Supporting Information

Spatial Protein Expression of *Panax Ginseng* by In-depth Proteomic Analysis for Ginsenoside Biosynthesis and Transportation

Xiaoying Li^{a#}, Xianhui Cheng^{a#}, Baosheng Liao^b, Jiang Xu^b, Xu Han^c, Jinbo Zhang^d, Zhiwei Lin^d, Lianghai Hu^{a*}

^aKey Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130023, China

^bInstitute of Chinese Materia Medica, China Academy of Chinese Medical Sciences,

Beijing, China

^cJilin Zixin Pharmaceutical Industrial CO. LTD.

^dNanjing Novogene Biotechnology CO. LTD.

[#]contribute equally

*E-mail:lianghaihu@jlu.edu.cn

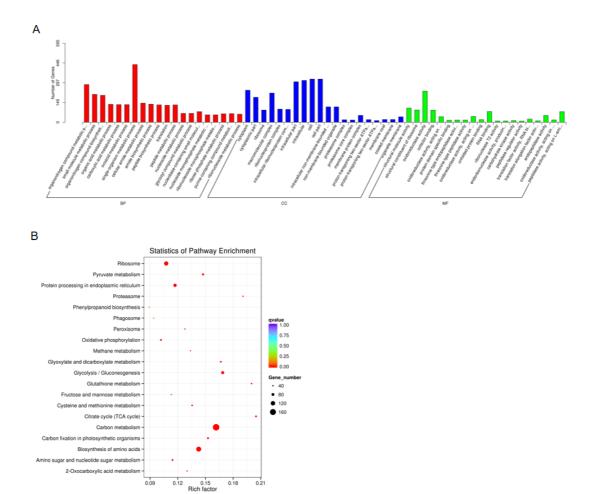


Figure S1. GO (A) and KEGG (B) analysis of commonly contained proteins.

Table S1.	Comparison	of sample pr	eparation p	rotocols for g	ginseng caulir	e leaf and root.

	No.	Lysis buffer	Depletion method	Number of identified proteins
1. 1. 6	1		Methanol-chloroform	1366
cauline leaf	1	GdnHCl Lysate	precipitation	
	2	GdnHCl Lysate	N/A	1019
	3	Tris-HCl Lysate	Acetone precipitation	529
	4	Tris-HCl Lysate	N/A	361
Root	5	GdnHCl Lysate	N/A	929
	6	Tris-HCl Lysate	N/A	439

Table S2. The top20 of ginseng cauline leaf protein based on the abundance of MS analysis.

