Liu C, et al. Effects of ambient temperature on lung function in patients with chronic obstructive pulmonary disease: A time-series panel study. The Science of the total environment 2018;619-620:360-5. 35 Donaldson GC, Seemungal T, Jeffries DJ, et al. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J 1999;13:844-9. 36 Koskela HO, Koskela AK, Tukiaineu HO. Bronchoconstriction due to cold weather in COPD. The roles of direct airway effects and cutaneous reflex mechanisms. Chest 1996;**110**:632-6. 37 Shephard RJ, Shek PN. Cold exposure and immune function. Can J Physiol Pharmacol 1998;76:828-36. 38 Lowen AC, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature. PLoS pathogens 2007;3:1470-6. 39 Li M, Li Q, Yang G, et al. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol 2011;128:626-34.e1-5. 40 Juan Y, Haiqiao W, Xie W, et al. Cold-inducible RNA-binding protein mediates airway inflammation and mucus hypersecretion through a post-transcriptional regulatory mechanism under cold stress. Int J Biochem Cell Biol 2016;78:335-48. 41 Chung Y, Noh H, Honda Y, et al. Temporal Changes in Mortality Related to Extreme Temperatures for 15 Cities in Northeast Asia: Adaptation to Heat and Maladaptation to Cold. American journal of epidemiology 2017;185:907-13. 42 Ma W, Yang C, Chu C, et al. The impact of the 2008 cold spell on mortality in Shanghai, China. International journal of biometeorology 2013;57:179-84. 43 Goodwin JS. Decreased immunity and increased morbidity in the elderly. Nutr Rev 1995:53:S41-4: discussion S4-6. 44 Donaldson GC, Ermakov SP, Komarov YM, et al. Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: observation and interview study. BMJ 1998;317:978-82. 45 Qiu H, Tan K, Long F, et al. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China. International journal of environmental research and public health 2018;15:492. 46 Huynen MM, Martens P, Schram D, et al. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environmental health perspectives 2001;109:463-70. Feng C, Li J, Sun W, et al. Impact of ambient fine particulate matter (PM2.5) exposure on

2	
3	499
4 5	500
6	504
7	501
8	500
9 10	502
11	500
12	503
13 14	504
15	
16	505
17 18	506
19	
20	507
21 22	
23	
24	
25 26	
20 27	
28	
29	
30 31	
32	
33	
34 25	
36	
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47	
40 49	
50	
51	
52 53	
54	
55	
56 57	
57 58	
59	
60	

499 the risk of influenza-like-illness: a time-series analysis in Beijing, China. Environmental 500 health : a global access science source 2016;15:17.

Figure legend/caption: 502

- 503 Figure 1 Lag-response relationships between cold spells under different definitions and
- 504 AECOPD hospitalizations of the total population in Beijing, 2012-2016.

.ships b. .≠ in Beijing, 20. 506 Figure 2 Lag-response relationships between cold spells and AECOPD hospitalizations

507 stratified by gender and age in Beijing, 2012-2016. Table 1 Statistic summary of daily hospitalizations for AECOPD (counts per day),

meteorological variables and air quality index in cold seasons (November-March) in Beijing, China, 2012-2016. Total Mean Min P25 Media P75 Max (SD) n AECOPD 8457 111.7(41.0 22.0 78.0 113.0 141.0 226.0 hospitalizations 1) Gender 5382 71.1(25.8) 75.0 89.0 Male 12.0 49.0 158.0 9 Female 3074 40.6(17.7) 7.0 27.0 39.0 53.0 110.0 2 Age 0-64 years old 1360 18.0(8.3) 2.0 12.0 18.0 23.0 43.0 0 7097 ≥65 years old 93.8(34.3) 19.0 67.0 95.0 118.0 189.0 1 Environmental variables Mean temperature / 0.9(5.4) -16.0 -3.0 0.0 4.0 18.0 (°C) Relative humidity (%) / 46.6(20.4) 8.0 30.0 43.0 61.0 98.0 1 Air pressure (hPa) 1025.3(6.5 1005. 1021. 1026.0 1030. 1044. 0 0 0 0) 1 126.3(89.2 170.0 Air quality index 17.0 61.0 97.0 485.0)

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; P25, the 25th percentile; P75,

the 75th percentile; SD, standard deviation.

