
S3 – additional analyses of beads task variables 

Random or ‘noisy’ decision-making and volatility 

Estimation of subjective volatility via the ideal Bayesian model assumes that deviations 

between ‘ideal’ probabilistic responses and the probability ratings made by a participant are 

largely caused by a misestimation of the true volatility. However, other causes are conceivable. 

As such, estimated volatility might be affected by “noisy” or “random” decision-making. 

Notably, it is difficult to conceptually differentiate such ”noise” from volatility, as volatility per 

se might be the cause driving “noise” or seemingly “random” choice behavior.  

Nevertheless, to obtain an approximate estimate of “random” or ”noisy” behavior in the beads 

task, an additional measure was constructed based on all those occurrences where when a bead 

was of the same color as the previous two, the belief was updated into the opposite direction, 

i.e. the belief in the currently presented colors was decreased.  

Example: a participant sees three white beads in a row and indicates a probability for them to 

originate from the bag with more white beads as 0.7 and 0.8 for the first two trials. On the third 

trial, they then decrease their belief to 0.7 again when actually, given the evidence, they should 

keep increasing their belief certainty about the beads to originate from the bag with more white 

beads.  

Such “random belief updating” was calculated as the mean change in belief across all 

occurrences of this kind for each sequence, averaged over number of sequences for each 

participant.  

A non-parametric Kruskal-Wallis test (due to the high positive skewness in random belief 

updating) revealed no significant group difference, χ2(2) = 3.32, p = 0.19, ε2 = 0.04. 

Across groups, random belief updating was strongly and positively associated with volatility, ρ 

= .63, p < .001. While this might suggest that estimated volatility largely reflected noise or 

random behavior, it is important to consider that a conceptual distinction between both concepts 

may not fully be valid. After all, “random” belief changes may indeed be caused by an increased 

belief about the frequency with which the bag of origin is secretly changed (volatility), even in 

the absence of obvious evidence for an occurred change.  

Importantly, volatility was also strongly related to disconfirmatory belief updating. Here, the 

conceptual relationship between both variables is slightly more obvious: in an unstable 

environment, disconfirmatory evidence might suggest an occurred change – so the larger one 

thinks the probability is for a change to occur, the more one will react to disconfirmatory 

evidence in terms of belief updating.  

An additional analysis was conducted to gauge to what extent both random and disconfirmatory 

belief updating contributed to estimated volatility. Participants were divided into groups with 

high (above the median) or low (below or equal to the median) volatility estimates. A logistic 

regression was conducted on volatility group membership (0 = low, 1 = high), including main 



effects of both random and disconfirmatory belief updating, both standardized. McFadden’s R2 

of this model was .40, and the Odds Ratio was 10.12 for (standardized) random belief updating 

[CI 2.5%: 2.64, 97.5%: 53.23] and 1.92 for (standardized) disconfirmatory belief updating [CI 

2.5%: 1.92, 97.5%: 10.62]. This demonstrates that even if random belief updating was 

interpreted as a pure measure of ”noise” caused by different factors than an overestimation of 

volatility, when accounting for its contribution to volatility there remains a significant 

contribution of disconfirmatory belief updating, a variable which is clearly also conceptually 

related to volatility.  

 

Volatility change throughout the task 

Since feedback was provided after every completed sequence in the beads task, learning 

processes may have caused a decrease in subjective volatility over time. In the original volatility 

model, subjective volatility was estimated based on all sequences. To explore whether volatility 

estimates might have decreased over time, the model was refitted to the first two and the last 

two sequences, respectively. Volatility change was then calculated by subtracting volatility 

estimated for the first two sequences from volatility estimated for the last two sequences for 

each participant, with values below zero indicating a decrease of volatility towards the end of 

the task. 

A one-sided one-sample Wilcoxon signed-rank test (due to the non-normality of the volatility 

change variable) on data of the whole sample confirmed that indeed, this change was 

significantly below zero across participants,  Md = -0.01, V = 1260, p < .01. 

To assess whether groups differed in terms of this volatility change, a Kruskal-Wallis test was 

applied. This did not reveal any significant group differences, χ2(2) = 0.77, ε2 = 0.06, p = .68, 

indicating that groups learned similarly from feedback. 

 