protein name	Coverage [%]	Peptides	PSMs	Molecular function	Biological process
Ribulose bisphosphate carboxylase large chain	33	16	81	Catalysis of the reaction: D-ribulose-1,5-bisphosphate + CO2 + H2O = 2,3-phospho-D-glycerate	incorporate carbon into organic compounds
Ribulose bisphosphate carboxylase large chain (Fragment)	29	11	48	Catalysis of the reaction: D-ribulose-1,5-bisphosphate + CO2 + H2O = 2,3-phospho-D-glycerate	incorporate carbon into organic compounds
Ribonuclease-like storage protein	58	10	42	Interacting selectively and non-covalently with RNA molecule; Catalysis of the two-stage endonucleolytic cleavage	
ATP synthase subunit β , chloroplastic	43	16	34	Interacting selectively and non-covalently with ATP, ADP + H2O + phosphate + H+(in) = ATP + H+(out), by a rotational mechanism	result in the formation of ATP; The directed movement o a proton across a membrane
ATP synthase subunit β , chloroplastic	55	15	34	Interacting selectively and non-covalently with ATP	result in the formation of ATP;The directed movement of a proton across a membrane
Catalase	24	19	34	Catalysis of the reaction: 2 hydrogen peroxide = O2 + 2 H2O	Any process that results in a change in state or activity or a cell or an organism; A metabolic process that results in electrons transfer
Ribulose bisphosphate carboxylase/oxygenase activase 1	36	15	33	Interacting selectively and non-covalently with ATP	
ATP synthase subunit β , mitochondrial	42	17	31	Interacting selectively and non-covalently with ATP; ADP + H2O + phosphate + H+(in) = ATP + H+(out), by a rotational mechanism	result in the formation of ATP;The directed movement of a proton across a membrane
ATP synthase subunit β , mitochondrial	43	17	30	Interacting selectively and non-covalently with ATP; ADP + H2O + phosphate + H+(in) = ATP + H+(out), by a rotational mechanism	result in the formation of ATP. The directed movement of a proton across a membrane
Glyceraldehyde-3-phosphate dehydrogenase GAPB, chloroplastic	25	14	30	Interacting selectively and non-covalently with nicotinamide adenine dinucleotide; Catalysis of an oxidation-reduction (redox) reaction	The chemical reactions and pathways involving glucos A metabolic process that results in electrons transfer
Glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic	30	13	29	Interacting selectively and non-covalently with nicotinamide adenine dinucleotide; Catalysis of an oxidation-reduction (redox) reaction	The chemical reactions and pathways involving glucose A metabolic process that results in electrons transfer
Glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic	31	13	29	Interacting selectively and non-covalently with nicotinamide adenine dinucleotide; Catalysis of an oxidation-reduction (redox) reaction	The chemical reactions and pathways involving glucose A metabolic process that results in electrons transfer
Catalase isozyme 2	34	15	28	Catalysis of the reaction: 2 hydrogen peroxide = O2 + 2 H2O	Any process that results in a change in state or activity of a cell or an organism; A metabolic process that results i electrons transfer
Glycine dehydrogenase (decarboxylating) 1, mitochondrial	29	20	27	Catalysis of the reaction: glycine + lipoylprotein = S-aminomethyldihydrolipoylprotein + CO2	The chemical reactions and pathways resulting in the breakdown of glycine, aminoethanoic acid; A metaboli process that results in electrons transfer
Heat shock cognate 70 kDa protein	25	16	26		
ATP-dependent Clp protease ATP-binding subunit ClpA homolog CD4B, chloroplastic	26	21	25	Interacting selectively and non-covalently with ATP, and any protein or protein complex	The chemical reactions and pathways involving a protei includes protein modification.
Glyceraldehyde-3-phosphate dehydrogenase B, chloroplastic	29	9	23	Catalysis of an oxidation-reduction (redox) reaction	A metabolic process that results in electrons transfer
Serine hydroxymethyltransferase 1, mitochondrial	46	19	23	Catalysis of the reaction: 5,10-methylenetetrahydrofolate + glycine + H2O = tetrahydrofolate + L-serine	one-carbon (C1) units are transferred between tetrahydrofolate molecules, to synthesise other tetrahydrofolate molecules
Chaperonin 60 subunit β 2, chloroplastic	37	19	22	Interacting selectively and non-covalently with ATP	restores the biological activity of an unfolded or misfolded protein.
Serine hydroxymethyltransferase, mitochondrial	46	19	22	Catalysis of the reaction: 5,10-methylenetetrahydrofolate + glycine + H2O = tetrahydrofolate + L-serine	one-carbon (C1) units are transferred between tetrahydrofolate molecules, to synthesise other tetrahydrofolate molecules

Table S3. The top20 ginseng root proteins based on the abundance by MS analysis.	
--	--