1 2 3

4 5

6 7 8

9 10

11 12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29 30

31

32 33

34

35 36

37

38 39

40

41

42

43 44

45

46 47

Model	Temperatur e threshold	Duratio n	Cold spell episodes	Cold spell days	Non-cold spell days	Q-AIC value	
1	≤10% (-6°C)	≥2d	17	77	680	7819.6	
2	≤10% (-6°C)	≥3d	11	65	692	7799.7	
3	≤10% (-6°C)	≥4d	6	50	707	7769.8	
4	≤5% (-7°C)	≥2d	8	37	720	7794.3	
5	≤5% (-7°C)	≥3d	5	31	726	7786.6	
6	≤5% (-7°C)	≥4d	3	25	732	7782.5	
7	≤3% (-8°C)	≥2d	7	23	734	7786.5	
8	≤3% (-8°C)	≥3d	5	19	738	7789.8	
9	≤3% (-8°C)	≥4d	2	10	747	7804.4	

Table 2 Overview information of cold spells under different definitions

Q-AIC, quasi-Poisson Akaike Information Criterion.

Table 3 Cumulative relative risk of cold spells under different definitions

on AECOPD hospitalizations of the total population in Beijing, 2012-2016.

Definition	CRR (95% CI)				
Delinition	Lag0	Lag0-7	Lag0-14	Lag0-21	
≤10% & ≥2d	1.030 (1.002-	1.200 (1.087-	1.278 (1.134-	1.236 (1.055-	
	1.058)*	1.326)*	1.439)*	1.448)*	
≤10% & ≥3d	1.027 (1.000-	1.188 (1.084-	1.299 (1.166-	1.353 (1.161-	
	1.054)*	1.303)*	1.448)*	1.577)*	
≤10% &≥4d	1.042 (1.013-	1.249 (1.136-	1.343 (1.206-	1.394 (1.193-	
	1.072)*	1.374)*	1.496)*	1.630)*	
≤5% & ≥2d	1.012 (0.980-1.045)	1.173 (1.055-	1.344 (1.188-	1.354 (1.141-	
		1.304)*	1.519)*	1.608)*	
≤5% & ≥3d	1.031 (1.000-	1.235 (1.114-	1.381 (1.220-	1.428 (1.206-	
	1.063)*	1.369)*	1.563)*	1.692)*	
≤5% & ≥4d	1.042 (1.006-	1.268 (1.132-	1.404 (1.234-	1.511 (1.262-	
	1.079)*	1.421)*	1.598)*	1.809)*	
≤3% & ≥2d	0.982 (0.944-1.021)	1.113 (0.960-1.290)	1.412 (1.171-	1.444 (1.113-	
			1.703)*	1.873)*	
≤3% & ≥3d	1.009 (0.970-1.049)	1.217 (1.051-	1.525 (1.264-	1.659 (1.278-	
		1.411)*	1.841)*	2.154)*	
≤3% & ≥4d	0.992 (0.951-1.035)	1.201 (0.999-1.443)	1.644 (1.261-	1.889 (1.315-	
			2.145)*	2.712)*	

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; CI, confidence interval; CRR,

cumulative relative risk.

**p*<0.05.

Table 4 Cumulative relative risk of cold spells[#] on AECOPD hospitalizations

stratified by gender and age in Beijing, 2012-2016.

Subaroup	CRR (95% CI)				
Subgroup	Lag0	Lag0-7	Lag0-14	Lag0-21	
Male	1.042 (1.011-	1.243 (1.123-	1.316 (1.173-	1.342 (1.136-	
	1.074)*	1.375)*	1.477)*	1.586)*	
Female	1.041 (1.005-	1.257 (1.119-	1.383 (1.215-	1.476 (1.211-	
	1.077)*	1.411)*	1.574)*	1.783)*	
Age<65	1.017 (0.972-1.064)	1.120 (0.963-1.303)	1.159 (0.977-1.376)	1.107 (0.862-1.422)	
Age≥65	1.046 (1.017-	1.275 (1.158-	1.382 (1.240-	1.456 (1.244-	
	1.077)*	1.404)*	1.540)*	1.705)*	

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; CI, confidence interval; CRR,

cumulative relative risk.

