
S1 - mathematical model

1 Game rules

• There are two bags, bag A and bag B. The bags are filled with white and black balls. In bag

A the fraction of white balls is p, whereas in bag B the fraction of white balls 1− p.

• The game starts by the administrator drawing one of the bags at random. Let x1 = 0 if the

result is bag A and x1 = 1 otherwise. Thus,

P(x1 = 0) = P(x1 = 1) =
1

2
.

• If x1 = 0, the administrator is sampling a ball from bag A at random, and if x1 = 1 the

administrator is sampling a ball from bag B at random. The ball sampled is shown to the

player and put back into the same bag as it was sampled from. Let z1 = 0 if the draw results

in a white ball, and z1 = 1 otherwise. Thus,

P(z1|x1) = pI(z1=x1)(1− p)1−I(z1=x1),

where I(·) equals 1 if the argument is true and zero otherwise.

• For i = 2, . . . , n sequentially:

– The administrator puts xi = 1 − xi−1 or xi = xi−1 with probabilities v and 1 − v,

respectively.

– If xi = 0, the administrator is sampling a ball from bag A at random, and if xi = 1 the

administrator is sampling a ball from bag B at random. The ball sampled is shown to

the player and put back into the same bag as it was sampled from. Let zi = 0 if the draw

results in a white ball, and zi = 1 otherwise. Thus,

P(zi|xi) = pI(zi=xi)(1− p)1−I(zi=xi).

• After each ball is shown to the player, the player should

– say from which bag (s)he thinks the last ball is coming, and

– give an estimate on the probability that the last ball came from bag A.
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2 Wanted results

In this note we discuss how to obtain the following

• Assuming the value of v to be known, compute the ideal Bayesian probability for the last ball

to come from bag A, i.e. compute

P (xn|z1, . . . , zn, v) (1)

for each value of n.

• Assuming the value of v to be unknown, use the given probability estimates given by the

player to estimate the value of v assumed by the player.

3 Computing P (xn|z1, . . . , zn, v)

To find P (xn|z1, . . . , zn, v), one must first study P (x1, . . . , xn, z1, . . . , zn|v). From the game rules

it follows that

P(x1, . . . , xn, z1, . . . , zn|v) = P(x1, . . . , xn|v) · P(z1, . . . , zn|x1, . . . , xn)

=
1

2

n∏
i=2

[
v1−I(xi=xi−1)(1− v)I(xi=xi−1)

] n∏
i=1

[
pI(zi=xi)(1− p)1−I(zi=xi)

]
. (2)

We have

P (xn|z1, . . . , zn, v) =
P (xn, z1, . . . , zn|v)
P (z1, . . . , zn|v)

∝ P (xn, z1, . . . , zn|v)
=

∑
x1

· · ·
∑
xn−1

P (x1, . . . , xn, z1, . . . , zn|v), (3)

where the proportionality is as a function of xn. To find P (xn|z1, . . . , zn, v) we therefore need

to evaluate the n − 1 sums in (3) for each possible value of xn and thereafter scale the result so

that the values sum to one. For small values of n direct evaluation of the n − 1 sums in (3) is

computationally feasible, but for larger values of n the Markov structure present in (2) must be

utilised to get a computationally efficient procedure. In the following we assume n ≥ 3. The joint

distribution in (2) can then be factorised into

P(x1, . . . , xn|v, z1, . . . , zn) ∝ h1,2(x1, x2) · h2,3(x2, x3) · . . . · hn−1,n(xn−1, xn), (4)

where

h1,2(x1, x2) =
1

2
v1−I(x2=x1)(1− v)I(x2=x1)pI(z1=x1)(1− p)1−I(z1=x1),

hi−1,i(xi−1, xi) = v1−I(xi=xi−1)(1− v)I(xi=xi−1)pI(zi−1=xi−1)(1− p)1−I(zi−1=xi−1)

for i = 3, . . . , n− 1, and

hn−1,n(xn−1, xn) = v1−I(xn=xn−1)(1− v)I(xn=xn−1)pI(zn−1=xn−1)(1− p)1−I(zn−1=xn−1)
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·pI(zn=xn)(1− p)1−I(zn=xn).

One should note that all the hi−1,i(xi−1, xi) functions also depends on the value of v and the values

z1, . . . , zn even if this dependence is not explicitly represented in the notation. Defining

g2(x2) =
∑
x1

h1,2(x1, x2) (5)

and

gi(xi) =
∑
xi−1

gi−1(xi−1)hi−1,i(xi−1, xi) (6)

for i = 3, . . . , n, we get that gn(xn) equals the right hand side of (3). Thus,

P (xn|z1, . . . , zn, v) =
gn(xn)∑
x gn(x)

. (7)

To evaluate P (xn|z1, . . . , zn, v) for each possible value of xn can thereby be done in the following

steps.

1. For each i = 2, . . . , n, evaluate hi−1,i(xi−1, xi) for each possible combination of values for

xi−1 and xi. As the possible values for each of xi−1 and xi is zero and one, four values must

be computed for each value of i.

2. Using (5), compute g2(x2) for x2 = 0 and for x2 = 1.

3. For i = 3, . . . , n in turn, use (6) to compute gi(xi) for xi = 0 and for xi = 1.

4. Using (7), compute P (xn|z1, . . . , zn, v) for xn = 0 and for xn = 1.

4 Estimate the value of v used by the player

We now assume the player is using a value of the parameter v when deciding on the probability

estimates. We let K denote the number of games or rounds the player is playing, and assume

that the player sees N balls in each play. We let p̃k,n denote the probability estimate specified

by the player after seeing ball number n in play number k. One should note that p̃n,k is the players

guess on the probability P (xk,n|zk,1, . . . , zk,n, v), where xk,n and zk,i corresponds to xn and zi,

respectively, in Section 3, but where we have now added an index k to distinguish the K rounds

played. As the theoretical probability P (xk,n|zk,1, . . . , zk,n, v) is a function of v, one can formally

estimate the value of v used by the player by finding the value that makes the set of theoretical

probabilities P (xk,n|zk,1, . . . , zk,n, v) as close as possible to the probability estimates p̃k,n. More

precisely, we suggest to estimate v by minimising the sum of squares of the differences between

the probability estimate p̃k,n specified by the player and the corresponding theoretical probability

P (xk,n|zk,1, . . . , zk,n, v). Thus, we define the estimate as

v̂ = argmin
v

[
K∑
k=1

N∑
n=1

(p̃k,n − P (xk,n|zk,1, . . . , zk,n, v))2
]
. (8)

The minimisation must be done by some numerical minimisation algorithm, within which the the-

oretical probabilities, P (xk,n|zk,1, . . . , zk,n, v), for any value of v can be computed as discussed in

Section 3.

3