protein name	Coverage [%]	Peptides	PSMs	Molecular function	Biological process
Ribonuclease-like storage protein	61	22	178	Interacting selectively and non-covalently with RNA molecule; Catalysis of the two-stage endonucleolytic cleavage	
Ribonuclease-like storage protein	63	23	167	Interacting selectively and non-covalently with RNA molecule; Catalysis of the two-stage endonucleolytic cleavage	
Ribonuclease-like storage protein	76	19	166	Interacting selectively and non-covalently with RNA molecule; Catalysis of the two-stage endonucleolytic cleavage	
Ribonuclease-like storage protein	58	19	157	Interacting selectively and non-covalently with RNA molecule; Catalysis of the two-stage endonucleolytic cleavage	
β-amylase	27	24	108	Catalysis of the reaction: (1,4-alpha-D-glucosyl)(n+1) + H2O = (1,4-alpha-D-glucosyl)(n-1) + alpha-maltose	The chemical reactions and pathways resulting in the breakdown of a polysaccharide
Heat shock cognate 70 kDa protein	35	28	53		
Ribonuclease-like storage protein	60	27	40	Interacting selectively and non-covalently with RNA molecule; Catalysis of the two-stage endonucleolytic cleavage	
Heat shock cognate 70 kDa protein	28	19	37		
α-1,4 glucan phosphorylase L-1 isozyme, chloroplastic/amyloplastic	35	24	35	Catalysis of the reaction: glycogen + phosphate = maltodextrin + alpha-D-glucose 1-phosphate	The chemical reactions and pathways involving carbohydrates
Heat shock cognate 70 kDa protein 2 Probable mediator of RNA	26	19	35		
polymerase II transcription subunit 37c	20	18	35		
				Catalysis of the reaction:	
5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase	28	26	34	5-methyltetrahydropteroyltri-L-glutamate + L-homocysteine = L-methionine + tetrahydropteroyltri-L-glutamate: Interacting selectively and non-covalently with zinc (Zn) ions.	The chemical reactions and pathways resulting in the formation of methionine
5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase	28	23	33	Catalysis of the reaction: 5-methyltetrahydropteroyltri-L-glutamate + L-homocysteine = L-methionine + tetrahydropteroyltri-L-glutamate; Interacting selectively and non-covalently with zinc (Zn) ions.	The chemical reactions and pathways resulting in the formation of methionine
ATP synthase subunit β, mitochondrial	45	18	32	Interacting selectively and non-covalently with ATP; ADP + H2O + phosphate + H+(in) = ATP + H+(out), by a rotational mechanism	result in the formation of ATP; The directed movement a proton across a membrane
Enolase 2	52	22	32	Catalysis of the reaction: 2-phospho-D-glycerate = phosphoenolpyruvate + H2O; Interacting selectively and non-covalently with any metal ion.	The chemical reactions and pathways resulting in the breakdown of a carbohydrate into pyruvate
1,4-alpha-glucan-branching enzyme	32	22	31	Catalysis of the hydrolysis of any O-glycosyl bond	The chemical reactions and pathways involving carbohydrates, and result in the formation of glycoger
Enolase 2	53	22	31	Catalysis of the reaction: 2-phospho-D-glycerate = phosphoenolpyruvate + H2O; Interacting selectively and non-covalently with any metal ion.	The chemical reactions and pathways resulting in the breakdown of a carbohydrate into pyruvate
Fructose-bisphosphate aldolase 6, cytosolic	58	21	31	Catalysis of the reaction: D-fructose 1,6-bisphosphate = glycerone phosphate + D-glyceraldehyde-3-phosphate	The chemical reactions and pathways to catalysis glycolysis resulting in the breakdown of a carbohydrat into pyruvate
ATP synthase subunit β, mitochondrial	44	18	30	Interacting selectively and non-covalently with ATP; ADP + H2O + phosphate + H+(in) = ATP + H+(out), by a rotational mechanism	result in the formation of ATP; The directed movement a proton across a membrane
Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	64	14	29	Catalysis of an oxidation-reduction (redox) reaction	A metabolic process that results in electrons transfer

Table S4. The UGTs and CYPs identified from ginseng cauline leaf and root.

Gene ID	Swissprot description	leaf	root		Gene ID	Swissprot description	leaf	root	
	7-deoxygluconate glucosyltransferase OS					UDP-glycosyltransferase 76B1 OS =			
PG08475	= periwinkle OX = 4058 GN = UGT709C2	Y	Ν	UGT70	PG15945	Arabidopsis OX = 3702 GN = UGT76B1	Y	Ν	UGT76
	PE = 1 SV = 1					PE = 2 SV = 1			
	7-deoxygluconate glucosyltransferase OS								
PG36439	= periwinkle OX = 4058 GN = UGT709C2	Y	Ν	UGT70	PG00517	Kaempferol 3-O- β -D-galactosyltransferase	Y	Ν	UGT78
	PE = 1 SV = 1					OS = Petunia OX = 4102 PE = 1 SV = 1			
PG23742	UDP-glycosyltransferase 71E1 OS =	Y	Ν	UGT71	PG00083	UDP-glycosyltransferase 79B30 OS =	Y	Ν	UGT79