[#]The optimal cold spell definition was daily mean temperature ≤10th percentile (-6 °C) with at least 4

consecutive days during the study period.

**p*<0.05.

Figure 1 Lag-response relationships between cold spells under different definitions and AECOPD hospitalizations of the total population in Beijing, 2012-2016.

161x159mm (300 x 300 DPI)

BMJ Open

and age in Beijing, 2012-2016.

159x157mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Materials

Supplementary Tables

Table S1 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for lag dimension in the DLM model

Table S2 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for time per year in the DLM model

Table S3 The cumulative effects of cold spells under the optimal definition using different degreesof freedom for relative humidity in the DLM model

Table S4 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for air pressure in the DLM model

Table S5 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for air quality index in the DLM model

BMJ Open

Table S1 The cumulative effects of a	cold spells under the optimal	definition using a	different degrees
of freedom for lag dimension in the	e DLM model		

df for lag	Croup	CRR (95% CI)			
dimension	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
	Totai	(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	$(1.193 - 1.630)^{*}$
		1.042	1.243	1.316	1.342
	Male	$(1.011 - 1.074)^{*}$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586) [*]
Oa	Famala	1.041	1.257	1.383	1.476
3	remale	(1.005-1.077)*	$(1.119 - 1.411)^{*}$	$(1.215 - 1.574)^{*}$	(1.211-1.783)*
	ARACE	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
	A 00 > 65	1.046	1.275	1.382	1.456
	Age≥05	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	0.989	1.265	1.311	1.382
	TOLAI	(0.926-1.057)	$(1.149 - 1.392)^{*}$	$(1.173 - 1.465)^*$	$(1.182 - 1.615)^{*}$
	Mala	0.992	1.257	1.285	1.331
	IVIAIE	(0.925-1.064)	(1.135-1.393)*	$(1.141 - 1.448)^{*}$	(1.126-1.573) [*]
Λ	Famala	0.983	1.274	1.347	1.462 (1.210-
4	remale	(0.906-1.067)	(1.133-1.432)*	$(1.178 - 1.540)^{*}$	1.766)*
	Age<65	0.919	1.151	1.106	1.091
		(0.827-1.022)	(0.988-1.340)	(0.926-1.320)	(0.850-1.401)
		1.003	1.288	1.355	1.446
	Age≥65	(0.938-1.073)	$(1.169 - 1.419)^{*}$	(1.211-1.515)*	(1.235-1.692)*
	Tatal	1.001	1.271	1.313	1.389
	TOLAI	(0.888-1.128)	(1.150-1.404)*	$(1.174 - 1.468)^{*}$	$(1.185 - 1.628)^{*}$
	Mala	0.999	1.261	1.287	1.336
	IVIAIE	(0.880-1.136)	(1.134-1.403)*	$(1.141 - 1.451)^*$	(1.127-1.583)*
5	Female	1.004	1.285	1.350	1.474
		(0.868-1.161)	$(1.137 - 1.451)^*$	(1.180-1.545)*	$(1.216 - 1.787)^*$
	Ago-65	0.892	1.143	1.102	1.084
	AGE>00	(0.737-1.080)	(0.975-1.341)	(0.922-1.317)	(0.840-1.398)
	100>6F	1.023	1.297	1.358	1.456
	Age≥65	(0.907-1.155)	(1.172-1.434)*	(1.213-1.520)*	(1.240-1.710)*

Cl, confidence interval; df, degree of freedom; RR, relative risk.

