Combined *Lycium babarum* polysaccharides and C-phycocyanin increase gastric *Bifidobacterium* relative abundance and protect against gastric ulcer caused by aspirin in rats

Shu-Yu Hsieh¹, Yu Zhi Lian¹, I-Hsuan Lin², Yu-Chen Yang³, Alexey A. Tinkov^{4,5,6}, Anatoly V. Skalny^{5,6,7} and Jane C.-J. Chao^{1,8,9*}

Supplementary Fig. 1 Accumulated body weight gains of rats from week 1 to week 9. N: standard powder diet; ASP: aspirin; LBP: aspirin + *Lycium barbarum* polysaccharides (LBP); CPC: aspirin + C-phycocyanin (CPC); MIX: aspirin + LBP + CPC. Data are mean \pm SEM (n = 10-12 per group). Differences between the groups were determined by one-way ANOVA followed by Fisher's least significant difference test. [#]p < 0.05 compared with the ASP group.

Supplementary Fig. 2 Macroscopic and microscopic observations of rat stomach tissue. Macroscopic appearance of **a** rat gastric mucosa surface and **b** histological staining by H&E (100×). N: standard powder diet; ASP: aspirin; LBP: aspirin + *Lycium barbarum* polysaccharides (LBP); CPC: aspirin + C-phycocyanin (CPC); MIX: aspirin + LBP + CPC. Hollow arrows in **a** indicate the red coloration of glandular stomach. Solid arrows in **b** indicate focal epithelial regeneration of gastric mucosa.

Supplementary Fig. 3 Effects of *Lycium barbarum* polysaccharides (LBP) and/or C-phycocyanin (CPC) on inflammatory markers in stomach tissues. **a** Nuclear factor- κ B (NF- κ B) (p65) activity, **b** intercellular adhesion molecule-1 (ICAM-1), **c** tumor necrosis factor- α (TNF- α), **d** interleukin-1 β (IL-1 β), and **e** interleukin-10 (IL-10). N: standard powder diet; ASP: aspirin; LBP: aspirin + *Lycium barbarum* polysaccharides (LBP); CPC: aspirin + C-phycocyanin (CPC); MIX: aspirin + LBP + CPC. Data are mean \pm SEM (n = 10-12 per group). Differences between the groups were determined by one-way ANOVA followed by Fisher's least significant difference test. There were no statistical differences in all inflammatory markers between any two groups.

CPC

CPC

MIX

MIX

Supplementary Fig. 4 The taxa distribution of rat gastric microbiota. **a** Taxa by phylum, **b** top 100 taxa by class, **c** top 100 taxa by family, and **d** top 100 taxa by genus. N: standard powder diet; ASP: aspirin; LBP: aspirin + *Lycium barbarum* polysaccharides (LBP); CPC: aspirin + C-phycocyanin (CPC); MIX: aspirin + LBP + CPC. Each bar represents an individual sample, and 5 samples are randomly selected from each group (n = 5 per group).

Supplementary Fig. 5 Beta diversity of gastric microbiota. N: standard powder diet (N); ASP: aspirin (U); LBP: aspirin + *Lycium barbarum* polysaccharides (LBP) (A); CPC: aspirin + C-phycocyanin (CPC) (B); MIX: aspirin + LBP + CPC (C). The left and right panels indicate raw abundance by unweighted UniFrac distance and relative abundance by weighted UniFrac distance, respectively, using principal coordinate analysis (PCoA). The 5 dots with the same color represent 5 samples from each group (n = 5 per group). There were no significant differences in beta diversity by unweighted uniFrac distances among five groups using Kruskal-Wallis one-way ANOVA.

	Relative				
	abundance of	COX-1	COX-2	PGE ₂	NOx
	Bifidobacterium			<i>.</i>	
		(n = 25)	(n = 23)	(n = 25)	(n = 25)
	(n = 25)				
Relative abundance of <i>Bifidobacterium</i>	-	0.235	0.324	-0.239	-0.083
COX-1	0.235	-	0.892***	0.186	-0.083
COX-2	0.324	0.892***	-	-0.082	-0.195
PGE ₂	-0.239	0.186	-0.082	-	-0.092
NOx	0.085	-0.083	-0.195	-0.092	-

Supplementary Table 1 Correlation coefficients between the relative abundance of the genus *Bifidobacterium* and the levels of gastroprotective factors in the stomach

COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; PGE₂: prostaglandin E₂; NOx: total nitrite and nitrate (NOx). Correlation was determined by Pearson's correlation coefficient. ***p < 0.001.