	Stevia rebaudiana OX = 55670 GN =					soybean maximum OX = 3847 GN = FG3			
	UGT71E1 PE = 2 SV = 1					PE = 1 SV = 2			
PG30324	UDP-glucoside flavonoid 3-O-glucosyltransferase 6 OS = strawberry (Fragariaananassa) OX = 3747 GN = GT6 PE = 1 SV = 1	Y	Y	UGT71	PG03287	UDP-glycosyltransferase 84B1 OS = Arabidopsis OX = 3702 GN = UGT84B1 PE = 2 SV = 1	Y	N	UGT84
PG34795	UDP-glucoside flavonoid 3-O-glucosyltransferase 6 OS = strawberry (Fragariaananassa) OX = 3747 GN = GT6 PE = 1 SV = 1	Y	Y	UGT71	PG34278	Linamarin synthase 1 OS = Manihotesculenta OX = 3983 GN = UGT85K4 PE = 1 SV = 1	Y	N	UGT85
PG05151	UDP-glucoside flavonoid 3-O-glucosyltransferase 6 OS = strawberry (Fragariaananassa) OX = 3747 GN = GT6 PE = 1 SV = 1	N	Y	UGT71	PG19859	Linamarin synthase 2 OS = Manihotesculenta OX = 3983 GN = UGT85K5 PE = 1 SV = 1	Y	N	UGT85
PG34796	UDP-glucoside flavonoid 3-O-glucosyltransferase 6 OS = strawberry (Fragariaananassa) OX = 3747 GN = GT6 PE = 1 SV = 1	Y	N	UGT71	PG18416	UDP-glycosyltransferase 88A1 OS = Arabidopsis OX = 3702 GN = UGT88A1 PE = 2 SV = 1	N	Y	UGT88
PG21124	Hydroquinone glucosyltransferase OS = Rauvolfiaserpentina OX = 4060 GN = AS PE = 1 SV = 1	Y	Y	UGT72	PG02224	UDP-glycosyltransferase 89B2 OS = Stevia rebaudiana OX = 55670 GN = UGT89B2 PE = 2 SV = 1	Y	N	UGT89
PG30450	Hydroquinone glucosyltransferase OS = Rauvolfiaserpentina OX = 4060 GN = AS PE = 1 SV = 1	Y	N	UGT72	PG34647	UDP-glycosyltransferase 91A1 OS = Arabidopsis OX = 3702 GN = UGT91A1 PE = 2 SV = 1	Y	Y	UGT91
PG16259	East glucosinyltransferase OS = Tobacco OX = 4097 GN = TOGT1 PE = 1 SV = 1	Y	N	UGT73	PG05454	UDP-glycosyltransferase 91A1 OS = Arabidopsis OX = 3702 GN = UGT91A1 PE = 2 SV = 1	N	Y	UGT91
PG29012	East glucosinyltransferase OS = Tobacco OX = 4097 GN = TOGT1 PE = 1 SV = 1	Y	N	UGT73	PG03173	UDP-glycosyltransferase 91C1 OS = Arabidopsis OX = 3702 GN = UGT91C1 PE = 2 SV = 1	Y	N	UGT91
PG14163	UDP-glycosyltransferase 74F2 OS = Arabidopsis OX = 3702 GN = UGT74F2 PE = 1 SV = 1	Y	N	UGT74	PG13029	UDP-glycosyltransferase 92A1 OS = Arabidopsis OX = 3702 GN = UGT92A1 PE = 2 SV = 1	Y	N	UGT92
PG17964	UDP-glycosyltransferase 74E2 OS = Arabidopsis OX = 3702 GN = UGT74E2 PE = 1 SV = 1	Y	N	UGT74	PG22997	β-D-glucosylcrocetin β-1,6-glucosyltransferase OS = scorpion scorpion OX = 114476 GN = UGT94E5 PE = 1 SV = 1	Y	Y	UGT94
PG31437	UDP-glycosyltransferase 74E2 OS = Arabidopsis OX = 3702 GN = UGT74E2 PE = 1 SV = 1	Y	N	UGT74	PG35394	β-D-glucosylcrocetin β-1,6-glucosyltransferase OS = scorpion scorpion OX = 114476 GN = UGT94E5 PE = 1 SV = 1	Y	N	UGT94
PG30551	UDP-glycosyltransferase 74E2 OS = Arabidopsis OX = 3702 GN = UGT74E2 PE = 1 SV = 1	Y	Y	UGT74	PG11440	β -D-glucosylcrocetin β -1,6-glucosyltransferase OS = scorpion scorpion OX = 114476 GN = UGT94E5	Y	N	UGT94

						PE = 1 SV $= 1$			
	UDP-glycosyltransferase 74E1 OS =								
PG14160	Arabidopsis OX = 3702 GN = UGT74E1	Y	N	UGT74	PG07945	Protein HOTHEAD OS = Arabidopsis OX	Y	N	UGT??
F014100	-	I	IN	001/4	r00/943	= 3702 GN = HTH PE = 1 SV = 1	I	IN	00122
	PE = 3 SV = 1								
	Crocetin glucosyltransferase, chloroplast					Linoleic acid 13S-lipoxygenase 2-1,			
PG34073	OS = scorpion scorpion OX = 114476 GN	Y	N	UGT75	PG23330	chloroplast OS = Solanum tuberosum OX	Y	N	UGT??
	= UGT75L6 PE = 1 SV = 1					= 4113 GN = LOX2.1 PE = 1 SV = 1			
PG05721	Cytochrome P450 704B1 OS=Arabidopsis	Υ	Ν	CYP704B1	PG09699	Geraniol 8-hydroxylase	Y	Ν	CYP76B6
	thaliana OX=3702 GN=CYP704B1 PE=1					OS=Catharanthusroseus OX=4058			
	SV=1					GN=CYP76B6 PE=1 SV=1			
PG25870	Cytochrome P450 704B1 OS=Arabidopsis	Y	Y	CYP704B1	PG01467	Geraniol 8-hydroxylase	Y	Y	CYP76B6
	thaliana OX=3702 GN=CYP704B1 PE=1					OS=Catharanthusroseus OX=4058			
	SV=1					GN=CYP76B6 PE=1 SV=1			
PG10057	Cytochrome P450 704C1 OS=Pinustaeda	Y	N	CYP704C1	PG30778	Cytochrome P450 81E8	Y	N	CYP81E8
	OX=3352 GN=CYP704C1 PE=2 SV=1					OS=Medicagotruncatula OX=3880			
						GN=CYP81E8 PE=2 SV=1			
PG40294	Cytochrome P450 71A8	Y	N	CYP71A8	PG29120	Cytochrome P450 82A3 OS=Glycine max	Y	N	CYP82A3
1010251	OS=Menthapiperita OX=34256			01171110	1 02/120	OX=3847 GN=CYP82A3 PE=2 SV=1	•		0110210
	GN=CYP71A8 PE=3 SV=1					0X-364/ 0IN-C1762A3 FE-2 5V-1			
DOLIOSI				GUDGUDGUG	DCI11020				Children + 2
PG16874	Cytochrome P450 CYP71D312 OS=Panax	Y	N	CYP71D312	PG11378	Cytochrome P450 82A3 OS=Glycine max	N	Y	CYP82A3
	ginseng OX=4054 PE=2 SV=1					OX=3847 GN=CYP82A3 PE=2 SV=1			
PG21495	Cytochrome P450 CYP71D313 OS=Panax	Y	N	CYP71D313	PG32345	Cytochrome P450 82C4 OS=Arabidopsis	Y	N	CYP82C4
	ginseng OX=4054 PE=2 SV=1					thaliana OX=3702 GN=CYP82C4 PE=2			
						SV=1			
PG26653	Cytochrome P450 CYP71D313 OS=Panax	Y	Ν	CYP71D313	PG23797	Cytochrome P450 CYP82D47 OS=Panax	Y	Ν	CYP82D47
	ginseng OX=4054 PE=2 SV=1					ginseng OX=4054 PE=2 SV=1			
PG32259	Cytochrome P450 CYP71D313 OS=Panax	Y	Ν	CYP71D313	PG29513	Cytochrome P450 CYP82D47 OS=Panax	Υ	Y	CYP82D47
	ginseng OX=4054 PE=2 SV=1					ginseng OX=4054 PE=2 SV=1			
PG04084	Cytochrome P450 71D8 OS=Glycine max	Ν	Y	CYP71D8	PG02439	Cytochrome P450 83B1 OS=Arabidopsis	Y	Ν	CYP83B1
	OX=3847 GN=CYP71D8 PE=2 SV=1					thaliana OX=3702 GN=CYP83B1 PE=1			
						SV=1			
PG01300	Cytochrome P450 CYP72A219 OS=Panax	Y	N	CYP72A219	PG34334	Cytochrome P450 83B1 OS=Arabidopsis	Y	N	CYP83B1
	ginseng OX=4054 PE=2 SV=1					thaliana OX=3702 GN=CYP83B1 PE=1			
						SV=1			
PG40963	Cytochrome P450 CYP72A219 OS=Panax	Y	N	CYP72A219	PG34924	Cytochrome P450 89A9 OS=Arabidopsis	Y	N	CYP89A9
	ginseng OX=4054 PE=2 SV=1					thaliana OX=3702 GN=CYP89A9 PE=2			
	5m30ng 074 40341 L=2 5 ¥=1					SV=1			
BC02240	Criteshrama D450 CVD724210 OS D	v	NI.	CVD724210	BC27120		v	NT.	CVD04+1
PG03240	Cytochrome P450 CYP72A219 OS=Panax	Y	N	CYP72A219	PG27129	Cytochrome P450 94A1 OS=Vicia sativa	Y	N	CYP94A1
	ginseng OX=4054 PE=2 SV=1					OX=3908 GN=CYP94A1 PE=2 SV=2			
PG23478	Cytochrome P450 CYP72A219 OS=Panax	Y	N	CYP72A219	PG23358	Cytochrome P450 94A2 OS=Vicia sativa	Y	N	CYP94A2
	ginseng OX=4054 PE=2 SV=1					OX=3908 GN=CYP94A2 PE=2 SV=1			
PG09274	Cytochrome P450 CYP72A219 OS=Panax	Ν	Y	CYP72A219	PG27467	Cytochrome P450 94A2 OS=Vicia sativa	Y	Ν	CYP94A2
	ginseng OX=4054 PE=2 SV=1					OX=3908 GN=CYP94A2 PE=2 SV=1			
PG28769	Trans-cinnamate 4-monooxygenase	Y	Y	CYP73A1	PG16781	Cytochrome P450 97B2, chloroplastic	Y	Ν	CYP97B2

	OS=Helianthus tuberosus OX=4233					OS=Glycine max OX=3847			
	GN=CYP73A1 PE=1 SV=1					GN=CYP97B2 PE=2 SV=1			
PG13617	Cytochrome P450 CYP736A12 OS=Panax	Y	Ν	CYP736A12	PG35257	Carotene epsilon-monooxygenase,	Y	N	CYP97C1
	ginseng OX=4054 PE=2 SV=1					chloroplastic OS=Arabidopsis thaliana			
						OX=3702 GN=CYP97C1 PE=1 SV=1			
PG33495	Cytochrome P450 CYP736A12 OS=Panax	Y	N	CYP736A12	PG24387	Cytochrome P450 98A2 OS=Glycine max	Y	Ν	CYP98A2
	ginseng OX=4054 PE=2 SV=1					OX=3847 GN=CYP98A2 PE=2 SV=1			
PG36905	Cytochrome P450 CYP736A12 OS=Panax	Y	Ν	CYP736A12	PG41871	Cytochrome P450 98A2 OS=Glycine max	Y	Y	CYP98A2
	ginseng OX=4054 PE=2 SV=1					OX=3847 GN=CYP98A2 PE=2 SV=1			

Table S5.	Proteins	involved	in	ginsenoside	biosynthesis.

Protein (Gene ID)	Biosynthetic pathway	Swissprot description	Cauline leaf	Root
AACT(PG11912)	MVA	Probable acetyl-CoA acetyltransferase, cytosolic 2 OS=Arabidopsis thaliana OX=3702 GN=At5g47720 PE=2 SV=1	Y	Y
HMG8 (PG38955)	MVA	Hydroxymethylglutaryl-CoA synthase OS=Arabidopsis thaliana OX=3702 GN=HMGS PE=1 SV=2	Ν	Y
MVK(PG20228)	MVA	Mevalonate kinase OS=Arabidopsis thaliana OX=3702 GN=At5g27450 PE=2 SV=1	Ν	Y
PMK(PG25943)	MVA	Phosphomevalonate kinase, peroxisomal OS=Arabidopsis thaliana OX=3702 GN=PMK PE=1 SV=1	Y	Ν
MVD1(PG37213)	MVA	Diphosphomevalonate decarboxylase MVD2, peroxisomal OS=Arabidopsis thaliana OX=3702 GN=MVD2 PE=1 SV=1	Y	Y
MVD2(PG02263)	MVA	Diphosphomevalonate decarboxylase MVD2, peroxisomal OS=Arabidopsis thaliana OX=3702 GN=MVD2 PE=1 SV=1	Ν	Y
IDI1(PG19600)	MVA	Isopentenyl-diphosphate Delta-isomerase I OS=Camptothecaacuminata OX=16922 GN=IPI1 PE=2 SV=1	Y	Y
IDI2(PG03104)	MVA	Isopentenyl-diphosphate Delta-isomerase II OS=Camptothecaacuminata OX=16922 GN=IPI2 PE=2 SV=1	Y	Ν
FPS(PG34283)		Farnesyl pyrophosphate synthase OS=Artemisia annua OX=35608 GN=FPS1 PE=2 SV=1	Y	Y
PPDS(PG37358)		Dammarenediol 12-hydroxylase OS=Panax ginseng OX=4054 GN=PPDS PE=1 SV=2	Y	Y
PPTS(PG26599)		Protopanaxadiol 6-hydroxylase OS=Panax ginseng OX=4054 PE=1 SV=1	Y	Y
CAS(PG03815)		Cycloartenol Synthase OS=Panax ginseng OX=4054 GN=OSCPNX1 PE=1 SV=1	Y	Ν
DXS(PG31496)	MEP	Protease 2 OS=Escherichia coli (strain K12) OX=83333 GN=ptrB PE=1 SV=2	Ν	Y
DXR1(PG36148)	MEP	1-deoxy-D-xylulose 5-phosphate reductoisomerase, chloroplastic OS=Oryza sativa subsp. japonica OX=39947 GN=DXR PE=2 SV=2	Y	Y
DXR2(PG34876)	MEP	1-deoxy-D-xylulose 5-phosphate reductoisomerase, chloroplastic OS=Oryza sativa subsp. japonica OX=39947 GN=DXR PE=2 SV=2	Y	Y
IspE(PG20660)	MEP	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, chloroplastic OS=Menthapiperita OX=34256 GN=ISPE PE=1 SV=1	N	Y
IspF(PG27983)	MEP	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, chloroplastic OS=Catharanthusroseus OX=4058 GN=ISPF PE=2 SV=1	Y	Y
oG/gcpE1(PG25816)	MEP	4-hydroxy-3-methy-2-lbutenyl diphosphate synthase	Y	Ν

		(ferredoxin), chloroplastic OS=Arabidopsis thaliana OX=3702		
		GN=ISPG PE=1 SV=1		
		4-hydroxy-3-methy-2-lbutenyl diphosphate synthase		
IspG/gcpE2(PG34415)	MEP	(ferredoxin), chloroplastic OS=Arabidopsis thaliana OX=3702	Y	Y
		GN=ISPG PE=1 SV=1		
		4-hydroxy-3-methy-2- lbutenyl diphosphate reductase,		
IspH(PG19130)	MEP	chloroplastic OS=Oryza sativa subsp. japonica OX=39947	Y	Ν
		GN=ISPH PE=2 SV=1		