**P*<0.05.

^aUsed in the study.

df for time	Group	CRR (95% CI)			
per year	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
	Totai	(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	(1.193-1.630)*
		1.042	1.243	1.316	1.342
	Iviale	$(1.011 - 1.074)^*$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586)*
O _a	Fomalo	1.041	1.257	1.383	1.476
3	remale	(1.005-1.077)*	$(1.119 - 1.411)^{*}$	$(1.215 - 1.574)^{*}$	$(1.211 - 1.783)^{*}$
	100-65	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
	100 265	1.046	1.275	1.382	1.456
	Age≠05	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	1.023	1.150	1.218	1.233
	TOLA	(0.992-1.055)	(1.033-1.280)*	$(1.078 - 1.376)^{*}$	(1.036-1.467)*
	Male	1.029	1.173	1.226	1.225
		(0.997-1.063)	(1.045-1.316)*	$(1.074 - 1.399)^*$	(1.015-1.480)*
1	Female	1.011	1.107	1.196	1.232
4		(0.974-1.050)	(0.971-1.262)	(1.034-1.385)*	(0.998-1.520)
		1.010	1.077	1.105	1.056
	Age<65	(0.961-1.061)	(0.906-1.280)	(0.907-1.345)	(0.795-1.401)
		1.026	1.166	1.244	1.272
	Age≠05	(0.995-1.058)	(1.046-1.300)*	(1.100-1.406)*	(1.067-1.517)*
	Total	1.022	1.144	1.208	1.222
	TOLAT	(0.990-1.056)	(1.008-1.298)*	(1.031-1.415)*	(0.978-1.526)
		1.030	1.171	1.222	1.223
	Iviale	(0.994-1.066)	(1.021-1.343)*	(1.027-1.452)*	(0.960-1.559)
F	Fomalo	1.009	1.093	1.174	1.203
Э	remale	(0.970-1.050)	(0.938-1.275)	(0.972-1.418)	(0.923-1.569)
	A00-65	1.011	1.082	1.127	1.127
	A95-03	(0.959-1.066)	(0.883-1.327)	(0.874-1.453)	(0.788-1.612)
	Age≥65	1.025	1.158	1.227	1.245
		(0.992-1.059)	$(1.019 - 1.316)^*$	(1.045-1.440)*	(0.994-1.559)

Table S2 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for time per year in the DLM model

Cl, confidence interval; df, degree of freedom; RR, relative risk. **P*<0.05.

a

^aUsed in the study.

Page 31 of 34

BMJ Open

Table S3 The cumulative effects of cold spells under the optimal definition using different degrees
of freedom for relative humidity in the DLM model

df for relative	Croup	CRR (95% CI)			
humidity	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
	TOLAI	$(1.013 - 1.072)^{*}$	$(1.136 - 1.374)^{*}$	$(1.206 - 1.496)^{*}$	$(1.193 - 1.630)^{*}$
	Malo	1.042	1.243	1.316	1.342
	IVIAIE	$(1.011 - 1.074)^{*}$	$(1.123 - 1.375)^{*}$	$(1.173 - 1.477)^{*}$	$(1.136 - 1.586)^{*}$
o a	Fomalo	1.041	1.257	1.383	1.476
5	Terriale	$(1.005 - 1.077)^{*}$	$(1.119 - 1.411)^{*}$	$(1.215 - 1.574)^{*}$	$(1.211 - 1.783)^{*}$
	100-65	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
	$\Lambda_{00} > 65$	1.046	1.275	1.382	1.456
	Aye≠0J	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	1.041	1.248	1.343	1.392
	TOLAI	$(1.012 - 1.071)^*$	(1.135-1.373)*	(1.205-1.495)*	$(1.190 - 1.629)^*$
	Malo	1.042	1.240	1.314	1.336
	IVIAIE	$(1.011 - 1.073)^*$	(1.120-1.372)*	$(1.170 - 1.475)^{*}$	$(1.130 - 1.580)^{*}$
Λ	Fomalo	1.041	1.259	1.385	1.482
4	Terriale	$(1.006 - 1.078)^{*}$	$(1.120 - 1.414)^{*}$	$(1.217 - 1.578)^{*}$	(1.225-1.792)*
	Age<65	1.017	1.119	1.158	1.105
		(0.972-1.064)	(0.961-1.302)	(0.975-1.375)	(0.859-1.420)
		1.046	1.274	1.381	1.455
	Aye≥05	$(1.017 - 1.076)^*$	(1.157-1.403)*	$(1.239 - 1.540)^{*}$	(1.242-1.704)*
	Tatal	1.041	1.244	1.337	1.383
	TULAI	$(1.012 - 1.071)^*$	(1.131-1.369)*	$(1.200 - 1.490)^{*}$	$(1.182 - 1.619)^{*}$
	Malo	1.041	1.236	1.307	1.327
	IVIAIC	$(1.010 - 1.073)^{*}$	(1.116-1.368)*	$(1.164 - 1.468)^*$	$(1.121 - 1.569)^{*}$
5	Fomale	1.040	1.256	1.381	1.474
	remaie	$(1.005 - 1.077)^*$	$(1.117 - 1.411)^*$	(1.212-1.574)*	(1.218-1.785)*
	AgozaE	1.015	1.111	1.148	1.089
	Age <03	(0.970-1.062)	(0.955-1.293)	(0.967-1.363)	(0.847-1.400)
	∆ae>65	1.046	1.271	1.377	1.448
	//yc = 00	$(1.016 - 1.076)^{*}$	(1.154-1.400)*	$(1.234 - 1.536)^{*}$	(1.235-1.697)*

Cl, confidence interval; df, degree of freedom; RR, relative risk. *P<0.05.

^aUsed in the study.

df for air	Croup		CRR (9		
pressure	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Tatal	1.042	1.249	1.343	1.394
	Totai	(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	(1.193-1.630)*
	N 4 a l a	1.042	1.243	1.316	1.342
	Iviale	$(1.011 - 1.074)^{*}$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586)*
Qa	Famala	1.041	1.257	1.383	1.476
3	remale	(1.005-1.077)*	(1.119-1.411)*	(1.215-1.574)*	$(1.211 - 1.783)^{*}$
		1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.422)
		1.046	1.275	1.382	1.456
	Age≥05	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.705)*
	Total	1.042	1.248	1.342	1.393
	TOLA	(1.012-1.071)*	(1.134-1.373)*	(1.205-1.495)*	(1.192-1.629)*
	Mala	1.042	1.240	1.313	1.340
	IVIAIE	$(1.011 - 1.074)^{*}$	(1.120-1.373)*	$(1.170 - 1.475)^{*}$	(1.134-1.584)*
Λ	Ferenda	1.041	1.259	1.385	1.478
4	remale	(1.005-1.078)*	(1.120-1.414)*	$(1.216 - 1.578)^{*}$	(1.223-1.786)*
	Acade	1.018	1.123	1.162	1.109
	Age<65	(0.973-1.065)	(0.965-1.306)	(0.978-1.380)	(0.863-1.425)
	Age≥65	1.046	1.273	1.380	1.455
		$(1.016 - 1.076)^{*}$	(1.156-1.402)*	(1.238-1.539)*	(1.242-1.704)*
	Tatal	1.041	1.247	1.342	1.393
	TOLA	$(1.012 - 1.071)^*$	(1.133-1.373)*	(1.204-1.495)*	(1.191-1.629)*
	Malo	1.042	1.240	1.314	1.341
5	Iviale	$(1.011 - 1.074)^{*}$	(1.120-1.374)*	$(1.170 - 1.476)^*$	(1.134-1.585)*
	Female	1.041	1.257	1.383	1.475
	генае	$(1.005 - 1.077)^*$	(1.118-1.413)*	(1.214-1.576)*	(1.220-1.784)*
	Age< 65	1.019	1.129	1.168	1.115
	AA6 200	(0.974-1.067)	(0.970-1.314)	(0.984-1.388)	(0.868-1.433)
	Age≥65	1.046	1.271	1.378	1.452
		$(1.016 - 1.076)^*$	(1.154-1.401)*	$(1.235 - 1.537)^{*}$	(1.240-1.701)*

Table S4 The cumulative effects of cold spells under the optimal definition using different degrees of freedom for air pressure in the DLM model

Cl, confidence interval; df, degree of freedom; RR, relative risk. **P*<0.05.

^aUsed in the study.

BMJ Open

df for AOI	Croup	CRR (95% CI)			
ui iui Aqi	Group	Lag0	Lag0-7	Lag0-14	Lag0-21
	Total	1.042	1.249	1.343	1.394
	TOLAI	(1.013-1.072)*	(1.136-1.374)*	(1.206-1.496)*	(1.193-1.630
	Male	1.042	1.243	1.316	1.342
		$(1.011 - 1.074)^{*}$	(1.123-1.375)*	(1.173-1.477)*	(1.136-1.586
O ^a	Fomalo	1.041	1.257	1.383	1.476
3	remale	$(1.005 - 1.077)^{*}$	$(1.119 - 1.411)^{*}$	(1.215-1.574)*	(1.211-1.783
	Ago-65	1.017	1.120	1.159	1.107
	Age<05	(0.972-1.064)	(0.963-1.303)	(0.977-1.376)	(0.862-1.42)
	$\Lambda q_0 > 65$	1.046	1.275	1.382	1.456
	Age≠03	(1.017-1.077)*	(1.158-1.404)*	(1.240-1.540)*	(1.244-1.70
	Total	1.042	1.249	1.342	1.393
		(1.013-1.072)*	(1.135-1.374)*	(1.205-1.495)*	(1.192-1.629
	Male	1.042	1.242	1.315	1.342
		$(1.012 - 1.074)^*$	(1.123-1.375)*	(1.171-1.476)*	(1.135-1.586
4	Female	1.041	1.257	1.382	1.475
4		(1.005-1.077)*	(1.119-1.412)*	(1.214-1.573)*	(1.221-1.78
	Age<65	1.018	1.120	1.157	1.106
		(0.973-1.065)	(0.963-1.303)	(0.974-1.373)	(0.861-1.42
		1.046	1.275	1.381	1.456
	Age≥05	$(1.017 - 1.077)^*$	(1.158-1.404)*	(1.239-1.539)*	(1.243-1.704
	Total	1.042	1.249	1.347	1.405
	TULAI	$(1.013 - 1.071)^{*}$	(1.136-1.373)*	(1.210-1.500)*	(1.202-1.643
	Malo	1.042	1.242	1.320	1.355
5	Iviale	$(1.011 - 1.074)^{*}$	(1.123-1.373)*	(1.177-1.480)*	(1.148-1.60)
	Fomalo	1.041	1.257	1.385	1.482
	i emale	$(1.005 - 1.077)^*$	(1.119-1.412)*	(1.216-1.577)*	(1.226-1.792
	Age< 65	1.018	1.120	1.161	1.116
	A96 - 00	(0.973-1.065)	(0.963-1.303)	(0.978-1.378)	(0.869-1.43
	∆ae>65	1.046	1.275	1.386	1.468
	//ge=00	$(1.017 - 1.076)^{*}$	(1.159-1.403)*	(1.243-1.545)*	(1.254-1.718

Table S5 The cumulative effects of cold spells under the optimal definition using different

AQI, air quality index; CI, confidence interval; df, degree of freedom; RR, relative risk. **P*<0.05.

^aUsed in the study.

3
4
5
6
7
, R
0
9
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
26
20
3/
38
39
40
41
42
43
44
15
4J 46
40
4/
48
49
50
51
52
53
54
55
55
56
57
58
59

STROBE Statement-	-Checklist of items	s that should be included	in reports of cross	-sectional studies
-------------------	---------------------	---------------------------	---------------------	--------------------

	Item No	Recommendation	Page No.
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4-5
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	4
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4-6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4-6
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	NA
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	NA
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6-7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	4
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
		€ Describe any sensitivity analyses	7
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7-8
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	7
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	8-9

		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential	11-12
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	9-10
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	12
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml