Supplemental Material

Table	S1.	Search	Strategy.
-------	------------	--------	-----------

Search #	Medline	Embase	Cochrane
	1946 to June 03, 2019	1946 to June 03, 2019	Through to June 03, 2019
1	Vegetables/	exp vegetable/	Vegetables/
2	vegetable*.tw,kf.	vegetable*.tw,kw.	vegetable*.ti,ab,hw.
3	Vegetable Products/	1 or 2	1 or 2
4	or/1-3	fruit.mp.	fruit.mp.
5	fruit.mp.	exp Fruit/	Fruit/
6	exp Fruit/	4 or 5	4 or 5
7	5 or 6	3 or 6	3 or 6
8	4 or 7	cardiovascular disease/	cardiovascular diseases/
9	cardiovascular disease/	cardiovascular.tw,kw.	exp myocardial ischemia/
10	exp myocardial ischemia/	exp heart muscle ischemia/	cardiovascular.ti,ab,hw.
11	cardiovascular.tw,kf.	isch?em*.tw,kw.	isch?em*.ti,ab,hw.
12	isch?em*.tw,kf.	coronary.tw,kw.	coronary.ti,ab,hw.
13	coronary.tw,kf.	myocard*.tw,kw.	myocard*.ti,ab,hw.
14	myocard*.tw,kf.	angina.tw,kw.	angina.ti,ab,hw.
15	angina.tw,kf.	exp cerebrovascular disease/	exp cerebrovascular disorders/
16	exp cerebrovascular disorders/	stroke.tw,kw.	stroke*.ti,ab,hw.
17	stroke*.tw,kf.	cerebral vascular.tw,kw.	cerebral vascular.ti,ab,hw.
18	cerebral vascular.tw,kf.	cerebrovascular.tw,kw.	cerebrovascular.ti,ab,hw.
19	cerebrovascular.tw,kf.	Or / 8-18	Or / 8-
20	Or / 9-19	exp cohort analysis/	
21	exp cohort studies/	exp longitudinal study/	
22	cohort*.tw.	exp prospective study/	
23	controlled clinical trial.pt.	exp follow up/	
24	Epidemiologic methods/	cohort\$.tw.	
25	limit 24 to yr=1971-1988	Or / 20-24	
26	Or / 21- 25	7 and 19	
27	8 and 20	25 and 26	
28	26 and 27		

Table S2. Confounding Variables Among 117 Studies of Fruit and Vegetables and Cardiovascular Disease Outcomes.

Table 52. Combunding variables	-			-							1
Study	Adriouch, 2018 ⁴²	Appleby, 2002 ⁴³	Atkins, 201444	Bahadoran, 2017 ⁴⁵	Bazzano, 2002 ⁴⁶	Belin, 2011 ⁴⁷	Bendinelli, 2011 ⁴⁸	Berard, 2017 ⁴⁹	Bhupathiraju, 2013 ⁵⁰	Bingham, 2008 ⁵¹	Blekkenhorst, 2017 ⁵²
No. of variables fully adjusted model	13	3	8	2	10	10	12	5	13	9	10
No. of multivariable models presented	1	1	2	2	2	1	2	1	2	1	8
Timing of measurement of confounding variables	BL	BL	BL	BL	BL, 1982-84, 86, 87, 92	BL	BL	BL	1984-86, q2y	BL	BL
Pre-specified primary confounding variables					,						
Age	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding											
variables											
Sex		✓	✓		✓		✓	✓		✓	N/A
Smoking	\checkmark	✓	✓		✓	✓	✓		✓	✓	✓
BMI	✓		✓			✓			✓		✓
Physical activity	✓		✓		✓	✓	✓		✓	✓	✓
Alcohol	✓				✓		✓		✓	✓	✓
Blood pressure	✓					✓	 ✓ 			✓	
Energy	✓		✓		✓	✓	✓	✓	✓	✓	1
Diabetes			İ		✓	✓	✓		1		✓
Cholesterol			İ			✓	✓		1	✓	✓
Other Confounding variables											
Education	✓				✓	✓	✓	✓			
Socioeconomic status			✓								✓
Menopause and/or hormone Use	✓						✓		✓		
Region/location											
Randomization treatment											✓
Ethnicity/nationality	✓				✓	✓					
Marital status	İ										
Study center	İ							✓			
Survey season	✓										
Employment status											
Follow-up duration											
Dietary Intake											
Vitamin/supplement					✓				✓		
Fruit and/or vegetable	✓										
Saturated fat											
Whole grains											
Fish/shellfish									✓		
Meat							✓				
Red meat	1		İ						✓		
Dietary pattern score			✓	✓							
Processed meat											
Coffee											
Fibre											
Folate											
Sodium											
Vitamin E											
Disease History											
MI or family history of MI									✓		
CHD or family history of CHD											
CVD or family history of CVD				✓							
Medications											
ASA											✓
Other confounding variables not listed:	Sleep, WC								Cereal fibre, Trans fat	Weight	GFR

Study	Bos, 2014 ⁵³	Buijsse,	BuilCosiales,	BuilCosiales,	Cassidy,	Collin,	Conrad,	Dauchet,	Dauchet,	Du, 2016 ⁶²
•		200854	201656	2017 ⁵⁵	201257	201958	201859	200460	201061	
No. of variables fully adjusted model	7	15	17	14	13	12	10	10	12	13
No. of multivariable models presented	1	4	1	3	1	4	1	1	1	2
Timing of measurement of confounding variables	BL	BL	BL	1999, q2y	1976, q2y	BL	BL	BL	BL	BL
Pre-specified primary confounding variables										
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables	ļ								ļ	
Sex	✓	✓	✓	✓	✓	✓	✓		ļ	✓
Smoking	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Physical activity		✓	✓		✓	✓		✓	✓	✓
Alcohol		✓	✓	✓	✓	~				✓
Blood pressure	✓		✓	\checkmark	\checkmark			✓	✓	
Energy		✓	✓	✓	✓	\checkmark				
Diabetes	✓		✓		✓			✓	✓	
Cholesterol					✓			✓	✓	
Other Confounding variables										
Education	1		✓	✓		✓	✓	✓	✓	✓
Socioeconomic status		✓				✓	✓		İ	✓
Menopause and/or hormone Use	1				✓				1	
Region/location						✓				✓
Randomization treatment	İ		✓						İ	
Ethnicity/nationality	1						✓		1	
Marital status				✓						
Study center	1		✓					✓	✓	
Survey season										✓
Employment status								✓	✓	
Follow-up duration								•	-	
Dietary Intake										
Vitamin/supplement					✓				✓	
Fruit and/or vegetable	1		✓		•				•	
Saturated fat	1	✓	•			✓			1	
Whole grains		•	✓	✓		· · ·				
			•	•						
Fish/shellfish										✓
Meat										v
Red meat										
Dietary pattern score										
Processed meat	 									l
Coffee	 							ļ	ļ	ļ
Fibre		✓ ✓				✓				
Folate		✓								
Sodium										
Vitamin E										
Disease History	ļ	ļ	ļ	L					ļ	L
MI or family history of MI	ļ								ļ	
CHD or family history of CHD	✓		✓	✓						
CVD or family history of CVD										
Medications										
ASA					✓					
Other confounding variables not listed:		Vitamin C, trans/PUFA, α-tocopherol	Olive oil, Statins	Dyslipidemia, Legumes, Olive oil			Cardiomet- abolic meds, added sugar, SFA:M/PUFA		Dyslipidemi	Dairy, Preserved vegetables

Table S2. *Page 2/11*

Table S2. Page 3/11 Study	Du, 2017 ⁶³	Elwood,	Eriksen,	Fitzgerald,	Fraser,	Gardener,	Gaziano,	Genkinger,	Gillman,	Goetz, 2016 ⁷²	Goetz,
•		201364	201565	201266	1992 ⁶⁷	201168	1995 ⁶⁹	200470	199571		201673
No. of variables fully adjusted model	12	3	9	10	6	7	6	6	7	12	10
No. of multivariable models presented	14	1	1	1	1	1	1	2	1	1	1
Timing of measurement of confounding variables	BL	1979, q5y	BL	BL	BL	qy.	1976, qy	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Smoking	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓		✓					✓	✓		
Physical activity	✓			✓	✓	✓			✓	✓	✓
Alcohol	✓		✓	✓						✓	
Blood pressure			✓								
Energy				✓	✓	✓		✓		✓	✓
Diabetes	ļ	ļ		✓		ļ	✓		✓		
Cholesterol			✓				✓	✓	✓		
Other Confounding variables						ļ					
Education	✓			✓		✓				✓	✓
Socioeconomic status	✓	✓	✓							✓	✓
Menopause and/or hormone Use				✓							
Region/location	✓									✓	✓
Randomization treatment				✓							
Ethnicity/nationality						✓					✓
Marital status											
Study center											
Survey season	✓										
Employment status			✓								
Follow-up duration											
Dietary Intake											
Vitamin/supplement											
Fruit and/or vegetable											
Saturated fat											
Whole grains											
Fish/shellfish											
Meat	✓										
Red meat											
Dietary pattern score											✓
Processed meat											
Coffee											
Fibre											
Folate											
Sodium											
Vitamin E											
Disease History											
MI or family history of MI											
CHD or family history of CHD											
CVD or family history of CVD											
Medications											
ASA											
Other confounding variables not listed:	Preserved vegetables				Weight		Functional status			Trans FA MUFA:SFA, %E sweets	

Table S2. <i>Page 4/11</i>											
Study	Gunge, 2017 ⁷⁴	Gunnell, 201375	Hansen, 2010 ⁷⁷	Hansen, 2017 ⁷⁶	Harriss, 2007 ⁷⁸	Hertog, 1997 ⁷⁹	Hirvonen, 2000 ⁸¹	Hirvonen, 2001 ⁸⁰	Hjartaker, 2015 ⁸²	Hodgson, 2016 ⁸³	Holmberg, 2009 ⁸⁴
No. of variables fully adjusted model	18	10	11	13	15	13	10	11	9	15	0
No. of multivariable models presented	4	1	2	2	2	1	1	1	1	2	0
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL, q5y	BL	BL	BL	BL	BL
Pre-specified primary confounding variables						, 1=)					
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓	✓			1	✓	✓	1
Smoking	✓	✓	✓	✓	✓	 ✓ 	✓	✓	✓	✓	
BMI	✓	✓	✓		✓	✓	✓	✓	✓	✓	
Physical activity	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	
Alcohol	✓		✓	✓		✓			✓	✓	
Blood pressure	✓	✓	✓	✓	✓	✓	✓	✓		✓	
Energy	✓			✓	✓	✓				✓	
Diabetes		1	1	✓	✓	1	✓	✓	1	✓	1
Cholesterol	✓	✓	✓	✓	1	✓	✓	✓	i	✓	1
Other Confounding variables			1		1	1		1			ł
Education	✓	1	✓	✓	✓	1	✓	✓	1	1	1
Socioeconomic status				-		✓			✓	✓	1
Menopause and/or hormone Use	✓									-	1
Region/location	-				✓		1		1		
Randomization treatment	1				•		✓	✓		✓	
Ethnicity/nationality	1				✓		•		1	•	
					•	-		✓			
Marital status Study center	<u> </u>							• •			
		✓		✓							
Survey season		•		•		_					
Employment status	✓					_					
Follow-up duration	•										
Dietary Intake							1		✓		
Vitamin/supplement	✓				√				v		
Fruit and/or vegetable	v		✓		v						
Saturated fat			✓ ✓								ļ
Whole grains	\checkmark		~			_					
Fish/shellfish	~										
Meat					~						
Red meat	✓										
Dietary pattern score					~						
Processed meat	✓				ļ						
Coffee					ļ				✓		
Fibre											
Folate						1				ļ	ļ
Sodium						<u> </u>					ļ
Vitamin E						✓					
Disease History					ļ			ļ			<u> </u>
MI or family history of MI					ļ	<u> </u>					<u> </u>
CHD or family history of CHD		ļ		✓	ļ	✓	✓	✓	ļ	ļ	Į
CVD or family history of CVD			ļ		✓			ļ		✓	ļ
Medications											
ASA										✓	
Other confounding variables not listed:	WC	Charlson index, DM hospitalization		Weight		Vitamin C, B-carotene, Dietary fat				Cancer	

Study	Iso, 2007 ⁸⁵	Jacques, 2015 ⁸⁶	Johnsen, 2003 ⁸⁷	Joshipura, 1999 ⁸⁸	Joshipura, 2009 ⁸⁹	Keli, 1996 ⁹⁰	Kim, 2013 ⁹¹	Knekt, 1994 ⁹⁴	Knekt, 1996 ⁹³	Knekt, 200092	Kobylecki, 2015 ⁹⁵
No. of variables fully adjusted model	3	5	13	12	14	7	0	5	6	17	12
No. of multivariable models presented	1	2	2	1	198-86, q2y	1	0	2	1	1	3
Timing of measurement of confounding variables	BL	1991, q3-4y	BL	1980-6, q2y	1980-6, q2y	1960-73, 77, 85	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓	✓	✓	✓	√		✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓					✓		✓
Smoking		✓	✓	 ✓ 	✓	✓		✓	✓	✓	✓
BMI		✓	✓	✓	✓				✓	✓	✓
Physical activity			✓	✓	✓						✓
Alcohol			✓	✓	✓	√					✓
Blood pressure			✓	✓	✓	√		✓	✓	✓	✓
Energy		✓	✓	✓	√	√		✓		✓	
Diabetes			✓	1	✓					✓	
Cholesterol		1	✓	✓	✓	✓		✓	✓	✓	✓
Other Confounding variables											
Education		1	✓	l	İ			1		1	
Socioeconomic status	1	1		1				1		1	✓
Menopause and/or hormone Use				✓	✓						
Region/location	✓									✓	
Randomization treatment				1							
Ethnicity/nationality				1							
Marital status				1							
Study center				1							
Survey season		1		İ							
Employment status											
Follow-up duration											
Dietary Intake											
Vitamin/supplement				✓	✓						✓
Fruit and/or vegetable				1							
Saturated fat				1						✓	
Whole grains				1	✓						
Fish/shellfish						✓					
Meat											
Red meat			✓								
Dietary pattern score											
Processed meat				1	İ					1	
Coffee		1		l	İ			1		1	
Fibre		1		l	İ			1		✓	
Folate				1	1						
Sodium				1	1						
Vitamin E				1	1					✓	
Disease History				1							
MI or family history of MI		1		✓	Ì			1			
CHD or family history of CHD	1	1		1	✓			1			
CVD or family history of CVD	1	1		1	İ			1			
Medications				1							
ASA		1		l	✓			1		1	
Other confounding variables not listed:			Ω-3-FA							Occupation, Vit C/E,Querc P/MUFA	Maximal oxygen intake, CRP

Table S2. *Page 6/11*

1 abie 52. 1 uge 0/11	77 1	77 '1	1	Ŧ	Y	T 1	x 1			
Study	Kondo, 2019 ⁹⁶	Kvaavik, 2010 ⁹⁷	Lai, 201598	Larsson, 2009 ⁹⁹	Larsson, 2013 ¹⁰⁰	Leenders, 2013 ¹⁰²	Leenders, 2014 ¹⁰¹	Lin, 2007 ¹⁰³	Lin, 2017 ¹⁰⁴	Liu, 2000 ¹⁰⁶
No. of variables fully adjusted model	7	8	8	14	16	11	11	13	6	8
No. of multivariable models presented	1	2	2	2	2	1	1	2	1	3
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	1990, q2y	BL	BL
Pre-specified primary confounding variables	DL	DL	DL	DE	DL	DL	DL	1770, q29	DL	DL
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables		-						-		
Sex	✓	✓	✓	✓	✓	✓	✓		✓	
Smoking	✓		✓	✓	✓	✓ √	✓	✓		
BMI		✓	✓	✓	✓	✓	✓	✓	✓	
Physical activity	1		✓	✓	✓	✓	✓	✓		✓
Alcohol	✓		✓	✓ √	✓	✓	✓	✓		\checkmark
Blood pressure		✓		✓	✓			✓	✓	✓
Energy	✓			✓	✓			✓		
Diabetes		✓		✓	✓	✓	✓	✓	✓	✓
Cholesterol	1	1	1	✓ ·	1	1	1	✓ √	1	✓
Other Confounding variables	1						1			
Education	1				✓	✓	✓		✓	
Socioeconomic status	1	✓	✓			-	-			
Menopause and/or hormone Use	1						1	✓	1	
Region/location								-		
Randomization treatment				✓				_		✓
Ethnicity/nationality	1	1	1			1	1			
Marital status										
Study center						✓	✓	_		
Survey season							-	_		
Employment status										
Follow-up duration										
Dietary Intake										
Vitamin/supplement								✓		✓
Fruit and/or vegetable	✓		✓		✓	✓	✓			
Saturated fat					-					
Whole grains										
Fish/shellfish	✓							_		
Meat	-					✓	✓			
Red meat					✓					
Dietary pattern score	1				-	1	1	1	1	1
Processed meat					✓				1	1
Coffee	1	1	1		· · · · · · · · · · · · · · · · · · ·	1	1	1	1	1
Fibre	1	1	1			1	1	1	1	1
Folate				✓						
Sodium	✓						1	-	1	
Vitamin E								✓		
Disease History	1	1	1			1	1			
MI or family history of MI					✓				1	
CHD or family history of CHD	1	✓	1	l		1	1	1	1	1
CVD or family history of CVD	1		1	✓		1	1	1	 ✓ 	1
Medications	1	1	1			1	1			
ASA		1	1	l	✓			✓	l 	l
Other confounding variables not listed:		Respiratory diseases		Magnesium						

	105	Mann,	Manuel,	Miller,	Mink,	Mizrahi,	Mori,	Mytton,	Nagura,	Nakamura,
Study	Liu, 2001 ¹⁰⁵	1997 ¹⁰⁷	2015 ¹⁰⁸	2017 ¹⁰⁹	2007^{110}	2009 ¹¹¹	2018 ¹¹²	2018 ¹¹³	2009 ¹¹⁴	2008 ¹¹⁵
No. of variables fully adjusted model	11	5	1	17	11	8	16	16	16	15
No. of multivariable models presented	2	1	1	1	2	1	3	2	3	3
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL
Pre-specified primary confounding variables										
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables										
Sex	✓	\checkmark		✓		✓	✓	✓	✓	✓
Smoking	✓	✓		✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓			✓	✓	✓		✓	✓
Physical activity	✓			✓	✓	✓	✓	✓	✓	✓
Alcohol	✓						✓	✓	✓	✓
Blood pressure	✓			✓	√	✓	✓	✓	✓	✓
Energy				✓	√	✓	✓	✓		✓
Diabetes	✓			✓	√		✓	✓	✓	✓
Cholesterol	✓		1	✓	İ	✓	İ	✓	İ	
Other Confounding variables			1	1				1		
Education	1		1	✓	✓	İ	1	✓	✓	✓
Socioeconomic status		✓								
Menopause and/or hormone Use	1		1	1	✓	1	1	1		✓
Region/location			1	✓			1	1		
Randomization treatment	✓			1			1	1		
Ethnicity/nationality			1				1			
Marital status			1		✓		1			✓
Study center			1	✓			✓			
Survey season										
Employment status							✓			
Follow-up duration										
Dietary Intake										
Vitamin/supplement	✓						✓			
Fruit and/or vegetable				✓			✓	1	✓	
Saturated fat			1				1		✓	✓
Whole grains										
Fish/shellfish										
Meat										
Red meat				✓						
Dietary pattern score			1	1			1	1		
Processed meat			1	1			1	1		
Coffee	1		1	1	İ	İ	✓	1	İ	
Fibre			1	✓			1	1		
Folate				Ì			1	Ì		
Sodium				Ì			✓	Ì	✓	✓
Vitamin E				Ì			1	Ì		
Disease History			1	1				1		
MI or family history of MI	1		1	Ì	Ì	Ì	Ì	✓	İ	
CHD or family history of CHD			1	Ì	İ	Ì	İ	İ	Ì	
CVD or family history of CVD	1		1	1	İ	İ	1	1	İ	
Medications				1				1		
ASA	1		1	1	İ	İ	1	1		
Other confounding variables not listed:				Waist:hip, bread, white meat	Waist:hip		Green tea	Family hx of diabetes/ stroke	Sleep, stress, Ω-3 FA, diet cholesterol	Dietary protein

Table S2. *Page* 7/11

Table S2. Page 8/11

Study	Nechuta,	Neelakantan,	Ness,	Nothlings,	Okuda,	Oude Griep,	Oude Griep,	Oude Griep,	Oyebode,	Pham,
	2010116	2018117	2005118	2008119	2015120	2010121	2011123	2011122	2014 ¹²⁴	2007 ¹²⁵
No. of variables fully adjusted model	7	12	8	11	11	12	15	15	8	9
No. of multivariable models presented	2	1	2	2	3	3	3	3	2	1
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	BL	2001, qy	BL
Pre-specified primary confounding variables							ļ			
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables										
Sex	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Smoking		✓		✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓			✓		✓	✓	✓	✓
Physical activity	✓	✓							✓	
Alcohol				✓	✓	✓	✓	✓	✓	✓
Blood pressure		✓		✓						✓
Energy		✓	~	✓	✓	✓	✓	✓		
Diabetes		✓		✓			✓	✓		✓
Cholesterol							✓	✓		
Other Confounding variables								L		
Education	✓	✓				✓	✓	✓	✓	
Socioeconomic status	✓		✓				L		✓	
Menopause and/or hormone Use						✓	✓	✓		
Region/location			✓							
Randomization treatment							ļ			
Ethnicity/nationality		✓					ļ			
Marital status	✓						ļ			
Study center										
Survey season			✓							
Employment status										
Follow-up duration										
Dietary Intake										
Vitamin/supplement						✓	✓	✓		
Fruit and/or vegetable		✓								✓
Saturated fat										
Whole grains		✓				 ✓ 	 ✓ 	✓		
Fish/shellfish		✓			 ✓ 	✓	✓	✓		
Meat					✓					
Red meat										
Dietary pattern score						,				
Processed meat						✓	✓	✓		
Coffee										
Fibre										
Folate										
Sodium					✓					
Vitamin E								L		
Disease History										
MI or family history of MI				✓		✓	✓	✓		
CHD or family history of CHD										
CVD or family history of CVD								L		
Medications										
ASA								L		
Other confounding variables not listed:		Sleep, nuts, legumes, dairy	Child food expenditure, Townsend	Cancer hx, insulin tx, Waist:Hip	Dairy, soy					Blood transfusion

Table 52. Page 9/11			a	<i>a</i> .	<i>a</i>	a 1 <i>c</i> c	~	~	~	<u> </u>	
Study	Rebello, 2014 ¹²⁶	Rissanen, 2003 ¹²⁷	Saglimbene, 2017 ¹²⁸	Sahyoun, 1996 ¹²⁹	Sauvaget, 2003 ¹³⁰	Scheffers, 2019 ¹³¹	Sesso, 2003 ¹³²	Sesso, 2003 ¹³⁴	Sesso, 2007 ¹³³	Shah, 2018 ¹³⁵	Sharma, 2013 ¹³⁶
No. of variables fully adjusted model	20	10	N/A	4	13	12	16	16	18	10	7
No. of multivariable models presented	3	4	N/A	3	4	4	2	2	4	2	1
Timing of measurement of confounding variables	BL	BL	N/A	BL	BL	BL	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓		✓	✓	✓	✓	✓	✓	✓	
Pre-specified secondary confounding variables											
Sex	İ	✓		✓	✓	✓				✓	
Smoking	✓	√			✓	✓	✓	✓	✓	✓	✓
BMI	✓	√			✓	✓	✓	✓	✓	✓	
Physical activity	✓					✓	✓	✓	✓	✓	✓
Alcohol	✓				✓	✓	✓	✓	✓	✓	✓
Blood pressure	✓	✓			✓	✓	✓	✓	✓	✓	
Energy	✓							✓	✓		✓
Diabetes		✓			✓		✓	✓	✓	✓	
Cholesterol	İ	✓	1		İ	✓	✓	✓	✓	✓	
Other Confounding variables											
Education	✓	İ			✓	✓		1	1		✓
Socioeconomic status											
Menopause and/or hormone Use	✓						✓	✓	✓		
Region/location					✓						
Randomization treatment		1					✓	✓	✓		1
Ethnicity/nationality	✓										✓
Marital status		1									
Study center		1									
Survey season	✓	1									
Employment status											
Follow-up duration		✓									✓
Dietary Intake											
Vitamin/supplement		✓									
Fruit and/or vegetable	İ						✓	✓	✓		
Saturated fat	✓						✓	✓			
Whole grains	İ										
Fish/shellfish											
Meat											
Red meat	✓										
Dietary pattern score						✓					
Processed meat											
Coffee											
Fibre							✓	✓	✓		[
Folate							✓	✓	✓		
Sodium											
Vitamin E							~				
Disease History											
MI or family history of MI					✓		✓	✓	✓		
CHD or family history of CHD											
CVD or family history of CVD										✓	
Medications											
ASA											
Other confounding variables not listed:	Sleep, bread, legumes, soy egg, PUFA	Maximal oxygen		Functional status, Health	Birth cohort, animal prod, radiation				Vitamin C, flavonoid, potassium		

Table S2. *Page 9/11*

Table 52. Page 10/11	~	~	~ .	~	~ ~ ~	~ ~	~ "			1	
Study	Sharma, 2014 ¹³⁷	Simila, 2013 ¹³⁸	Sonestedt, 2015 ¹³⁹	Sotomayer, 2019 ¹⁴⁰	Steffen, 2003 ¹⁴¹	Stefler, 2016 ¹⁴²	Strandhagen , 2000 ¹⁴³	Takachi, 2008 ¹⁴⁴	Tanaka, 2013 ¹⁴⁵	Tucker, 2005 ¹⁴⁷	Tognon, 2014 ¹⁴⁶
No. of variables fully adjusted model	5	2	14	16	12	12	5	11	21	10	6
No. of multivariable models presented	1	1	3	4	3	1	2	2	3	3	1
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	BL	BL	1961, biennially	BL
Pre-specified primary confounding variables										, i i i i i i i i i i i i i i i i i i i	
Age		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex			✓	✓	✓	✓	✓	✓	✓	✓	✓
Smoking	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓		✓	✓	✓			✓	✓	✓	✓
Physical activity	✓		✓	✓	✓	✓		✓	✓	✓	✓
Alcohol	✓		\checkmark	✓	✓	✓		✓	✓	✓	
Blood pressure				✓	✓		✓	✓	✓		
Energy			✓	-	· · · · · · · · · · · · · · · · · · ·	✓		 ✓	✓ ·	✓	
Diabetes	✓			✓				✓	✓		
Cholesterol		1	1	· · · · · · · · · · · · · · · · · · ·	 ✓ 		✓		· ✓		
Other Confounding variables	1			-	⊢ ́						
Education	<u> </u>		✓	✓	✓	✓		L	<u> </u>		✓
			v	✓ ✓	•	v					•
Socioeconomic status				*							
Menopause and/or hormone Use											
Region/location		1									
Randomization treatment		✓									
Ethnicity/nationality					✓						
Marital status					ļ	✓					
Study center								✓			
Survey season			✓								
Employment status					ļ						
Follow-up duration				✓						✓	
Dietary Intake											
Vitamin/supplement					<u> </u>	✓		✓		✓	
Fruit and/or vegetable			✓			✓					
Saturated fat									✓	✓	
Whole grains			✓								
Fish/shellfish											
Meat			✓								
Red meat											
Dietary pattern score					✓						
Processed meat					1						
Coffee	1	İ	✓		1		İ		1		
Fibre	1	İ	İ		İ		İ		1		
Folate	1				İ						
Sodium	1	İ	İ				1		✓		
Vitamin E	1				İ		1	<u> </u>	1		
Disease History	1	1					1		ł		
MI or family history of MI	1	i	i		1		1		1		
CHD or family history of CHD	1	i	i		1		1		1		
CVD or family history of CVD	1	1	1	l	1	1	1	·	1	1	
Medications											
ASA	1	}					1	L	1		
	+			oCEP	-				ł		
Other confounding variables not listed:			Fermented milk	eGFR, proteinuria, primary renal disease, hsCRP		Birth cohort, house score			ţ		

Table S2. *Page 10/11*

Table S2. Page 11/11

	Von Ruesten,	Vormund,	Wang,	Watkins,	Whiteman,	Yamada,	Yokoyama,	Yoshizaki,		Zhang	Zhang,
Study	2013 ¹⁴⁸	2015 ¹⁴⁹	2016 ¹⁵⁰	2000^{151}	1999 ¹⁵²	2011^{153}	2000^{154}	2019 ¹⁵⁵	Yu, 2014 ¹⁵⁶	Zhang, 2011 ¹⁵⁷	2011^{158}
No. of variables fully adjusted model	11	8	7	17	3	11	9	17	13	17	11
No. of multivariable models presented	2	3	1	1	1	2	1	3	2	1	1
Timing of measurement of confounding variables	BL, q2-3y	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓
Smoking	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓
Physical activity	✓			✓		✓	✓	✓	✓	✓	✓
Alcohol	✓		✓	✓		✓	✓	✓		✓	✓
Blood pressure	✓			✓		✓	✓	√	✓	✓	✓
Energy								✓	✓	✓	
Diabetes				✓			1	√	✓	✓	✓
Cholesterol	✓					✓	✓	✓	✓	✓	✓
Other Confounding variables											
Education	✓			✓		✓			✓	✓	
Socioeconomic status									✓	✓	
Menopause and/or hormone Use									-	✓ ✓	
Region/location		✓	✓			✓					
Randomization treatment		-				-					
Ethnicity/nationality		✓		✓							
Marital status		· ✓		· · · · · · · · · · · · · · · · · · ·		✓					
Study center		•		•		•	✓				
Survey season		✓	✓								
Employment status		•	•	✓			✓				
Follow-up duration				-							
Dietary Intake											
Vitamin/supplement	✓								✓	✓	
Fruit and/or vegetable	✓ ✓							✓	-	-	✓
Saturated fat	•							•		✓	•
Whole grains										•	
Fish/shellfish								✓	✓		
Meat								· · · · · · · · · · · · · · · · · · ·			
Red meat				✓				•	✓		
Dietary pattern score				-							
Processed meat											
Coffee				✓							
Fibre				•							
Folate											
Sodium								✓			
Vitamin E							}	•	}		
Disease History							+		+		
MI or family history of MI	}			{			}		}	{{	
CHD or family history of MI CHD or family history of CHD							 ✓ 			✓	
							•			Ŷ	
CVD or family history of CVD											
Medications				✓							
ASA				-				M- (1		O and the	
Other confounding variables not listed:				Stroke, Diuretics				Mental stress		Occupation, stroke	Stroke

ASA - acetylsalicylic acid; BL - baseline; CHD – coronary heart disease; CRP – C-reactive protein; CVD – cardiovascular disease; GFR – glomerular filtration rate; FA – fatty acid; MI – myocardial infarction; M/PUFA - mono/poly-unsaturated fatty acids; Querc – quercetin supplement; qXy - confounding variables measured once every X years; WC – waist circumference.

*Tanaka et al. (2013) adjusted for the following additional confounding variables: dyslipidemia, HbA1c, oral antihyperglycemic agents, insulin, retinopathy, dietary cholesterol, dietary fat and Ω -3 and Ω -6 FA.

Study	Selection*	Outcome [†]	Comparability [‡]	Total§
Adriouch, 2018 ⁴²	3	2	2	7
Appleby, 2002 ⁴³	1	1	1	3
Atkins, 2014 ⁴⁴	3	3	1	7
Bahadoran, 2017 ⁴⁵	2	1	0	3
Bazzano, 2002 ⁴⁶	2	3	1	6
Belin, 2011 ⁴⁷	3	3	2	8
Bendinelli, 2011 ⁴⁸	3	3	2	8
Berard, 2017 ⁴⁹	3	3	1	7
3hupathiraju, 2013 ⁵⁰	2	2	1	5
Bingham, 2008 ⁵¹	2	0	2	4
Blekkenhorst, 2017 ⁵²	2	3	2	7
Bos, 2014 ⁵³	2	3	2	7
Buijsse, 2008 ⁵⁴	3	3	1	7
Buil-Cosiales, 2016 ⁵⁶	3	3	2	8
Buil-Cosiales, 2017 ⁵⁵	3	1	2	6
Cassidy, 2012 ⁵⁷	2	2	2	6
Collin, 2019 ⁵⁸	3	3	1	7
Conrad, 2018 ⁵⁹	3	3	1	7
Dauchet, 2004 ⁶⁰	3	3	2	8
Dauchet, 2010 ⁶¹	4	3	2	9
Du, 2016 ⁶²	4	3	1	8
Du, 2017 ⁶³	4	3	1	8
Elwood, 2013 ⁶⁴	3	3	1	7
Eriksen, 2015 ⁶⁵	3	3	2	8
Fitzgerald, 2012 ⁶⁶	2	2	1	5
Fraser, 1992 ⁶⁷	2	3	2	7
Gardener, 2011 ⁶⁸	4	2	1	7
Gaziano, 1995 ⁶⁹	2	3	1	6
Genkinger, 2004 ⁷⁰	3	3	1	7
Gillman, 1995 ⁷¹	3	3	2	8
Goetz, 2016 ⁷²	3	2	1	6
Goetz, 2016 ⁷³	3	3	1	7
Gunge, 2017 ⁷⁴	3	3	2	8

 Table S3: Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Cohort Studies

Study	Selection*	Outcome [†]	Comparability [‡]	Total§
Gunnell, 2013 ⁷⁵	3	1	2	6
Hansen, 2010 ⁷⁷	3	3	2	8
Hansen, 2017 ⁷⁶	2	3	2	7
Harriss, 2007 ⁷⁸	3	3	2	8
Hertog, 1997 ⁷⁹	2	3	2	7
Hirvonen, 2000 ⁸¹	2	3	2	7
Hirvonen, 2001 ⁸⁰	2	3	2	7
Hjartaker, 2015 ⁸²	2	3	1	6
Hodgson, 2016 ⁸³	2	3	2	7
Holmberg, 2009 ⁸⁴	2	3	0	5
Iso, 2007 ⁸⁵	2	2	1	5
Jacques, 2015 ⁸⁶	3	3	1	7
Johnsen, 2003 ⁸⁷	3	2	2	7
Joshipura, 1999 ⁸⁸	2	2	2	6
Joshipura, 2009 ⁸⁹	2	3	2	7
Keli, 1996 ⁹⁰	4	3	1	8
Kim, 2013 ⁹¹	1	3	0	4
Knekt, 1994 ⁹⁴	4	3	1	8
Knekt, 1996 ⁹³	2	3	2	7
Knekt, 2000 ⁹²	4	3	2	9
Kobylecki, 2015 ⁹⁵	3	3	2	8
Kondo, 2019 ⁹⁶	3	3	1	7
Kvaavik, 2010 ⁹⁷	4	3	1	8
Lai, 2015 ⁹⁸	3	3	1	7
Larsson, 2009 ⁹⁹	2	3	2	7
Larsson, 2013 ¹⁰⁰	3	3	2	8
Leenders, 2013 ¹⁰²	3	3	2	8
Leenders, 2014 ¹⁰¹	3	3	2	8
Lin, 2007 ¹⁰³	2	2	2	6
Lin, 2017 ¹⁰⁴	3	3	1	7
Liu, 2000 ¹⁰⁶	2	3	2	7
Liu, 2001 ¹⁰⁵	2	3	2	7
Mann, 1997 ¹⁰⁷	2	3	1	6
Manuel, 2015 ¹⁰⁸	4	3	1	8
Miller, 2017 ¹⁰⁹	3	3	2	8

Study	Selection*	Outcome [†]	Comparability [‡]	Total [§]
Mink, 2007 ¹¹⁰	3	3	2	8
Mizrahi, 2009 ¹¹¹	4	3	2	9
Mori, 2018 ¹¹²	3	3	2	8
Mytton, 2018 ¹¹³	3	3	2	8
Nagura, 2009 ¹¹⁴	3	3	2	8
Nakamura, 2008 ¹¹⁵	2	3	2	7
Nechuta, 2010 ¹¹⁶	3	3	1	7
Neelakantan, 2018 ¹¹⁷	3	3	2	8
Ness, 2005 ¹¹⁸	3	3	1	7
Nothlings, 2008 ¹¹⁹	2	3	1	6
Okuda, 2015 ¹²⁰	3	3	1	7
Oude Griep, 2010 ¹²¹	3	3	1	7
Oude Griep, 2011 ¹²³	2	3	2	7
Oude Griep, 2011 ¹²²	2	3	2	7
Oyebode, 2014 ¹²⁴	3	3	1	7
Pham, 2007 ¹²⁵	3	3	2	8
Rebello, 2014 ¹²⁶	3	3	1	7
Rissanen, 2003 ¹²⁷	2	3	2	7
Saglimbene, 2017 ¹²⁸	1	0	0	1
Sahyoun, 1996 ¹²⁹	1	3	1	5
Sauvaget, 2003 ¹³⁰	2	3	2	7
Scheffers, 2019 ¹³¹	3	3	2	8
Sesso, 2003 ¹³²	2	3	2	7
Sesso, 2003 ¹³⁴	2	3	2	7
Sesso, 2007 ¹³³	3	2	2	7
Shah, 2018 ¹³⁵	3	3	2	8
Sharma, 2013 ¹³⁶	3	2	0	5
Sharma, 2014 ¹³⁷	3	2	0	5
Simila, 2013 ¹³⁸	2	3	1	6
Sonestedt, 2015 ¹³⁹	4	3	2	9
Sotomayer, 2019 ¹⁴⁰	1	3	2	6
Steffen, 2003 ¹⁴¹	4	3	2	9
Stefler, 2016 ¹⁴²	2	3	1	6
Strandhagen, 2000 ¹⁴³	2	3	1	6
Takachi, 2008 ¹⁴⁴	3	3	2	8

Study	Selection*	Outcome [†]	Comparability [‡]	Total§
Tanaka, 2013 ¹⁴⁵	2	3	2	7
Tognon, 2014 ¹⁴⁶	3	3	1	7
Tucker, 2005 ¹⁴⁷	2	3	1	6
Von Ruesten, 2013 ¹⁴⁸	3	2	2	7
Vormund, 2015 ¹⁴⁹	3	3	1	7
Wang, 2016 ¹⁵⁰	1	3	1	5
Watkins, 2000 ¹⁵¹	3	3	2	8
Whiteman, 1999 ¹⁵²	3	3	1	7
Yamada, 2011 ¹⁵³	2	3	2	7
Yokoyama, 2000 ¹⁵⁴	2	3	2	7
Yoshizaki, 2019 ¹⁵⁵	3	3	2	8
Yu, 2014 ¹⁵⁶	3	3	2	8
Zhang, 2011 ¹⁵⁷	3	3	2	8
Zhang, 2011 ¹⁵⁸	3	2	2	7

*Maximum 4 points awarded for representativeness of exposed cohort, selection of non-exposed cohort, exposure assessment, and demonstration outcome not present at baseline.

†Maximum 3 points awarded for outcome assessment, follow-up length, and adequacy of follow-up.

‡Maximum 2 points awarded for adjusting for the pre-specified primary confounding variable (age) and 5 of the 7 pre-specified secondary confounding variables (sex, family history of CVD, smoking, body mass index, blood pressure (or hypertension/medications), cholesterol (or dyslipidemia/medications) and presence of diabetes mellitus.

§A maximum of 9 points could be awarded.

			Quality	Assessment						
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	l Vegetable Con	sumption on C	ardiovascular l	Disease Inciden	ce (follow-up n	nedian 10 years	5)			
12	observational	not serious	not serious	not serious	serious ¹	undetected	dose-response gradient ²	24,310/501,744 (4.9%)	0.93 (0.89, 0.96)	
Fruit Cor	nsumption on C	ardiovascular	Disease Inciden	ce (follow-up n	nedian 10 years	5)				
16	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ³	27,204/577,323 (4.7%)	0.91 (0.88, 0.95)	
Vegetable	e Consumption	on Cardiovasc	ular Disease Inc	cidence (follow-	up median 11	years)				
14	observational	not serious	not serious	not serious	serious ⁴	undetected	none	22,810/539,683 (4.2%)	0.94 (0.90, 0.97)	OCCO VERY LOW
Berries C	Consumption on	Cardiovascula	r Disease Incid	ence (follow-up	median 10 yea	ars)				
1	observational	not serious	not serious ⁵	serious ⁶	serious ⁷	undetected ⁸	none	1,004/38,176 (2.6%)	1.27 (0.95, 1.71)	OCCO VERY LOW
Citrus Fr	uit Consumptio	on on Cardiova	scular Disease	Incidence (follo	w-up median 1	0 years)			I	
6	observational	not serious	not serious	not serious	serious9	undetected ⁸	dose-response gradient ¹⁰	6,220/222,525 (2.8%)	0.88 (0.80, 0.96)	
Fruit Juio	ce Consumptior	n on Cardiovas	cular Disease Ir	ncidence (follow	v-up median 15	years)				
5	observational	not serious	not serious	not serious	serious ¹¹	undetected ⁸	none	8,056/167,879 (4.8%)	1.00 (0.93, 1.07)	UVERY LOW
Pommes	Consumption of	n Cardiovascul	lar Disease Inci	dence (follow-u	p median 8 yea	ars)			1	
5	observational	not serious	not serious	serious ¹²	not serious	undetected ⁸	dose-response gradient ¹³	2,578/149,437 (1.7%)	0.76 (0.66, 0.88)	
Allium V	egetables Consu	imption on Ca	rdiovascular Di	sease Incidence	e (follow-up me	dian 7 years)				
2	observational	not serious	serious ¹⁴	serious ¹⁵	serious ¹⁶	undetected ⁸	none	808/40,814 (2.0%)	0.79 (0.57, 1.10)	OCCO VERY LOW
Crucifero	ous Vegetables (Consumption o	n Cardiovascul	ar Disease Inci	dence (follow-u	ip median 9 yea	ars)			*
7	observational	not serious	serious ¹⁷	not serious	serious ¹⁸	undetected ⁸	none	6,824/273,878 (2.5%)	0.99 (0.90, 1.08)	⊕COO VERY LOW
Green Le	afy Vegetables	Consumption of	on Cardiovascu	lar Disease Inc	idence (follow-	up median 7 ye	· · ·		I	
5	observational	not serious	not serious	not serious	serious ¹⁹	undetected ⁸	dose-response gradient ²⁰	5,732/211,902 (2.7%)	0.87 (0.76, 0.99)	
Tomatoes	s Consumption	on Cardiovasc	ular Disease Inc	cidence (follow-	up median 9 ye	ears)	1		I	
2	observational	not serious	not serious	serious ²¹	serious ²²	undetected ⁸	none	841/55,452 (1.5%)	0.97 (0.78, 1.20)	OCCO VERY LOW
			1 1 1 0	1 OFAL OL OD		.1	11.00			1 C 1

¹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.89) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

 2 Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between total fruit and vegetable intake and incident CVD (p<0.001).

³ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and incident CVD (p=0.004).

⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.90) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.

⁵ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

⁶ Downgrade for serious indirectness as evidence is based on 1 cohort of female health-professionals residing in the USA and may not be generalizable to different populations.

⁷ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.95 to 1.27) includes both clinically important benefit (RR \leq 0.95) and harm (RR \geq 1.05).

⁸ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

⁹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.80) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

¹⁰ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between citrus fruit intake and CVD incidence (p=0.033).

¹¹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.93 to 1.07) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹² Downgrade for serious indirectness as evidence is based on a predominately (>78%) female population and may not be generalizable to different populations.

¹³ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between pommes intake and incident CVD (p=0.043).

 14 Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity (I²=85%, p=0.01), which could not be explored through sensitivity due to only 2 observations available.

¹⁵ Downgrade for serious indirectness as evidence is based on a predominately (97%) female populations of which most are health professionals, and may not be generalizable to different populations.

¹⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.57) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.10) crosses the MID.

¹⁷ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=52\%$, p=0.04). Although the removal of Buil-Cosiales et al. 2016 during sensitivity analysis did partially explain the heterogeneity ($I^2=27\%$, p=0.22), the presence of residual heterogeneity could not be excluded.

¹⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.90 to 1.08) includes both clinically important benefit (RR \leq 0.95) and harm (RR \geq 1.05).

¹⁹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.76) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

²⁰ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between green leafy vegetables intake and CVD mortality (p=0.01)

²¹ Downgrade for serious indirectness as evidence is based on a predominately (88%) female population and may not be generalizable to different populations.

²² Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.78 to 1.20) includes both clinically important benefit (RR \leq 0.95) and harm (RR \geq 1.05).

Table S5. GRADE Assessment for Fruits and Vegetables and Cardiovascular Disease Mortality

			Quality	Assessment						
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on C	ardiovascular I	Disease Mortali	ty (follow-up n	nedian 11 years	s)			
14	observational	not serious	serious ¹	not serious	not serious	undetected	dose-response gradient ²	17,439/798,391 (2.2%)	0.89 (0.85, 0.93)	
Fruit Con	sumption on C	ardiovascular	Disease Mortali	ty (follow-up n	nedian 11 years	s)	1			
27	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	39,623/1,581,506 (2.5%)	0.88 (0.86, 0.91)	
Vegetable	Consumption	on Cardiovasc	ular Disease Mo	ortality (follow-	up median 10	years)	1			
21	observational	not serious	serious ⁵	not serious	not serious	undetected	dose-response gradient ⁶	33,516/1,101,435 (3.0%)	0.87 (0.85, 0.90)	
Apricot C	onsumption on	Cardiovascula	ar Disease Mort	ality (follow-uj	p median 1.5 ye	ears)			1.04	
1	observational	serious ⁷	not serious ⁸	serious9	not serious	undetected ¹⁰	none	515/9,757 (5.3%)	1.84 (1.27, 2.67)	OCCO VERY LOW
Bananas (Consumption o	n Cardiovacula	ar Disease Mort	ality 16(follow-	-up median 20.	3 years)				
1	observational	not serious	not serious ⁸	serious ¹²	serious ¹³	undetected ¹⁰	none	4,595/9,766 (47.1%)	1.06 (0.87, 1.29)	OCCO VERY LOW
Berries C	onsumption on	Cardiovascula	r Disease Mort	ality (follow-up	median 16 yea	ars)	T	[]		
4	observational	not serious	not serious	serious ¹⁴	serious ¹⁵	undetected ¹⁰	none	7,401/112,892 (6.6%)	0.97 (0.92, 1.03)	OCCO VERY LOW
Citrus Fr	uit Consumptio	on on Cardiova	scular Disease I	Mortality (follo	w-up median 1	7 years)				
3	observational	not serious	not serious ¹⁶	serious ¹⁷	serious ¹⁸	undetected ¹⁰	none	7,197/74,716 (9.6%)	0.95 (0.90, 1.02)	OCCO VERY LOW
Dried Fru	it Consumption	n on Cardiovas	scular Disease M	Iortality (follow	w-up median 1'	7 years)				
2	observational	not serious	not serious	not serious	serious ¹⁹	undetected ¹⁰	none	447/31,757 (1.4%)	0.93 (0.63, 1.37)	OCCO VERY LOW
Fruit Juic	e Consumption	on Cardiovas	cular Disease M	lortality (follow	v-up median 17	years)	1			# 000
1	observational	not serious	not serious ⁸	serious ²⁰	serious ²¹	undetected ¹⁰	none	286/30,458 (0.9%)	0.81 (0.58, 1.13)	OCCO VERY LOW
Grapes C	onsumption on	Cardiovascula	r Disease Mort	ality (follow-up	median 16.7 y	ears)				
3	observational	not serious	not serious ²²	serious ²³	serious ²⁴	undetected ¹⁰	none	7,197/74,716 (9.6%)	0.90 (0.81, 1.01)	OCCO VERY LOW
Pommes (Consumption of	n Cardiovascul	lar Disease Mor	tality (follow-u	p median 16 y	ears)				
5	observational	not serious	not serious	serious ²⁵	not serious	undetected ¹⁰	none	7,947/85,929 (9.2%)	0.86 (0.80, 0.92)	OCCO VERY LOW
Allium Ve	egetables Consu	imption on Ca	rdiovascular Di	sease Mortality	/ (follow-up me	dian 15 years)				
1	observational	not serious	not serious ⁸	serious ²⁶	not serious	undetected ¹⁰	none	238/1,226 (19.4%)	0.33 (0.22, 0.49)	⊕COO VERY LOW
Carrots C	Consumption on	Cardiovacula	r Disease Morta	ality (follow-up	median 18 yea	rs)				

2	observational	not serious	not serious	serious ²⁷	serious ²⁸	undetected ¹⁰	none	4,792/10,325 (46.4%)	0.92 (0.85, 1.01)	OCCO VERY LOW
Celery Co	onsumption on	Cardiovasculaı	· Disease Morta	lity (follow-up	median 16 yea	rs)				•
1	observational	not serious	not serious ⁸	serious ²⁹	serious ³⁰	undetected ¹⁰	none	2,316/34,492 (6.7%)	0.91 (0.83, 1.01)	OCCO VERY LOW
Crucifere	ous Vegetables (Consumption of	n Cardiovascul	ar Disease Mor	tality (follow-u	ıp median 12 ye	ars)			
7	observational	not serious	serious ³¹	not serious	not serious	undetected ¹⁰	none	13,081/187,730 (7.0%)	0.85 (0.82, 0.89)	OCCO VERY LOW
Green Le	eafy Vegetables	Consumption o	on Cardiovascu	lar Disease Mo	rtality (follow-	up median 21 y	ears)			
5	observational	not serious	serious ³²	not serious	not serious	undetected ¹⁰	none	6,661/40,893 (16.3%)	0.87 (0.81, 0.94)	
Tomatoes	Tomatoes Consumption on Cardiovascular Disease Mortality (follow-up median 16 years)									
3	observational	not serious	not serious	serious ³³	serious ³⁴	undetected9	none	7,072/45,557 (15.5%)	0.98 (0.93, 1.04)	OCCO VERY LOW

¹ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=68\%$, p<0.001) which could not be explained by sensitivity analyses.

² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and CVD mortality (p<0.011). The MKSPLINE procedure indicated a departure from linearity (p<0.001) at a threshold of 4 servings/day as observed by visual inspection.

³ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=79\%$, p<0.001), which could not be explained by sensitivity analyses.

⁴Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p=0.005).

⁵ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=59\%$, p<0.001), which could not be explained by sensitivity analyses.

⁶Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p<0.001).

⁷ Downgrade for serious risk of bias as the effect estimate is based on Saglimbene et al. 2017, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)

⁸No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

⁹ Downgrade for serious indirectness as evidence is based on 1 cohort of patients receiving hemodialysis and may not be generalizable to different populations.

¹⁰ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

¹¹No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

¹² Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations

¹³ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.87 to 1.29) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁴ Downgrade for serious indirectness as evidence is based on a predominately (91%) female population and may not be generalizable to different populations.

¹⁵ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.92) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.03) crosses the MID.

¹⁶ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=62\%$, p=0.05) was explained by the removal of Lai et al. 2015 ($I^2=0\%$, p=0.63) during sensitivity analysis.

¹⁷ Downgrade for serious indirectness as the evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

¹⁸ Downgrade for serious imprecision, as upper bound of the 95% CIs (RR 1.02) crosses the MID (RR<0.95).

¹⁹ Downgrade for serious imprecision, as upper bound of the 95% CIs (RR 1.37) crosses the MID (RR<0.95).

²⁰ Downgrade for serious indirectness as evidence is based on 1 female cohort residing in the United Kingdom and may not be generalizable to different populations.

²¹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.58 to 1.13) includes both clinically important benefit (RR<0.95) and harm ($RR\geq1.05$).

 22 No downgrade for inconsistency as the presence of inter-study heterogeneity (I²=61%, p=0.08) was explained by the removal of Lai et al. 2015 (I²=0%, p=0.93) during sensitivity analysis.

²³ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

²⁴ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.01) crosses the MID (RR<0.95).

²⁵ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

²⁶ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

²⁷ Downgrade for serious indirectness as evidence is based on 2 male cohorts and may not be generalizable to different populations.

²⁸ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.01) crosses the MID.

²⁹ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

³⁰ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.76) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

 31 Downgrade for serious inconsistency as there was evidence for substantial inter-study heterogeneity (I²=86%, p<0.00001), which could not be explained by sensitivity analyses.

 32 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001), which could not be explained by sensitivity analyses.

³³ Downgrade for serious indirectness as evidence is based on only 3 isolated geographical regions (Norway and Massachusetts and Iowa, USA) and may not be generalizable to different populations.

³⁴ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.04) includes crosses the MID (RR<0.95).

				Assessment		J				
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on C	oronary Heart	Disease Incider	nce (follow-up 1	nedian 10 year				
19	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ¹	17,987/619,182 (2.9%)	0.88 (0.83, 0.92)	MODERATE
Fruit Con	sumption on C	oronary Heart	Disease Incider	nce (follow-up i	nedian 10 year	s)				
20	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ²	23,856/1,170,021 (2.0%)	0.88 (0.84, 0.92)	MODERATE
Vegetable	Consumption	on Coronary H	leart Disease In	cidence (follow	-up median 10	years)				
18	observational	not serious	not serious ³	not serious	serious ⁴	undetected	dose-response gradient ⁵	17,172/696,330 (2.5%)	0.92 (0.87, 0.96)	
Bananas (Consumption o	n Coronary He	art Disease Inc	idence (follow-	up median 7.6 y	years)				
1	observational	not serious	not serious ⁶	serious ⁷	serious ⁸	undetected9	none	365/122,635 (0.3%)	0.76 (0.56, 1.02)	OCCO VERY LOW
Berries C	onsumption on	Coronary Hea	rt Disease Incid	lence (follow-u	p median 8 yea	rs)	1			
4	observational	not serious	serious ¹⁰	not serious	serious ¹¹	undetected9	none	2,233/100,296 (2.2%)	0.94 (0.82, 1.09)	EXCO VERY LOW
Citrus Fr	uit Consumptio	n on Coronary	V Heart Disease	Incidence (follo	ow-up median	9 years)				
10	observational	not serious	not serious	not serious	serious ¹²	undetected	dose-response gradient ¹²	8,333/364,978 (2.3%)	0.91 (0.85, 0.98)	
Fruit Juic	e Consumption	on Coronary	Heart Disease I	ncidence (follo	w-up median 1	5 years)	•			
4	observational	not serious	not serious	not serious	serious ¹⁴	undetected9	none	7,589/109,898 (6.9%)	0.99 (0.92, 1.07)	THEORY LOW
Grapes C	onsumption on	Coronary Hea	rt Disease Incid	lence (follow-u	p median 12 ye	ars)				-
1	observational	not serious	not serious ⁶	serious ¹⁵	serious ¹⁶	undetected9	none	8,333/364,978 (2.3%)	0.91 (0.85, 0.98)	⊕COO VERY LOW
Pommes (Consumption of	n Coronary He	art Disease Inci	idence (follow-u	ıp median 8 ye	ars)				
8	observational	not serious	not serious	not serious	serious ¹⁷	undetected9	none	4,886/371,684 (1.3%)	0.90 (0.84, 0.97)	EXXO VERY LOW
Waterme	lon Consumptio	on on Coronary	y Heart Disease	Incidence (foll	ow-up median	7.6 years)				
1	observational	not serious	not serious	serious ¹⁶	serious ¹⁹	undetected9	none	365/122,635 (0.3%)	0.87 (0.64, 1.18)	OCCO VERY LOW
Allium Ve	Allium Vegetables Consumption on Coronary Heart Disease Incidence(follow-up median 10 years)									
5	observational	not serious	not serious	not serious	serious ²⁰	undetected9	none	1,734/210,964 (0.8%)	0.93 (0.80, 1.09)	THEORY LOW
Crucifero	us Vegetables (Consumption o	n Coronary He	art Disease Inci	idence(follow-u	p median 11 ye	ears)			
8	observational	not serious	not serious	not serious	not serious	undetected9	none	9,383/347,453 (2.7%)	1.01 (0.95, 1.07)	

Table S6. GRADE Assessment for Fruits and Vegetables and Coronary Heart Disease Incidence

Green Le	Green Leafy Vegetables Consumption on Coronary Heart Disease Incidence(follow-up median 16 years)									
5	observational	not serious	not corious	not corious	not corious	undetected9	dose-response	6,696/170,250	0.82	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $
3	observational	not serious	not serious	not serious	not serious	undetected	gradient ²¹	(3.9%)	(0.76, 0.89)	MODERATE
Tomatoes	s Consumption	on Coronary H	eart Disease In	cidence(follow-	up median 8 y	ears)				
2	observational	not sorious	not corious	serious ²²	serious ²³	undetected9	none	1,283/134,494	0.80	$\oplus 0000$
3	observational	not serious	not serious	serious	serious	undetected	lione	(1.0%)	(0.57, 1.13)	VERY LOW

¹ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and coronary heart disease incidence (CHD) (p<0.001).

²Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CHD (p=0.005).

³ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=53\%$, p=0.002) was explained by the removal of Dauchet et al. 2010 ($I^2=0\%$, p=0.5) ⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.87) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

⁵ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and CHD (p<0.001).

⁶No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

⁷ Downgrade for serious indirectness as evidence is based on only 1 geographical regions (China) and may not be generalizable to different populations.

⁸ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.02) crosses the MID (RR<0.95).

⁹ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

 10 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=74%, p=0.008), which could not be explained by sensitivity analyses.

¹¹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.82 to 1.09) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹² Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

 13 Upgrade for a dose-response gradient, as the MKSPLINE analysis indicated a significant non-linear inverse relationship between citrus intake and incident CHD (p=0.005).

¹⁴ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.92 to 1.07) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁵ Downgrade for serious indirectness as evidence is based on 1 female cohort of health professionals and may not be generalizable to different populations.

¹⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

¹⁷ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.84) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.

¹⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.64 to 1.18) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.09) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

 20 Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p=0.002). The MKSPLINE procedure indicated a departure from linearity (p=0.004) at threshold of 0.5 servings/day as observed by visual inspection.

²¹ Downgrade for serious indirectness as the evidence is based only on female populations, predominately (77.9%) of which reside in USA, and may not be generalizable to different populations.

²² Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.57 to 1.13) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05)

			Quality	Assessment		5				
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on C	oronary Heart	Disease Mortal	ity (follow-up 1	median 18 year	s)			
5	observational	not serious	not serious	not serious	not serious	undetected ¹	dose-response gradient ²	3,240/489,635 (0.7%)	0.81 (0.72, 0.92)	MODERATE
Fruit Con	sumption on C	oronary Heart	Disease Mortal	ity (follow-up 1	nedian 13 year	s)				
21	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	14,786/1,398,863 (1.1%)	0.86 (0.82, 0.90)	
Vegetable	Consumption	on Coronary H	leart Disease M	ortality (follow	-up median 13	years)	1			
18	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ⁵	26,007/1,968,325 (1.3%)	0.86 (0.83, 0.89)	MODERATE
Bananas (Consumption of	n Coronary He	art Disease Mo	rtality (follow-	up median 20 y	ears)				
1	observational	not serious	not serious ⁶	serious ⁷	serious ⁸	undetected ¹	none	2,384/9,964 (4.9%)	1.04 (0.81, 1.34)	OCCO VERY LOW
Berries C	onsumption on	Coronary Hea	rt Disease Mor	tality (follow-u	p median 17 ye	ars)	1			
5	observational	not serious	not serious	not serious	serious9	undetected ¹	none	5,141/105,420 (4.9%)	0.98 (0.91, 1.05)	OCCO VERY LOW
Citrus Fro	uit Consumptio	n on Coronary	Heart Disease	Mortality (foll	ow-up median 1	16 years)	•			
6	observational	not serious	not serious	serious ¹⁰	serious ¹¹	undetected ¹	none	5,309/180,574 (2.9%)	0.91 (0.85, 0.96)	OCCO VERY LOW
Dried Fru	it Consumption	n on Coronary	Heart Disease	Mortality (follo	w-up median 1	7 years)				
1	observational	not serious	not serious ⁶	serious ¹²	serious ¹³	undetected ¹	none	38/30,458 (0.1%)	0.79 (0.47, 1.31)	OCCO VERY LOW
Fruit Juic	e Consumption	on Coronary	Heart Disease N	Aortality (follow	w-up median 1'	7 years)				
3	observational	serious ¹⁴	not serious	not serious ¹⁵	serious ¹⁶	undetected ¹	none	1,249/141,170 (0.9%)	0.87 (0.75, 1.01)	OCCO VERY LOW
Grapes C	onsumption on	Coronary Hea	rt Disease Mor	tality (follow-u	p median 17 ye	ars)	_			
3	observational	not serious	not serious	serious ¹⁷	serious ¹⁸	undetected ¹	none	2,846/106, 782 (2.7%)	0.97 (0.77, 1.21)	⊕COO VERY LOW
Pommes (Consumption of	n Coronary He	art Disease Mo	rtality (follow-1	up median 19 y	ears)	_			
5	observational	not serious	not serious	serious ¹⁹	not serious	undetected ¹	none	4,650/146,407 (3.2%)	0.84 (0.76, 0.92)	OCCO VERY LOW
Allium Ve	egetables Consu	mption on Co	ronary Heart D	isease Mortalit	y (follow-up m	edian 15 years)				
4	observational	not serious	serious ²⁰	serious ²¹	not serious	undetected ¹	none	1,280/75,434 (1.7%)	0.67 (0.57, 0.79)	OCCO VERY LOW
Carrots C	Consumption on	Coronary Hea	art Disease Mor	tality (follow-u	p median 13ye	ars)				

Table S7. GRADE Assessment for Fruits and Vegetables and Coronary Heart Disease Mortality

1	observational	not serious	not serious ⁶	serious ²²	serious ²³	undetected ¹	none	64/10,802 (0.6%)	0.76 (0.37, 1.58)	DOOVERY LOW
Celery Co	onsumption on (Coronary Hear	rt Disease Mort	ality (follow-up) median 16 yea	ars)				
1	observational	not serious	not serious ²⁴	serious ²⁵	serious ²⁶	undetected ¹	none	1,329/34,492 (3.9%)	0.92 (0.80, 1.06)	OCCO VERY LOW
Crucifero	ous Vegetables (Consumption of	n Coronary He	art Disease Mo	rtality (follow-	up median 16 y	ears)			
6	observational	serious ²⁷	serious ²⁸	not serious	serious ²⁹	undetected ¹	none	7,420/296,772 (2.5%)	0.91 (0.85, 0.98)	OCCO VERY LOW
Green Le	afy Vegetables	Consumption o	on Coronary Ho	eart Disease Mo	ortality (follow-	-up median 17 y	vears)			
5	observational	serious ³⁰	not serious	not serious	not serious	undetected ¹	none	4,591/148,133 (3.1%)	0.86 (0.78. 0.94)	OCCO VERY LOW
Tomatoes	Tomatoes Consumption on Coronary Heart Disease Mortality (follow-up median 16 years)									
3	observational	serious ³¹	not serious	not serious	serious ³²	undetected ¹	none	3,657/175,088 (2.1%)	0.92 (0.82, 1.04)	OCCO VERY LOW

¹No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

² Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between fruit and vegetable intake and CHD mortality (p=0.044)

³ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=62\%$, p<0.0001). Although heterogeneity could be partially explained by the removal of Du et al. 2017 ($I^2=44\%$, p=0.01) and Hjartaker et al. 2015 ($I^2=46\%$, p=0.007) during sensitivity analyses, the presence of residual heterogeneity could not be excluded.

⁴ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CHD mortality (p<0.001).

⁵ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and CHD mortality (p=0.005).

⁶ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

⁷ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations.

⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.81 to 1.34) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

⁹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.91 to 1.05) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁰ Downgrade for serious indirectness as evidence is based on a predominately ($\geq 69.6\%$) female populations and may not be generalizable to different populations.

¹¹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

¹² Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

¹³ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.47 to 1.31) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁴ Downgrade for serious risk of bias as 56% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

¹⁵ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=71\%$, p=0.02) was explained by the removal of Collin et al. 2019 ($I^2=0\%$, p=0.45).

¹⁶ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.01) crosses the MID (RR<0.95).

¹⁷ Downgrade for serious indirectness as evidence is based on a predominately (91%) female population of which the majority are health professionals and may not be generalizable to different populations.

¹⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.77 to 1.21) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁹ Downgrade for serious indirectness as evidence is based on a predominately (82.1%) female populations and may not be generalizable to different populations.

 20 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001). Although heterogeneity could be partially explained by the removal of Blekkenhorst et al. 2017 (I²=47%, p=0.13) during sensitivity analyses, the presence of residual heterogeneity could not be excluded.

²¹ Downgrade for serious indirectness as evidence is based on a predominately (95.4%) female populations and may not be generalizable to different populations.

²² Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

 23 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.37 to 1.58) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²⁴ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

²⁵ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

 26 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.06) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²⁷ Downgrade for serious risk of bias as 39.3% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9).

 28 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001) which could not be explained by sensitivity analyses.

²⁹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

³⁰ Downgrade for serious risk of bias as 36.8% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)

³¹ Downgrade for serious risk of bias as 48.0% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)

³² Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.82) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.04) crosses the MID.

Quality Assessment											
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty	
Fruit and	Vegetable Con	sumption on S	troke Incidence	(follow-up me	dian 9 years)						
14	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ¹	11,091/532,667 (2.1%)	0.82 (0.77, 0.88)	ODERATE	
Fruit Con	sumption on St	troke Incidence	e (follow-up me	dian 14 years)							
17	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ²	43,702/987,983 (4.4%)	0.82 (0.79, 0.85)	MODERATE	
Vegetable	Vegetable Consumption on Stroke Incidence (follow-up median 14 years)										
16	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	13,607/564,531 (2.4%)	0.82 (0.83, 0.93)	MODERATE	
Berries C	onsumption on	Stroke Incider	nce (follow-up n	nedian 10 years	5)				1		
4	observational	not serious	not serious ⁵	not serious	serious ⁶	undetected ⁷	none	5,967/143,662 (4.2%)	1.03 (0.94, 1.13)	OCCO VERY LOW	
Citrus Fr	uit Consumptio	on on Stroke In	cidence (follow	-up median 11	years)						
8	observational	not serious	serious ⁸	not serious	not serious	undetected ⁷	dose-response gradient ⁹	7,142/225,613 (3.2%)	0.88 (0.82, 0.94)		
Fruit Juic	e Consumption	on Stroke Inc	idence (follow-ເ	ıp median 11 y	ears)						
4	observational	not serious	not serious ¹⁰	not serious	serious ¹¹	undetected ⁷	none	1,705/148,839 (1.2%)	0.82 (0.68, 0.99)	OCC VERY LOW	
Pommes (Consumption o	n Stroke Incide	ence (follow-up	median 14 year	rs)						
5	observational	not serious	not serious	not serious	not serious	undetected ⁷	dose-response gradient ¹²	7,364/146,723 (5.0%)	0.89 (0.84, 0.95)	MODERATE	
Allium Ve	egetables Consu	Imption on Str	oke Incidence (#	follow-up medi	an 28 years)						
2	Observational	not serious	not serious	serious ¹³	serious ¹⁴	undetected ⁷	none	4,912/84,169 (5.8%)	0.89 (0.80, 0.99)	OCCO VERY LOW	
Crucifero	us Vegetables (Consumption o	n Stroke Incide	nce (follow-up	median 12 year	rs)					
6	observational	not serious	serious ¹⁵	not serious	serious ¹⁶	undetected ⁷	none	7,706/255,726 (3.0%)	0.98 (0.91, 1.05)	OCCO VERY LOW	
Green Lea	afy Vegetables	Consumption of	on Stroke Incide	ence (follow-up	median 9 year	rs)					
4	observational	not serious	not serious	not serious	serious ¹⁷	undetected ⁷	dose-response gradient ¹⁸	4,798/196,456 (2.4%)	0.88 (0.79, 0.98)		
Tomatoes	Consumption	on Stroke Incid	lence (follow-uj	o median 7 year	rs)						
1	observational	not serious	not serious ¹⁹	serious ²⁰	not serious	undetected ⁷	dose-response gradient ²¹	247/38,445 (0.6%)	0.20 (0.05, 0.82)		

Table S8. GRADE Assessment for Fruits and Vegetables and Stroke Incidence

¹ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and stroke incidence (p=0.002).

² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and stroke incidence (p<0.001).

³ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=50\%$, p=0.006) that could not be explained during sensitivity analysis.

⁴ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between vegetable intake and stroke incidence with a departure from linearity at 1.5 servings/day (p=0.012)

⁵ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=50\%$, p=0.08) was explained by the removal of Hirvonen et al. 2000 – cerebral infraction ($I^2=0\%$, p=0.41)

during sensitivity analysis.

⁶ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.94 to 1.13) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05)

⁷ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

⁸ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=51\%$, p=0.04). Although the removal of Larsson et al. 2013 ($I^2=37\%$, p=0.14) or Yamada et al. 2011 ($I^2=39\%$, p=0.12) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

 9 Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between citrus fruit intake and stroke incidence (p=0.033) and an MKSPLINE analysis revealed a significant non-linear inverse relationship between citrus fruit intake and stroke incidence (p=0.039).

¹⁰ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=73\%$, p=0.02) was explained by the removal of Scheffers et al. 2019 ($I^2=0\%$, p=0.47) ¹¹ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 0.99) crosses the MID (RR<0.95).

¹² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between pommes intake and stroke incidence (p=0.003). MKSPLINE analyses could not be conducted due to small sample size.

¹³ Downgrade for serious indirectness as evidence is based on cohorts residing in Northern Europe and may not be generalizable to different populations.

¹⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.80) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

¹⁵ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=62\%$, p=0.02). Although the removal of Larsson et al. 2013 (during sensitivity analysis did partially explain the heterogeneity ($I^2=40\%$, p=0.16), the presence of residual heterogeneity could not be excluded.

¹⁶ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.91 to 1.05) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.79) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

¹⁷ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between green leafy vegetable intake and stroke incidence (p=0.008). MKSPLINE analyses could not be conducted due to small sample size.

¹⁸ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

¹⁹ Downgrade for serious indirectness as evidence is based on only 1 cohort of females for USA and may not be generalizable to different populations.

²⁰ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between tomato intake and stroke incidence (p=0.002). MKSPLINE analyses could not be conducted due to small sample size.

Quality Assessment											
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty	
Fruit and	Fruit and Vegetable Consumption on Stroke Mortality (follow-up median 19 years)										
6	observational	not serious	not serious	not serious	not serious	undetected ¹	dose-response gradient ²	3,051/499,732 (0.6%)	0.73 (0.65, 0.81)	MODERATE	
Fruit Con	Fruit Consumption on Stroke Mortality (follow-up median 20 years)										
14	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	10,899/1,282,756 (0.8%)	0.87 (0.84, 0.91)		
Vegetable	e Consumption	on Stroke Mor	tality (follow-u	p median 15 ye	ars)		-				
12	observational	not serious	serious ⁵	not serious	serious ⁶	undetected	dose-response gradient ⁷	7,551/780,441 (1.0%)	0.94 (0.90, 0.99)		
Bananas	Consumption o	n Stroke Morta	ality (follow-up	median 20 year	rs)		1				
1	observational	not serious	not serious ⁸	serious9	serious ¹⁰	undetected ¹	none	1,.34/9,766 (10.6%)	1.04 (0.70, 1.54)	OCCO VERY LOW	
Berries C	onsumption on	Stroke Mortal	ity (follow-up n	nedian 19 years	5)		1				
2	observational	not serious	not serious	serious ¹¹	serious ¹²	undetected ¹	none	1,182/40,224 (2.9%)	0.97 (0.82, 1.15)	OCCO VERY LOW	
Citrus Fr	Citrus Fruit Consumption on Stroke Mortality (follow-up median 20 years)										
4	observational	serious ¹³	serious ¹⁴	not serious	not serious	undetected ¹	dose-response gradient ¹⁵	3,869/145,204 (2.7%)	0.90 (0.86, 0.95)		
Dried Fru	iit Consumption	n on Stroke Mo	ortality (follow-	up median 17 y	vears)						
1	observational	not serious	not serious	serious ¹⁶	serious ¹⁷	undetected ¹	none	152/30,458 (0.5%)	0.95 (0.80, 1.13)	OCCO VERY LOW	
Fruit Juic	e Consumption	on Stroke Mo	rtality (follow-ı	ıp median 17 y	ears)		-				
2	observational	serious ¹⁸	not serious	not serious	not serious	undetected ¹	dose-response gradient ¹⁹	2,232/128,270 (1.7%)	0.67 (0.60, 0.76)		
Grapes C	onsumption on	Stroke Mortal	ity (follow-up n	nedian 19 years	5)		•				
2	observational	not serious	not serious	serious ²⁰	serious ²¹	undetected ¹	none	1,182/40224 (2.9%)	0.74 (0.53, 1.02)	OCCO VERY LOW	
Pommes (Consumption of	n Stroke Morta	ality (follow-up	median 17 year	rs)		1				
3	observational	not serious	not serious	serious ²²	serious ²³	undetected ¹	none	1,651/74,716 (2.2%)	0.91 (0.77, 1.09)	OCCO VERY LOW	
Allium Ve	Allium Vegetable Consumption on Stroke Mortality (follow-up median 19 years)										
2	observational	not serious	serious ²⁴	not serious	serious ²⁵	undetected ¹	none	544/3,671 (14.8%)	0.99 (0.79, 1.24)	OCCO VERY LOW	
Carrots C	Carrots Consumption on Stroke Mortality (follow-up median 20 years)										
1	observational	not serious	not serious ⁸	serious ⁹	not serious	undetected ¹	dose-response gradient ²⁶	1,034/9,766 (10.6%)	0.54 (0.48, 0.61)		

Table S9. GRADE Assessment for Fruits and Vegetables and Stroke Mortality

Crucifero	Cruciferous Vegetables Consumption on Stroke Mortality (follow-up median 20 years)									
5	observational	serious ²⁷	not serious	not serious	serious ²⁸	undetected ¹	none	5,065/195,452	0.92	$\oplus 0000$
5								(2.6%)	(0.85, 1.01)	VERY LOW
Green Le	Green Leafy Vegetables Consumption on Stroke Mortality (follow-up median 21 years)									
4	observational	serious ²⁹	serious ³⁰	not serious	serious ³¹	undetected ¹	dose-response	4,103/126,971	0.90	$\oplus \oplus \bigcirc \bigcirc$
4	observational	serious	serious	not serious	senous	undetected	gradient ³²	(3.2%)	(0.83, 0.97)	LOW
Tomatoes	Fomatoes Consumption on Stroke Mortality (follow-up median 20 years)									
2	observational	serious ³³	not serious	not serious	serious ³³	undetected ¹	none ³⁴	3,107/108,260	1.03	$\oplus 0000$
Z								(2.9%)	(0.94, 1.12)	VERY LOW

¹ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and stroke mortality (p=0.005).

³ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=75\%$, p<0.00001) which could not be explained by sensitivity analyses.

⁴Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and stroke mortality (p<0.001) and an MKSPLINE analysis revealed a significant non-linear inverse relationship between fruit intake and stroke mortality (p<0.001)

⁵ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=62\%$, p=0.0010). Although the removal of Wang et al. 2013 ($I^2=43\%$, p=0.05) or Leeanders et al. 2014 ($I^2=48\%$, p=0.02) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.90) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

⁷ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and stroke mortality (p=0.025).

⁸ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

⁹ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations

¹⁰ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.70 to 1.54) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹¹ Downgrade for serious indirectness as evidence is based on a predominately (76%) female population and may not be generalizable to different populations.

¹² Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.82) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.15) crosses the MID.

¹³ Downgrade for serious risk of bias as 75.3% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

¹⁴ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=82\%$, p=0.0001). Although the removal of Wang et al. 2016 ($I^2=40\%$, p=0.17) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

¹⁵ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between citrus fruit intake and stroke mortality (p<0.001).

¹⁶ Downgrade for serious indirectness as evidence is based on one female population and may not be generalizable to different populations.

¹⁷ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.13) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁸Downgrade for serious risk of bias as 62% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

¹⁹ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit juice intake and CHD mortality (p=0.002). MKSPLINE analyses could not be conducted due to small sample size.

²⁰ Downgrade for serious indirectness as evidence is based on a predominately (76%) female population and may not be generalizable to different populations.

 21 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.53 to 1.02) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²² Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

²³ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.77) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.09) crosses the MID.

²⁴ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity (I²=96%, p<0.00001).

 25 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.79 to 1.24) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²⁶ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between carrots intake and stroke mortality (p<0.001).

²⁷ Downgrade for serious risk of bias as 79.4% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

²⁸ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.01) crosses the MID.

²⁹ Downgrade for serious risk of bias as 50.0% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

 30 Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity (I²=50%, p=0.09). Although the removal of Appleby et al. 2002 (I²=36%, p=0.20) or Wang et al. 2016 (I²=25%, p=0.05) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

³¹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.83) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.

³² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between green leafy vegetable intake and CHD mortality (p=0.032). MKSPLINE analyses could not be conducted due to small sample size.

³³ Downgrade for serious risk of bias as 60.4% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

³⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.94) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.12) crosses the MID.

³⁵ Dose-response gradient could not be assessed due to insufficient dose ranges available to determine the presence of a linear/non-linear dose response.

Figure S1. Relation between total fruit and vegetable intake and cardiovascular disease incidence (highest vs. lowest level of intake).

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
WHS - Liu 2000	39,127	418	1.1%	0.85 [0.61, 1.19]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	2.1%	0.97 [0.77, 1.23]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.4%	0.86 [0.64, 1.15]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	1.2%	1.21 [0.88, 1.65]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	34.3%	0.95 [0.90, 1.01]	-=-
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	1.0%	0.73 [0.52, 1.04]	
PRIME - Dauchet 2010 - former smokers	3,353	237	1.2%	0.93 [0.68, 1.28]	
PRIME - Dauchet 2010 - current smokers	2,297	230	0.9%	0.64 [0.44, 0.93]	
PRIME - Dauchet 2010 - never smokers	2,410	145	0.7%	1.27 [0.84, 1.92]	
WHI-OS - Belin 2011	93,676	6,006	34.3%	0.92 [0.87, 0.98]	
Carphilly Cohort - Elwood 2013	2,235	752	2.1%	0.95 [0.75, 1.20]	
British Regional Heart - Atkins 2014	3,328	582	2.1%	1.01 [0.80, 1.28]	
SABRE - Eriksen 2015 - European	1,090	225	1.4%	1.09 [0.82, 1.47]	
SABRE - Eriksen 2015 - South Asian	1,006	346	2.1%	0.97 [0.77, 1.23]	
PREDIMED- Buil-Cosiales 2016	7,216	342	0.5%	0.56 [0.34, 0.91]	
PURE - Miller 2017	135,335	4,784	1.4%	0.93 [0.69, 1.25]	
EPIC Norfolk - Mytton 2018	22,992	4,965	12.3%	0.84 [0.76, 0.93]	
Total (95% CI)	501,744	24,310	100.0%	0.93 [0.89, 0.96]	•
Heterogeneity: Chi ² = 21.52, df = 16 (P = 0.16);	; l² = 26%				
Test for overall effect: Z = 4.42 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
WHS - Liu 2000	39,127	418	2.3%	0.85 [0.61, 1.19]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	4.3%	0.97 [0.77, 1.23]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	2.9%	0.86 [0.64, 1.15]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	2.6%	1.21 [0.88, 1.65]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	22.6%	0.95 [0.90, 1.01]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	2.1%	0.73 [0.52, 1.04]	
PRIME - Dauchet 2010 - former smokers	3,353	237	2.6%	0.93 [0.68, 1.28]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.9%	0.64 [0.44, 0.93]	
PRIME - Dauchet 2010 - never smokers	2,410	145	1.5%	1.27 [0.84, 1.92]	
WHI-OS - Belin 2011	93,676	6,006	22.6%	0.92 [0.87, 0.98]	
Carphilly Cohort - Elwood 2013	2,235	752	4.3%	0.95 [0.75, 1.20]	
British Regional Heart - Atkins 2014	3,328	582	4.3%	1.01 [0.80, 1.28]	
SABRE - Eriksen 2015 - European	1,090	225	2.9%	1.09 [0.82, 1.47]	
SABRE - Eriksen 2015 - South Asian	1,006	346	4.3%	0.97 [0.77, 1.23]	
PREDIMED- Buil-Cosiales 2016	7,216	342	1.1%	0.56 [0.34, 0.91]	
PURE - Miller 2017	135,335	4,784	2.9%	0.93 [0.69, 1.25]	
EPIC Norfolk - Mytton 2018	22,992	4,965	15.0%	0.84 [0.76, 0.93]	
Total (95% Cl) [Random Effects]	501,744	24,310	100.00%	0.92 [0.88, 0.97]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 21.52, df = 1	L6 (P = 0.16); I ² = 2	26%			
Test for overall effect: Z = 3.02 (P = 0.002)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	226	0.7%	0.74 [0.47, 1.16]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.8%	0.77 [0.59, 1.01]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	2.1%	0.83 [0.64, 1.07]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	1.1%	1.25 [0.88, 1.77]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	5.4%	0.81 [0.69, 0.95]	_
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	1.1%	1.11 [0.78, 1.57]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.1%	0.82 [0.58, 1.17]	
PRIME - Dauchet 2010 - never smokers	2,410	145	0.7%	1.45 [0.94, 2.23]	
PRIME - Dauchet 2010 - former smokers	3,353	237	1.4%	1.06 [0.78, 1.45]	
WHI-OS - Belin 2011	93,676	6,006	38.6%	0.91 [0.86, 0.97]	+
WHS - Fitzgerald 2012	34,827	1,094	3.5%	0.82 [0.67, 1.00]	
British Women's Heart & Health - Kim 2013	3,080	329	0.5%	1.09 [0.66, 1.82]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	7.1%	1.14 [0.99, 1.31]	
British Regional Heart - Atkins 2014	3,328	582	1.1%	0.90 [0.63, 1.27]	
MONICA Danish - Tognon 2014	1,849	755	7.1%	0.86 [0.75, 0.99]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	5.4%	0.95 [0.81, 1.11]	_
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	3.5%	0.99 [0.81, 1.20]	_
PREDIMED- Buil-Cosiales 2016	7,216	342	1.0%	0.76 [0.53, 1.11]	_
SUN - Buil-Cosiales - 2017	17,007	112	0.3%	0.51 [0.27, 0.96]	
PURE - Miller 2017	135,335	4,784	7.1%	0.89 [0.77, 1.02]	
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	9.7%	0.87 [0.77, 0.98]	
Total (95% CI)	577,323	27,205	100.0%	0.91 [0.88, 0.95]	•
Heterogeneity: Chi ² = 33.12, df = 20 (P = 0.03); l ²	= 40%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.88 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	226	1.5%	0.74 [0.47, 1.16]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	3.5%	0.77 [0.59, 1.01]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	3.9%	0.83 [0.64, 1.07]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	2.3%	1.25 [0.88, 1.77]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	7.3%	0.81 [0.69, 0.95]	_
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	2.3%	1.11 [0.78, 1.57]	
PRIME - Dauchet 2010 - current smokers	2,297	230	2.3%	0.82 [0.58, 1.17]	
PRIME - Dauchet 2010 - never smokers	2,410	145	1.6%	1.45 [0.94, 2.23]	
PRIME - Dauchet 2010 - former smokers	3,353	237	2.8%	1.06 [0.78, 1.45]	
WHI-OS - Belin 2011	93,676	6,006	13.4%	0.91 [0.86, 0.97]	-
WHS - Fitzgerald 2012	34,827	1,094	5.6%	0.82 [0.67, 1.00]	
British Women's Heart & Health - Kim 2013	3,080	329	1.2%	1.09 [0.66, 1.82]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	8.3%	1.14 [0.99, 1.31]	⊢ •−
British Regional Heart - Atkins 2014	3,328	582	2.3%	0.90 [0.63, 1.27]	
MONICA Danish - Tognon 2014	1,849	755	8.3%	0.86 [0.75, 0.99]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	7.3%	0.95 [0.81, 1.11]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	5.6%	0.99 [0.81, 1.20]	-+-
PREDIMED- Buil-Cosiales 2016	7,216	342	2.1%	0.76 [0.53, 1.11]	
SUN - Buil-Cosiales - 2017	17,007	112	0.8%	0.51 [0.27, 0.96]	
PURE - Miller 2017	135,335	4,784	8.3%	0.89 [0.77, 1.02]	
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	9.5%	0.87 [0.77, 0.98]	
Total (95% Cl) [Random Effects]	577,323	27,205	100.0%	0.91 [0.86, 0.97]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 33.12, df = 20	(P = 0.03); I ² = 409	%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.07 (P = 0.002)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S2. Relation between fruit intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

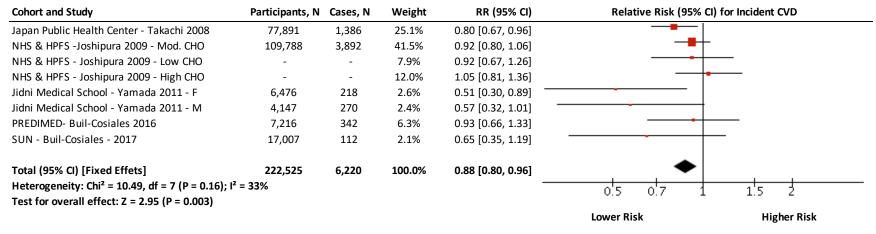
VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	209	2.4%	0.77 [0.61, 0.98]	
Japan Public Health Center - Takachi 2008 - M	35,909	582	2.9%	1.03 [0.83, 1.28]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.8%	0.88 [0.67, 1.16]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	2.0%	0.96 [0.74, 1.24]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	2.0%	0.86 [0.67, 1.11]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	7.0%	0.93 [0.81, 1.07]	- _
PRIME - Dauchet 2010 - current smokers	2,297	230	5.4%	0.74 [0.63, 0.87]	
PRIME - Dauchet 2010 - former smokers	3,353	237	7.0%	1.04 [0.91, 1.19]	_
PRIME - Dauchet 2010 - never smokers	2,410	145	4.3%	1.14 [0.95, 1.36]	
WHI-OS - Belin 2011	93,676	6,006	38.4%	0.96 [0.91, 1.02]	
WHS - Fitzgerald 2012	34,827	1,094	2.9%	0.89 [0.71, 1.10]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	0.9%	0.70 [0.47, 1.03]	
MONICA Danish - Tognon 2014	1,849	755	5.4%	0.88 [0.75, 1.03]	_
British Regional Heart - Atkins 2014	3,328	582	0.5%	1.17 [0.69, 1.99]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	5.4%	0.92 [0.79, 1.08]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	3.5%	0.97 [0.80, 1.18]	
PREDIMED- Buil-Cosiales 2016	7,216	342	1.0%	0.67 [0.46, 0.97]	
PURE - Miller 2017	135,335	4,784	7.0%	0.95 [0.83, 1.09]	_
SUN - Buil-Cosiales - 2017	17,007	112	0.3%	0.96 [0.51, 1.80]	
Total (95% CI)	539,683	22,810	100.0%	0.94 [0.90, 0.97]	◆
Heterogeneity: Chi ² = 27.44, df = 18 (P = 0.07); I ²	² = 34%				
Test for overall effect: Z = 3.51 (P = 0.0004)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for I	ncident CVD
Men Born in 1913 - Strandhagen 2000	730	209	4.0%	0.77 [0.61, 0.98]		
Japan Public Health Center - Takachi 2008 - M	35,909	582	4.5%	1.03 [0.83, 1.28]		_
Japan Public Health Center - Takachi 2008 - F	41,982	556	3.1%	0.88 [0.67, 1.16]		
NHS & HPFS - Joshipura 2009 - High CHO	-	-	3.5%	0.96 [0.74, 1.24]		-
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	8.2%	0.93 [0.81, 1.07]		
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	3.5%	0.86 [0.67, 1.11]		
PRIME - Dauchet 2010 - former smokers	3,353	237	8.2%	1.04 [0.91, 1.19]		
PRIME - Dauchet 2010 - never smokers	2,410	145	6.0%	1.14 [0.95, 1.36]	+	
PRIME - Dauchet 2010 - current smokers	2,297	230	7.0%	0.74 [0.63, 0.87]	.	
WHI-OS - Belin 2011	93,676	6,006	15.0%	0.96 [0.91, 1.02]	-++	
WHS - Fitzgerald 2012	34,827	1,094	4.5%	0.89 [0.71, 1.10]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	1.7%	0.70 [0.47, 1.03]	+	
British Regional Heart - Atkins 2014	3,328	582	0.9%	1.17 [0.69, 1.99]		
MONICA Danish - Tognon 2014	1,849	755	7.0%	0.88 [0.75, 1.03]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	5.2%	0.97 [0.80, 1.18]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	7.0%	0.92 [0.79, 1.08]		
PREDIMED- Buil-Cosiales 2016	7,216	342	1.8%	0.67 [0.46, 0.97]		
SUN - Buil-Cosiales - 2017	17,007	112	0.7%	0.96 [0.51, 1.80]		
PURE - Miller 2017	135,335	4,784	8.2%	0.95 [0.83, 1.09]		
Total (95% Cl) [Random Effects]	539,683	22,810	100.0%	0.92 [0.88, 0.97]	•	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 27.44$, df = 18	(P = 0.07); I ² = 34	%			0.5 0.7 1	1.5 2
Test for overall effect: Z = 2.93 (P = 0.003)					Lower Risk	Higher Risk

Figure S3. Relation between vegetable intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


BERRIES AND CARDIOVASCULAR DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl	for Incident CVD
WHS - Sesso 2007	38,176	1,004	100.00%	1.27 [0.95, 1.71]		
Total (95% CI) Heterogeneity: Not applicable	38,176	1,004	100.0%	1.27 [0.95, 1.71] 	0.5 0.7 1	1.5 2
Test for overall effect: Z = 1.60 (P = 0.11)					Protective Association	Adverse Association

Figure S4. Relation between intake of berries and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CITRUS FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Japan Public Health Center - Takachi 2008	77,891	1,386	22.9%	0.80 [0.67, 0.96]	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	11.5%	0.92 [0.67, 1.26]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	27.9%	0.92 [0.80, 1.06]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	15.3%	1.05 [0.81, 1.36]	
Jidni Medical School - Yamada 2011 - M	4,147	270	4.3%	0.57 [0.32, 1.01] -	
Jidni Medical School - Yamada 2011 - F	6,476	218	4.6%	0.51 [0.30, 0.89]	
PREDIMED- Buil-Cosiales 2016	7,216	342	9.6%	0.93 [0.66, 1.33]	
SUN - Buil-Cosiales - 2017	17,007	112	3.8%	0.65 [0.35, 1.19]	
Total (95% CI) [Random Effects]	222,525	6,220	100.0%	0.86 [0.76, 0.97]	•
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 10.49$, df =	7 (P = 0.16); l ² = 339	%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 2.40 (P = 0.02)					· · · · · · · · · · · · · · · · · · ·
					Lower Risk Higher Risk

Figure S5. Relation between citrus fruit intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CVD
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	8.0%	1.25 [0.97, 1.61]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	6.0%	1.07 [0.80, 1.44]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	37.5%	0.96 [0.85, 1.08]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	21.1%	1.01 [0.86, 1.18]	-
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	27.5%	0.96 [0.84, 1.10]	
Total (95% CI)	167,879	8,056	100.0%	1.00 [0.93, 1.07]	+
Heterogeneity: Tau ² = 0.00; Chi ² = 3.86, di	² = 4 (P = 0.42); I ²	= 0%			0.7 0.85 1 1.2 1.5
Test for overall effect: Z = 0.06 (P = 0.95)					0.7 0.09 1 1.2 1.9
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident	CVD
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	8.0%	1.25 [0.97, 1.61]		•
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	6.0%	1.07 [0.80, 1.44]	+•	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	37.5%	0.96 [0.85, 1.08]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	21.1%	1.01 [0.86, 1.18]		
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	27.5%	0.96 [0.84, 1.10]		
Total (95% CI)	167,879	8,056	100.0%	1.00 [0.93, 1.07]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 3.86, df	² = 4 (P = 0.42); I ²	= 0%				
Test for overall effect: Z = 0.06 (P = 0.95)					0.7 0.85 1 1.2	1.5
					Lower Risk Hi	gher Risk

Figure S6. Relation between fruit juice intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

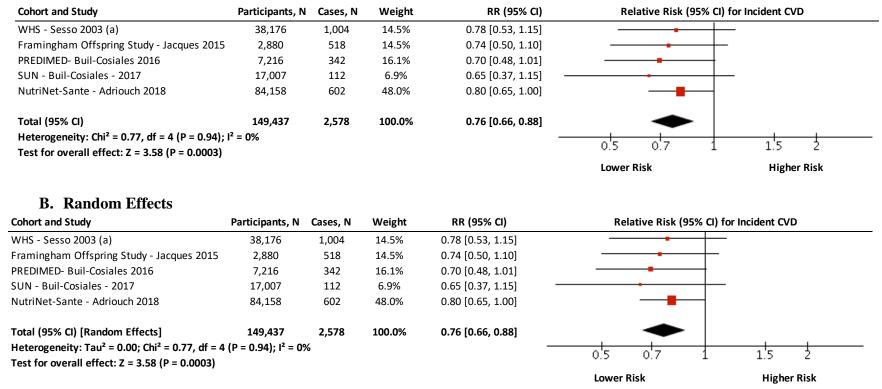
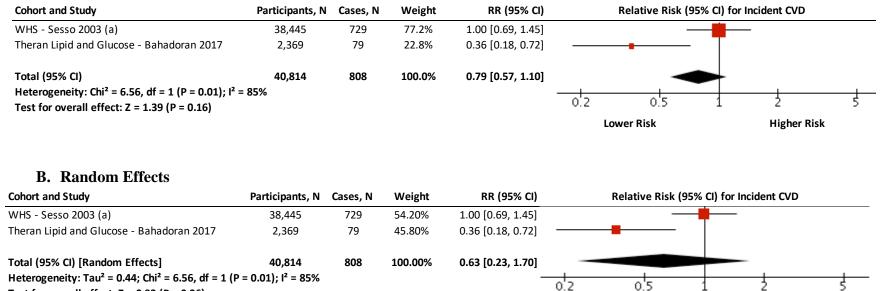
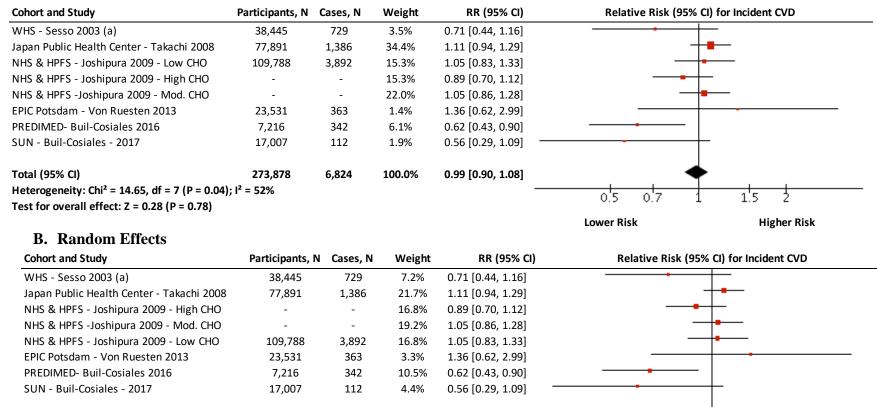



Figure S7. Relation between pommes intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Test for overall effect: Z = 0.92 (P = 0.36)


Lower Risk

Higher Risk

Figure S8. Relation between intake of allium vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

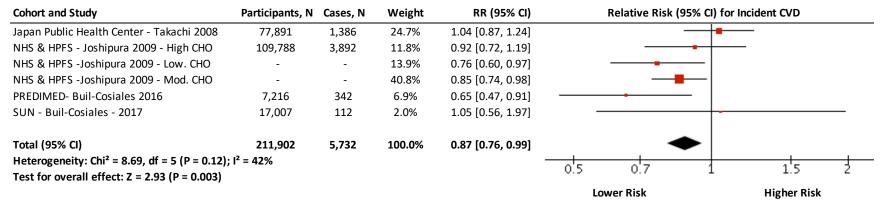
Total (95% CI) [Random Effects] 273,878 6,824 Heterogeneity: $Tau^2 = 0.02$; $Chi^2 = 14.65$, df = 7 (P = 0.04); $I^2 = 52\%$ Test for overall effect: Z = 0.91 (P = 0.36)

0.7 Lower Risk

1.5

Higher Risk

0.5

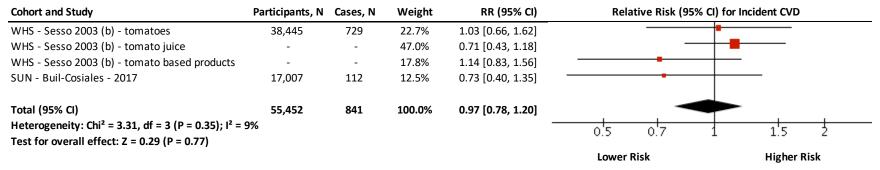

Figure S9. Relation between intake of cruciferous vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

100.0%

0.93 [0.80, 1.09]

GREEN LEAFY VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD	
Japan Public Health Center - Takachi 2008	77,891	1,386	24.7%	1.04 [0.87, 1.24]		
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	11.8%	0.92 [0.72, 1.19]		
NHS & HPFS - Joshipura 2009 - Low. CHO	-	-	13.9%	0.76 [0.60, 0.97]		
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	40.8%	0.85 [0.74, 0.98]		
PREDIMED- Buil-Cosiales 2016	7,216	342	6.9%	0.65 [0.47, 0.91]		
SUN - Buil-Cosiales - 2017	17,007	112	2.0%	1.05 [0.56, 1.97]		
Total (95% CI)	211,902	5,732	100.0%	0.87 [0.76, 0.99]	◆	
Heterogeneity: Tau ² = 0.01; Chi ² = 8.69, df =	5 (P = 0.12); I ² = 4	12%				
Test for overall effect: Z = 2.16 (P = 0.03)					0.5 0.7 1 1.5	2
					Lower Risk Higher Risk	(

Figure S10. Relation between intake of green leafy vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident	CVD
WHS - Sesso 2003 (b) - tomatoes	38,445	729	23.5%	1.03 [0.66, 1.62]		-
WHS - Sesso 2003 (b) - tomato based products	-	-	18.8%	0.71 [0.43, 1.18]		
WHS - Sesso 2003 (b) - tomato juice	-	-	44.2%	1.14 [0.83, 1.56]		
SUN - Buil-Cosiales - 2017	17,007	112	13.5%	0.73 [0.40, 1.35]		
Total (95% Cl) [Random Effects]	55,452	841	100.0%	0.96 [0.76, 1.21]		
Heterogeneity: Tau ² = 0.01; Chi ² = 3.31, df = 3 (P	² = 0.35); I ² = 9%			-		
Test for overall effect: Z = 0.35 (P = 0.73)					0.5 0.7 1 1.5	2
					Lower Risk Hig	her Risk

Figure S11. Relation between tomato intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CVD
Berries					
WHS - Sesso 2007	38,176	1,004	3.1%	1.27 [0.95, 1.71]	
Subtotal (95% CI)	38,176	1,004	3.1%	1.27 [0.95, 1.71]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.60 (P = 0.11)					
Citrus					
Japan Public Health Center - Takachi 2008	77,891	1,386	8.5%	0.80 [0.67, 0.96]	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	2.7%	0.92 [0.67, 1.26]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	14.1%	0.92 [0.80, 1.06]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	4.1%	1.05 [0.81, 1.36]	
Jidni Medical School - Yamada 2011 - M	4,147	270	0.8%	0.57 [0.32, 1.01]	
Iidni Medical School - Yamada 2011 - F	6,476	218	0.9%	0.51 [0.30, 0.89] —	
PREDIMED- Buil-Cosiales 2016	7,216	342	2.1%	0.93 [0.66, 1.33]	
SUN - Buil-Cosiales - 2017	17,007	112	0.7%	0.65 [0.35, 1.19]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)	222,525	6,220	33.9%	0.88 [0.80, 0.96]	•
Heterogeneity: Chi ² = 10.49, df = 7 (P = 0.16);	l ² = 33%				-
Test for overall effect: Z = 2.95 (P = 0.003)					
Fruit juice					
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	3.1%	1.07 [0.80, 1.44]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	19.2%	0.96 [0.85, 1.08]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	4.1%	1.25 [0.97, 1.61]	
PIC Potsdam - Von Ruesten 2013	23,531	363	10.8%	1.01 [0.86, 1.18]	
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	14.1%	0.96 [0.84, 1.10]	_
Subtotal (95% CI)	167,879	8,056	51.2%	1.00 [0.93, 1.07]	
Heterogeneity: Chi ² = 3.86, df = 4 (P = 0.42); I ²	² = 0%				Ĩ
Test for overall effect: Z = 0.06 (P = 0.95)					
Pommes					
VHS - Sesso 2003 (a)	38,176	1,004	1.7%	0.78 [0.53, 1.15]	
ramingham Offspring Study - Jacques 2015	2,880	518	1.7%	0.74 [0.50, 1.10]	
PREDIMED- Buil-Cosiales 2016	7,216	342	1.9%	0.70 [0.48, 1.01]	
SUN - Buil-Cosiales - 2017	17,007	112	0.8%	0.65 [0.37, 1.15]	
NutriNet-Sante - Adriouch 2018	84,158	602	5.7%	0.80 [0.65, 1.00]	
Subtotal (95% CI)	149,437	2,578	11.9%	0.76 [0.66, 0.88]	
Heterogeneity: Chi ² = 0.77, df = 4 (P = 0.94); I ²	² = 0%				•
Test for overall effect: Z = 3.58 (P = 0.0003)					
Test for subgroup differences: Chi ² = 16.75, df	= 3 (P = 0.0008), I ²	= 82.1%			
					0.'5 0.'7 1 1.'5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Berries					
WHS - Sesso 2007	38,176	1,004	5.8%	1.27 [0.95, 1.71]	
Subtotal (95% Cl)	38,176	1,004	5.8%	1.27 [0.95, 1.71]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.60 (P = 0.11)					
Citrus					
Japan Public Health Center - Takachi 2008	77,891	1,386	9.7%	0.80 [0.67, 0.96]	_
NHS & HPFS - Joshipura 2009 - Mod. CHO	109,788	3,892	11.4%	0.92 [0.80, 1.06]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	6.9%	1.05 [0.81, 1.36]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	5.4%	0.92 [0.67, 1.26]	
Jidni Medical School - Yamada 2011 - F	6,476	218	2.3%	0.51 [0.30, 0.89] -	
Jidni Medical School - Yamada 2011 - M	4,147	270	2.2%	0.57 [0.32, 1.01]	
PREDIMED- Buil-Cosiales 2016	7,216	342	4.6%	0.93 [0.66, 1.33]	
SUN - Buil-Cosiales - 2017	17,007	112	1.9%	0.65 [0.35, 1.19]	
Subtotal (95% CI)	222,525	6,220	44.4%	0.86 [0.76, 0.97]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 10.49, df =	7 (P = 0.16); I ² = 33			- · ·	-
Test for overall effect: Z = 2.40 (P = 0.02)					
Fruit juice					
NHS & HPFS - Joshipura 2009 - Mod. CHO	109,788	3,892	10.9%	0.96 [0.85, 1.08]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	4.7%	1.07 [0.80, 1.44]	.
NHS & HPFS - Joshipura 2009 - High CHO	-	-	5.7%	1.25 [0.97, 1.61]	+
EPIC Potsdam - Von Ruesten 2013	23,531	363	9.1%	1.01 [0.86, 1.18]	_ _
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	10.0%	0.96 [0.84, 1.10]	
Subtotal (95% CI)	167,879	8,056	40.5%	1.00 [0.93, 1.07]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 3.86, df = 4	(P = 0.42); I ² = 0%			- · ·]
Test for overall effect: Z = 0.06 (P = 0.95)					
Pommes					
NutriNet-Sante - Adriouch 2018	84,158	602	6.9%	0.80 [0.65, 1.00]	
WHS - Sesso 2003 (a)	38,176	1,004	3.1%	0.78 [0.53, 1.15]	
Framingham Offspring Study - Jacques 2015	2,880	518	3.1%	0.74 [0.50, 1.10]	
PREDIMED- Buil-Cosiales 2016	7,216	342	3.3%	0.70 [0.48, 1.01]	
SUN - Buil-Cosiales - 2017	17,007	112	1.6%	0.65 [0.37, 1.15]	
Subtotal (95% CI)	149,437	2,578	18.0%	0.76 [0.66, 0.88]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 0.77, df = 4	(P = 0.94); I ² = 0%				-
Test for overall effect: Z = 3.58 (P = 0.0003)					
Test for subgroup differences: Chi ² = 16.40, df	= 3 (P = 0.0009), I ²	= 81.7%		_	
					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S12. Relation between sources of fruit and CVD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Allium					
NHS - Sesso 2003 (a)	38,445	729	2.6%	1.00 [0.69, 1.45]	
heran Lipid and Glucose - Bahadoran 2017	2,369	79	0.8%	0.36 [0.18, 0.72]	
ubtotal (95% CI)	40,814	808	3.3%	0.79 [0.57, 1.10]	
leterogeneity: Chi² = 6.56, df = 1 (P = 0.01); I² =	: 85%				
est for overall effect: Z = 1.39 (P = 0.16)					
Cruciferous					
NHS - Sesso 2003 (a)	38,445	729	1.5%	0.71 [0.44, 1.16]	
apan Public Health Center - Takachi 2008	77,891	1,386	14.6%	1.11 [0.94, 1.29]	+ -
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	6.5%	1.05 [0.83, 1.33]	s
IHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	9.3%	1.05 [0.86, 1.28]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	6.5%	0.89 [0.70, 1.12]	_ _
PIC Potsdam - Von Ruesten 2013	23,531	363	0.6%	1.36 [0.62, 2.99]	
REDIMED- Buil-Cosiales 2016	7,216	342	2.6%	0.62 [0.43, 0.90]	
UN - Buil-Cosiales - 2017	17,007	112	0.8%	0.56 [0.29, 1.09]	
ubtotal (95% CI)	273,878	6,824	42.3%	0.99 [0.90, 1.08]	· · · · · · · · · · · · · · · · · · ·
leterogeneity: Chi ² = 14.65, df = 7 (P = 0.04); I ²		•		• • • •	Ť
est for overall effect: Z = 0.28 (P = 0.78)					
ireen Leafy					
apan Public Health Center - Takachi 2008	77,891	1,386	11.5%	1.04 [0.87, 1.24]	
HS & HPFS - Joshipura 2009 - Mod. CHO	-	-	19.0%	0.85 [0.74, 0.98]	
HS & HPFS - Joshipura 2009 - High CHO	-	-	5.5%	0.92 [0.72, 1.19]	
IHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	6.5%	0.76 [0.60, 0.97]	
REDIMED- Buil-Cosiales 2016	7,216	342	3.2%	0.65 [0.47, 0.91]	
UN - Buil-Cosiales - 2017	17,007	112	0.9%	1.05 [0.56, 1.97]	
ubtotal (95% CI)	211,902	5,732	46.6%	0.88 [0.80, 0.96]	
eterogeneity: Chi ² = 8.69, df = 5 (P = 0.12); l ² =		•		• • • •	◆
est for overall effect: Z = 2.93 (P = 0.003)					
omatoes					
/HS - Sesso 2003 (b) - tomato juice	38,445	729	3.6%	1.14 [0.83, 1.56]	
/HS - Sesso 2003 (b) - tomatoes	-	-	1.8%	1.03 [0.66, 1.62]	
/HS - Sesso 2003 (b) - tomato based products	-	-	1.4%	0.71 [0.43, 1.18]	
UN - Buil-Cosiales - 2017	17,007	112	1.0%	0.73 [0.40, 1.35]	
ubtotal (95% CI)	55,452	841	7.7%	0.97 [0.78, 1.20]	
eterogeneity: Chi ² = 3.31, df = 3 (P = 0.35); I ² =	9%				•
est for overall effect: Z = 0.29 (P = 0.77)					
est for subgroup differences: $Chi^2 = 4.34$, df = 3	8 (P = 0.23), I ² = 3	0.8%			
					0.2 0.5 1 2
					0.2 0.5 1 2 Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CVD	
Allium						
WHS - Sesso 2003 (a)	38,445	729	4.3%	1.00 [0.69, 1.45]		
Theran Lipid and Glucose - Bahadoran 2017	2,369	79	1.7%	0.36 [0.18, 0.72]		
Subtotal (95% CI)	40,814	808	6.0%	0.63 [0.23, 1.70]		
Heterogeneity: Tau ² = 0.44; Chi ² = 6.56, df = 1 (P = 0.01); I ² = 85%	5				
Test for overall effect: Z = 0.92 (P = 0.36)						
Cruciferous						
WHS - Sesso 2003 (a)	38,445	729	2.9%	0.71 [0.44, 1.16]		
Japan Public Health Center - Takachi 2008	77,891	1,386	9.3%	1.11 [0.94, 1.29]	+	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	7.0%	1.05 [0.83, 1.33]	-	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	8.1%	1.05 [0.86, 1.28]	-	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	7.0%	0.89 [0.70, 1.12]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	1.3%	1.36 [0.62, 2.99]		
PREDIMED- Buil-Cosiales 2016	7,216	342	4.3%	0.62 [0.43, 0.90]		
SUN - Buil-Cosiales - 2017	17,007	112	1.8%	0.56 [0.29, 1.09]		
Subtotal (95% CI)	273,878	6,824	41.7%	0.93 [0.80, 1.09]	◆	
Heterogeneity: Tau ² = 0.02; Chi ² = 14.65, df = 7	(P = 0.04); I ² = 52	%				
Test for overall effect: Z = 0.91 (P = 0.36)						
Green Leafy						
Japan Public Health Center - Takachi 2008	77,891	1,386	8.7%	1.04 [0.87, 1.24]	<mark>-</mark>	
NHS & HPFS - Joshipura 2009 - High CHO	0	0	6.6%	0.92 [0.72, 1.19]	+	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	7.0%	0.76 [0.60, 0.97]	_	
NHS & HPFS - Joshipura 2009 - Mod. CHO	0	0	9.8%	0.85 [0.74, 0.98]		
PREDIMED- Buil-Cosiales 2016	7,216	342	4.9%	0.65 [0.47, 0.91]		
SUN - Buil-Cosiales - 2017	17,007	112	1.9%	1.05 [0.56, 1.97]		
Subtotal (95% CI)	211,902	5,732	39.0%	0.87 [0.76, 0.99]	•	
Heterogeneity: Tau ² = 0.01; Chi ² = 8.69, df = 5 (Test for overall effect: Z = 2.16 (P = 0.03)	(P = 0.12); I ² = 42%	5				
Tomatoes						
WHS - Sesso 2003 (b) - tomatoes	38,445	729	3.3%	1.03 [0.66, 1.62]		
WHS - Sesso 2003 (b) - tomato based products	-	-	2.7%	0.71 [0.43, 1.18]		
WHS - Sesso 2003 (b) - tomato juice	-	-	5.3%	1.14 [0.83, 1.56]		
SUN - Buil-Cosiales - 2017	17,007	112	2.1%	0.73 [0.40, 1.35]		
Subtotal (95% CI)	55,452	841	13.4%	0.96 [0.76, 1.21]	-	
Heterogeneity: Tau ² = 0.01; Chi ² = 3.31, df = 3 (Test for overall effect: Z = 0.35 (P = 0.73)	(P = 0.35); I ² = 9%					
Test for subgroup differences: $C = 0.35$ (P = 0.73) Test for subgroup differences: $Chi^2 = 1.31$, df =	2 (D = 0 72) 1 ² - 0	0/				
rest for subgroup unterences: Cm = 1.31, df =	5 (F = 0.75), I' = 0	/0			0.2 0.5 1 2	5
					Lower Risk Higher Risk	

Figure S13. Relation between sources of vegetables and CVD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
National Health & Nutrition - Bazzano 2002	9,608	1,145	4.1%	0.73 [0.58, 0.93]	
Kuopio IHD Risk - Rissanen 2003	1,950	115	0.3%	0.66 [0.28, 1.56]	
Odyssey - Genkinger 2004	6,151	378	2.1%	1.35 [0.97, 1.88]	
Health and Lifestyle Survey - Kvaavik 2010	4,866	431	4.9%	1.19 [0.96, 1.47]	+
Shanghai Women Health - Nechuta 2010	71,243	755	7.4%	0.84 [0.71, 1.01]	
EPIC - Leenders 2013	451,151	5,125	23.9%	0.85 [0.77, 0.94]	
Health Survey of England - Oyebode 2014	65,226	1,554	3.5%	0.69 [0.54, 0.89]	
British Regional Heart - Atkins 2014	3,328	327	2.1%	0.92 [0.66, 1.29]	
NIPPON DATA80 - Okuda 2015	9,112	823	6.0%	0.74 [0.61, 0.90]	_
Migrant Study - Hjartaker 2015	9,766	4,595	37.3%	0.99 [0.92, 1.07]	- + -
PREDIMED- Buil-Cosiales 2016	7,216	104	0.2%	0.37 [0.12, 1.11]	· · · · · · · · · · · · · · · · · · ·
HAPIEE - Stefler 2016	19,263	438	2.3%	0.74 [0.54, 1.01]	
PURE - Miller 2017	135,335	1,649	1.7%	0.69 [0.48, 1.00]	
Health and Living Status of Elderly - Lin 2017	4,176	-	4.1%	0.70 [0.55, 0.88]	
Total (95% CI)	798,391	17,439	100.0%	0.89 [0.85, 0.93]	•
Heterogeneity: Chi ² = 40.92, df = 13 (P < 0.0001	L); I ² = 68%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.77 (P < 0.00001)					
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
National Health & Nutrition - Bazzano 2002	9,608	1,145	8.0%	0.73 [0.58, 0.93]	
Kuopio IHD Risk - Rissanen 2003	1,950	115	1.3%	0.66 [0.28, 1.56]	
Odyssey - Genkinger 2004	6,151	378	5.7%	1.35 [0.97, 1.88]	
Shanghai Women Health - Nechuta 2010	71,243	755	9.7%	0.84 [0.71, 1.01]	
Health and Lifestyle Survey - Kvaavik 2010	4,866	431	8.6%	1.19 [0.96, 1.47]	
EPIC - Leenders 2013	451,151	5,125	12.0%	0.85 [0.77, 0.94]	
British Regional Heart - Atkins 2014	3,328	327	5.7%	0.92 [0.66, 1.29]	
Health Survey of England - Oyebode 2014	65,226	1,554	7.5%	0.69 [0.54, 0.89]	
Migrant Study - Hjartaker 2015	9,766	4,595	12.5%	0.99 [0.92, 1.07]	-
NIPPON DATA80 - Okuda 2015	9,112	823	9.1%	0.74 [0.61, 0.90]	
HAPIEE - Stefler 2016	19,263	438	6.1%	0.74 [0.54, 1.01]	
PREDIMED- Buil-Cosiales 2016	7,216	104	0.9%	0.37 [0.12, 1.11] 🔶	
PURE - Miller 2017	135,335	1,649	5.0%	0.69 [0.48, 1.00]	
Health and Living Status of Elderly - Lin 2017	4,176	-	8.0%	0.70 [0.55, 0.88]	
Total (95% CI) [Random Effects]	798,391	17,439	100.0%	0.84 [0.76, 0.94]	•
Heterogeneity: Tau ² = 0.02; Chi ² = 40.92, df = 1	3 (P < 0.0001); I ² =	68%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.17 (P = 0.002)					
					Lower Risk Higher Risk

Figure S14. Relation between total fruit and vegetable intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

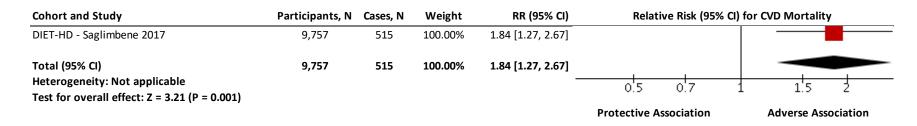
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality	
Men Born in 1913 - Strandhagen 2000	730	226	0.3%	0.66 [0.42, 1.03]		
Health Food Shoppers - Appleby 2002 - F	6,416	611	1.6%	0.70 [0.57, 0.85]		
Health Food Shoppers - Appleby 2002 - M	4,325	591	2.0%	0.95 [0.80, 1.13]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	0.7%	0.69 [0.51, 0.93]		
EPIC Diabetes - Nothlings 2008	10,262	517	1.1%	0.61 [0.48, 0.78]	<u> </u>	
Takayama Study - Nakamura 2008 - F	15,724	184	0.3%	0.83 [0.51, 1.35]		
Takayama Study - Nakamura 2008 - M	13,355	200	0.3%	1.27 [0.81, 2.00]		
JACC - Nagura 2009	59,845	2,243	3.3%	0.77 [0.67, 0.88]		
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	1.1%	0.78 [0.62, 0.99]	<u> </u>	
NOMAS - Gardener 2011	2,568	314	1.3%	1.13 [0.91, 1.40]		
EPIC - Leenders 2013	451,151	5,125	6.4%	0.96 [0.87, 1.06]		
Health Survey of England - Oyebode 2014	65,226	1,554	2.0%	0.82 [0.69, 0.98]		
British Regional Heart - Atkins 2014	3,328	327	0.3%	0.95 [0.59, 1.52]		
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	0.7%	0.63 [0.47, 0.85]		
MONICA Danish - Tognon 2014	1,849	223	0.8%	0.72 [0.55, 0.95]		
Migrant Study - Hjartaker 2015	9,766	4,595	10.0%	1.04 [0.96, 1.13]	+-	
UK Women's Cohort - Lai 2015	30,458	286	0.4%	0.57 [0.39, 0.85]		
MONICA Switzerland - Vormund 2015 - F	9,196	634	1.1%	0.92 [0.73, 1.17]		
MONICA Switzerland - Vormund 2015 - M	8,665	751	2.0%	0.87 [0.73, 1.04]		
HAPIEE - Stefler 2016	19,263	438	0.6%	0.78 [0.57, 1.07]		
PREDIMED- Buil-Cosiales 2016	7,216	104	0.1%	0.48 [0.16, 1.44]		
China Kadoorie Biobank- Du 2017	462,342	6,166	10.0%	0.66 [0.61, 0.71]	-	
DIET-HD - Saglimbene 2017	9,757	515	10.0%	1.00 [0.92, 1.08]	+	
MONICA France - Berard 2017	1,311	41	0.1%	0.78 [0.40, 1.52]		
PURE - Miller 2017	135,335	1,649	0.9%	0.84 [0.65, 1.09]		
Cooper Center - Shah 2018 - DASH	11,376	249	0.4%	0.86 [0.58, 1.27]		
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	39.9%	0.92 [0.89, 0.96]		
Renal Transplant Recipients - Sotomayer 2019	400	49	0.1%	0.82 [0.32, 2.10]		
NIPPON DATA80 - Kondo 2019	9,115	1,070	2.5%	0.84 [0.72, 0.99]		
Total (95% CI)	1,581,506	39,623	100.0%	0.88 [0.86, 0.91]	•	
Heterogeneity: Chi ² = 136.43, df = 28 (P < 0.0000	01); I² = 79%					
Test for overall effect: Z = 9.70 (P < 0.00001)					o.'z o.'s 1 2	5
					Lower Risk Higher Ris	k

B. Random Effect

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) fe	or CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	1.8%	0.66 [0.42, 1.03]		
Health Food Shoppers - Appleby 2002 - F	6,416	611	4.2%	0.70 [0.57, 0.85]	_ 	
Health Food Shoppers - Appleby 2002 - M	4,325	591	4.5%	0.95 [0.80, 1.13]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	3.0%	0.69 [0.51, 0.93]		
EPIC Diabetes - Nothlings 2008	10,262	517	3.7%	0.61 [0.48, 0.78]		
Takayama Study - Nakamura 2008 - F	15,724	184	1.6%	0.83 [0.51, 1.35]		
Takayama Study - Nakamura 2008 - M	13,355	200	1.8%	1.27 [0.81, 2.00]	-+	
JACC - Nagura 2009	59,845	2,243	5.0%	0.77 [0.67, 0.88]		
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	3.7%	0.78 [0.62, 0.99]		
NOMAS - Gardener 2011	2,568	314	4.0%	1.13 [0.91, 1.40]	-+-	<u> </u>
EPIC - Leenders 2013	451,151	5,125	5.5%	0.96 [0.87, 1.06]		
Health Survey of England - Oyebode 2014	65,226	1,554	4.5%	0.82 [0.69, 0.98]	_ _	
British Regional Heart - Atkins 2014	3,328	327	1.7%	0.95 [0.59, 1.52]		
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	3.0%	0.63 [0.47, 0.85]		
MONICA Danish - Tognon 2014	1,849	223	3.2%	0.72 [0.55, 0.95]		
Migrant Study - Hjartaker 2015	9,766	4,595	5.8%	1.04 [0.96, 1.13]	-	
UK Women's Cohort - Lai 2015	30,458	286	2.2%	0.57 [0.39, 0.85]		
MONICA Switzerland - Vormund 2015 - F	9,196	634	3.7%	0.92 [0.73, 1.17]	_	-
MONICA Switzerland - Vormund 2015 - M	8,665	751	4.5%	0.87 [0.73, 1.04]	_ +	
HAPIEE - Stefler 2016	19,263	438	2.8%	0.78 [0.57, 1.07]		
PREDIMED- Buil-Cosiales 2016	7,216	104	0.4%	0.48 [0.16, 1.44]		
China Kadoorie Biobank- Du 2017	462,342	6,166	5.8%	0.66 [0.61, 0.71]		
DIET-HD - Saglimbene 2017	9,757	515	5.8%	1.00 [0.92, 1.08]	+	
MONICA France - Berard 2017	1,311	41	1.0%	0.78 [0.40, 1.52]		
PURE - Miller 2017	135,335	1,649	3.5%	0.84 [0.65, 1.09]		
Cooper Center - Shah 2018 - DASH	11,376	249	2.2%	0.86 [0.58, 1.27]		_
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	6.1%	0.92 [0.89, 0.96]	+	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.5%	0.82 [0.32, 2.10]		
NIPPON DATA80 - Kondo 2019	9,115	1,070	4.8%	0.84 [0.72, 0.99]	_ -	
Total (95% Cl) [Random Effects]	1,581,506	39,623	100.0%	0.83 [0.77, 0.89]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 136.43, df = 2	8 (P < 0.00001); I ² :	= 79%		-		<u>_</u>
Test for overall effect: Z = 5.10 (P < 0.00001)					0.2 0.5 1	2
					Lower Risk	Higher Risk

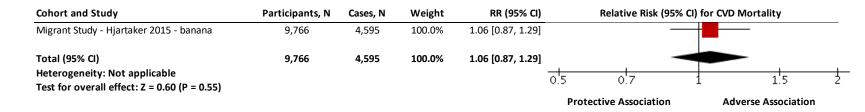
Figure S15. Relation between fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

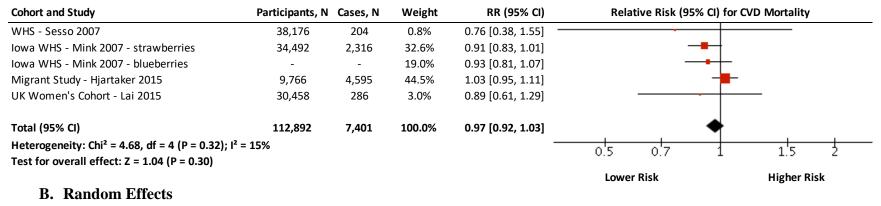

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	2.0%	0.67 [0.53, 0.85]	
Health Food Shoppers - Appleby 2002	10,471	1,202	7.8%	0.94 [0.84, 1.06]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	1.0%	0.66 [0.47, 0.92]	
EPIC Diabetes - Nothlings 2008	10,262	517	0.8%	0.59 [0.41, 0.85]	
Takayama Study - Nakamura 2008 - M	13,355	200	0.3%	1.02 [0.57, 1.84]	
Takayama Study - Nakamura 2008 - F	15,724	184	0.3%	0.77 [0.41, 1.44]	
JACC - Nagura 2009	59,485	2,243	5.8%	0.96 [0.84, 1.10]	
NOMAS - Gardener 2011	2,568	314	2.0%	0.89 [0.70, 1.12]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	2.3%	0.84 [0.68, 1.05]	
EPIC - Leenders 2013	451,151	5,125	11.3%	0.79 [0.71, 0.87]	+
MONICA Danish - Tognon 2014	1,849	223	2.0%	0.81 [0.64, 1.03]	
Health Survey of England - Oyebode 2014	65,226	1,554	1.7%	0.78 [0.60, 1.00]	
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	1.7%	0.64 [0.49, 0.82]	
British Regional Heart - Atkins 2014	3,328	327	0.3%	0.88 [0.47, 1.64]	
MONICA Switzerland - Vormund 2015 - M	8,665	751	3.5%	1.00 [0.84, 1.19]	-
MONICA Switzerland - Vormund 2015 - F	9,196	634	2.8%	1.11 [0.91, 1.34]	+
Migrant Study - Hjartaker 2015	9,766	4,595	11.3%	0.95 [0.86, 1.05]	
HAPIEE - Stefler 2016	19,236	438	1.3%	0.88 [0.65, 1.18]	
PURE - Miller 2017	135,335	1,649	2.3%	0.87 [0.70, 1.08]	
PLSAW - Blekkenhorst 2017	1,226	238	3.5%	0.81 [0.68, 0.97]	
MONICA France - Berard 2017	1,311	41	0.3%	0.57 [0.30, 1.09]	
NHANES - Conrad 2018	29,133	726	0.5%	0.60 [0.38, 0.94]	
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	31.4%	0.91 [0.86, 0.97]	-
Cooper Center - Shah 2018 - DASH	11,376	249	1.7%	0.73 [0.57, 0.95]	
NIPPON DATA80 - Kondo 2019	9,115	1,070	2.3%	0.78 [0.63, 0.97]	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.1%	0.17 [0.07, 0.41]	
Total (95% CI)	1,101,435	33,516	100.0%	0.87 [0.85, 0.90]	•
Heterogeneity: Chi ² = 61.44, df = 25 (P < 0.0001)	; l² = 59%				
Test for overall effect: Z = 7.99 (P < 0.00001)					0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	4.0%	0.67 [0.53, 0.85]	
Health Food Shoppers - Appleby 2002	10,471	1,202	6.7%	0.94 [0.84, 1.06]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	2.6%	0.66 [0.47, 0.92]	
EPIC Diabetes - Nothlings 2008	10,262	517	2.2%	0.59 [0.41, 0.85]	
Takayama Study - Nakamura 2008 - M	13,355	200	1.0%	1.02 [0.57, 1.84]	
Takayama Study - Nakamura 2008 - F	15,724	184	0.9%	0.77 [0.41, 1.44]	
JACC - Nagura 2009	59,485	2,243	6.2%	0.96 [0.84, 1.10]	-
NOMAS - Gardener 2011	2,568	314	4.0%	0.89 [0.70, 1.12]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	4.3%	0.84 [0.68, 1.05]	
EPIC - Leenders 2013	451,151	5,125	7.2%	0.79 [0.71, 0.87]	+
MONICA Danish - Tognon 2014	1,849	223	4.0%	0.81 [0.64, 1.03]	
Health Survey of England - Oyebode 2014	65,226	1,554	3.6%	0.78 [0.60, 1.00]	
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	3.6%	0.64 [0.49, 0.82]	_ _
British Regional Heart - Atkins 2014	3,328	327	0.9%	0.88 [0.47, 1.64]	
MONICA Switzerland - Vormund 2015 - M	8,665	751	5.2%	1.00 [0.84, 1.19]	+
MONICA Switzerland - Vormund 2015 - F	9,196	634	4.8%	1.11 [0.91, 1.34]	
Migrant Study - Hjartaker 2015	9,766	4,595	7.2%	0.95 [0.86, 1.05]	-
HAPIEE - Stefler 2016	19,236	438	3.0%	0.88 [0.65, 1.18]	
PURE - Miller 2017	135,335	1,649	4.3%	0.87 [0.70, 1.08]	
PLSAW - Blekkenhorst 2017	1,226	238	5.2%	0.81 [0.68, 0.97]	
MONICA France - Berard 2017	1,311	41	0.9%	0.57 [0.30, 1.09]	
NHANES - Conrad 2018	29,133	726	1.6%	0.60 [0.38, 0.94]	
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	8.1%	0.91 [0.86, 0.97]	+
Cooper Center - Shah 2018 - DASH	11,376	249	3.6%	0.73 [0.57, 0.95]	_ _
NIPPON DATA80 - Kondo 2019	9,115	1,070	4.3%	0.78 [0.63, 0.97]	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.50%	0.17 [0.07, 0.41]	
Total (95% Cl) [Random Effects]	1,101,435	33,516	100.0%	0.83 [0.78, 0.89]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 61.44, df = 25		59%			
Test for overall effect: Z = 5.63 (P < 0.00001)					0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk


Figure S16. Relation between vegetable intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

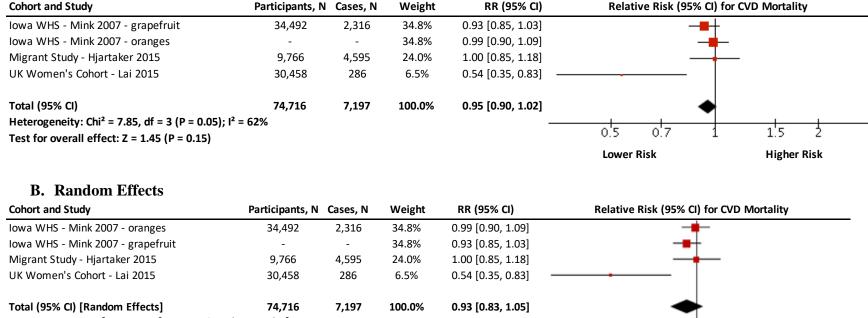
APRICOTS AND CARDIOVASCULAR DISEASE MORTALITY


Supplementary Figure 17. Relation between intake of apricots and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BANANAS AND CARDIOVASCULAR DISEASE MORTALITY

Figure S18. Relation between intake of bananas and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BERRIES AND CARDIOVASCULAR DISEASE MORTALITY

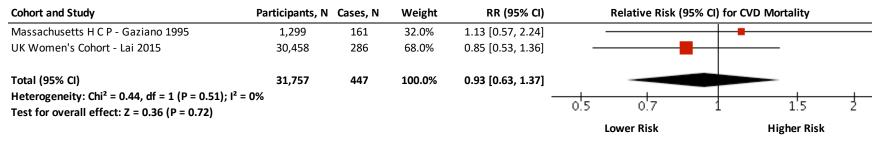


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality	
Iowa WHS - Mink 2007 - strawberries	34,492	2,316	32.6%	0.91 [0.83, 1.01]		
WHS - Sesso 2007	38,176	204	0.8%	0.76 [0.38, 1.55]		
Iowa WHS - Mink 2007 - blueberries	-	-	19.0%	0.93 [0.81, 1.07]		
Migrant Study - Hjartaker 2015	9,766	4,595	44.5%	1.03 [0.95, 1.11]		
UK Women's Cohort - Lai 2015	30,458	286	3.0%	0.89 [0.61, 1.29]		
Total (95% CI) [Random Effects]	112,892	7,401	100.0%	0.97 [0.90, 1.03]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 4.68, df =	4 (P = 0.32); I ² = 15%			-		
Test for overall effect: Z = 1.06 (P = 0.29)					0.5 0.7 i 1.5 ż	
					Lower Risk Higher Risk	

Figure S19. Relation between intake of berries and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CITRUS FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

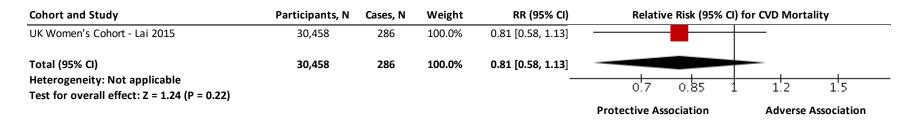

Heterogeneity: Tau² = 0.01; Chi² = 7.85, df = 3 (P = 0.05); I² = 62% Test for overall effect: Z = 1.12 (P = 0.26)

1.5 0.5 0.7 Ż Lower Risk **Higher Risk**

Figure S20. Relation between citrus fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

DRIED FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects



B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mor	tality	
Massachusetts H C P - Gaziano 1995	1,299	161	32.0%	1.13 [0.57, 2.24]				
UK Women's Cohort - Lai 2015	30,458	286	68.0%	0.85 [0.53, 1.36]				
Total (95% CI) [Random Effects]	31,757	447	100.0%	0.93 [0.63, 1.37]				
Heterogeneity: Tau ² = 0.00; Chi ² = 0.44, df = Test for overall effect: Z = 0.36 (P = 0.72)	= 1 (P = 0.51); l ² = 0%			-	0.5 0.7	1	1.5	2
					Lower Risk	Hig	her Risk	

Figure S21. Relation between dried fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity

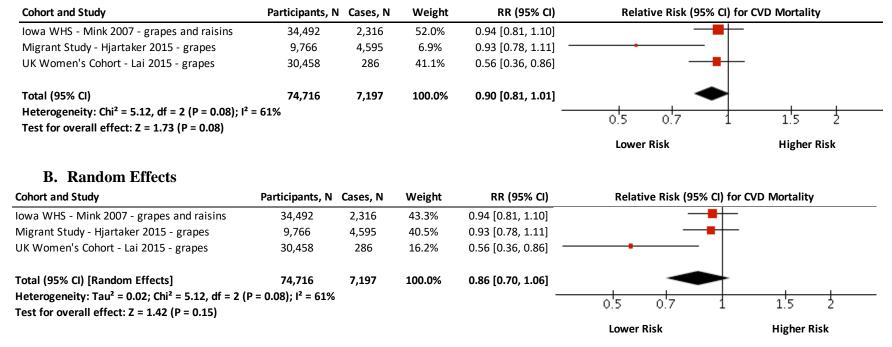

FRUIT JUICE AND CARDIOVASCULAR DISEASE MORTALITY

Figure S22. Relation between fruit juice intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GRAPES AND CARDIOVASCULAR DISEASE MORTALITY

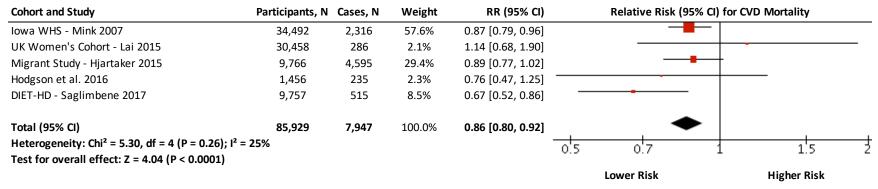
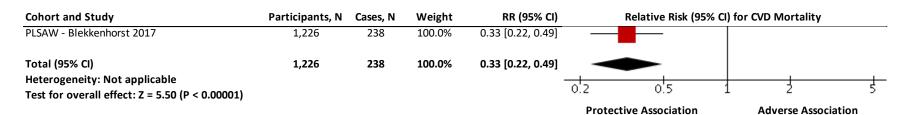

A. Fixed Effects

Figure S23. Relation between intake of grapes and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects



B. Random Effects

Cohort and Study	Participants, N C	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CVD Mortality	
Iowa WHS - Mink 2007	34,492	2,316	46.3%	0.87 [0.79, 0.96]		
UK Women's Cohort - Lai 2015	30,458	286	3.8%	1.14 [0.68, 1.90]		
Migrant Study - Hjartaker 2015	9,766	4,595	32.7%	0.89 [0.77, 1.02]		
Hodgson et al. 2016	1,456	235	4.1%	0.76 [0.47, 1.25]		
DIET-HD - Saglimbene 2017	9,757	515	13.2%	0.67 [0.52, 0.86]		
Total (95% CI) [Random Effects]	85,929	7,947	100.0%	0.85 [0.77, 0.94]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 5.30, d	f = 4 (P = 0.26); I ² = 25%					<u> </u>
Test for overall effect: Z = 3.15 (P = 0.002	2)				0.5 0.7 1 1.5	2
					Lower Risk Higher Risk	

Figure S24. Relation between pommes fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

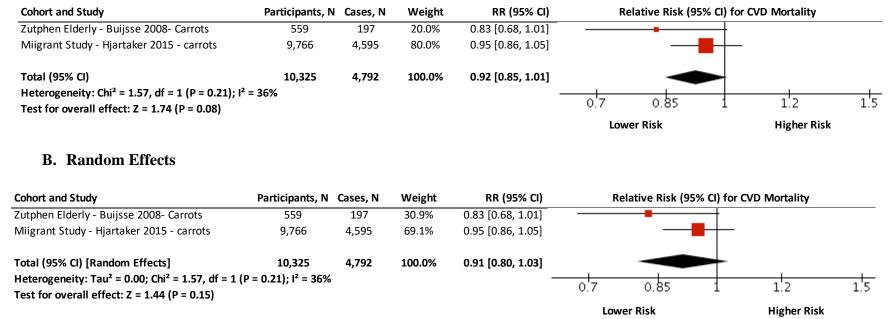
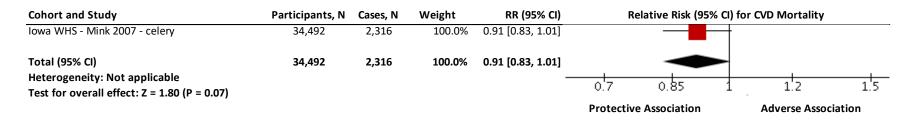

ALLIUM VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S25. Relation between intake allium vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.


CARROTS AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

Figure S26. Relation between carrots intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

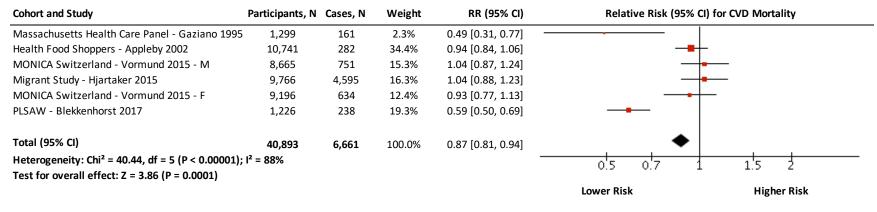
CELERY AND CARDIOVASCULAR DISEASE MORTALITY

Figure S27. Relation between celery intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% C	I) for CVD Mortality
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	0.1%	0.29 [0.04, 2.10]	•	
Odyssey - Genkinger 2004	6,151	378	1.8%	0.89 [0.64, 1.24]		<u> </u>
Iowa WHS - Mink 2007	34,492	2,316	21.3%	0.94 [0.85, 1.04]		+
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	3.2%	0.61 [0.47, 0.79]		
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	5.3%	0.76 [0.63, 0.93]		
Migrant Study - Hjartaker 2015 - cauliflower	9,766	4,595	59.2%	0.85 [0.80, 0.90]		
Migrant Study - Hjartaker 2015 - cabbage	-	-	5.3%	1.22 [1.00, 1.49]		
PLSAW - Blekkenhorst 2017	1,226	238	3.7%	0.48 [0.38, 0.61]		
Total (95% Cl)	187,730	13,081	100.0%	0.85 [0.82, 0.89]	٠	
Heterogeneity: Chi ² = 48.35, df = 7 (P < 0.00001);	l² = 86%					
Test for overall effect: Z = 6.79 (P < 0.00001)					0.5 0.7	1 1.5 2
					Lower Risk	Higher Risk


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Massachusetts Health Care Panel - Gaziano 1995	1299	161	0.6%	0.29 [0.04, 2.10]	
Odyssey - Genkinger 2004	6,151	378	10.2%	0.89 [0.64, 1.24]	
Iowa WHS - Mink 2007	34,492	2,316	17.1%	0.94 [0.85, 1.04]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	12.5%	0.61 [0.47, 0.79]	_
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	14.3%	0.76 [0.63, 0.93]	_
Migrant Study - Hjartaker 2015 - cauliflower	9,766	4,595	17.8%	0.85 [0.80, 0.90]	+
Migrant Study - Hjartaker 2015 - cabbage	-	-	14.3%	1.22 [1.00, 1.49]	
PLSAW - Blekkenhorst 2017	1,226	238	13.1%	0.48 [0.38, 0.61]	- _
Total (95% CI) [Random Effects]	187,730	13,081	100.0%	0.80 [0.68, 0.94]	•
Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (F	<pre>0.00001); l² =</pre>	86%			
Test for overall effect: Z = 2.75 (P = 0.006)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S28. Relation between intake of cruciferous vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality	
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	10.4%	0.49 [0.31, 0.77]		
Health Food Shoppers - Appleby 2002	10,741	282	19.0%	0.94 [0.84, 1.06]		
Migrant Study - Hjartaker 2015	9,766	4,595	17.8%	1.04 [0.88, 1.23]	_	
MONICA Switzerland - Vormund 2015 - M	8,665	751	17.6%	1.04 [0.87, 1.24]		
MONICA Switzerland - Vormund 2015 - F	9,196	634	17.1%	0.93 [0.77, 1.13]		
PLSAW - Blekkenhorst 2017	1,226	238	18.1%	0.59 [0.50, 0.69]		
Total (95% CI) [Random Effects]	40,893	6,661	100.0%	0.84 [0.68, 1.03]		
Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88%				-	0.5 0.7 1 1.5 2	
Test for overall effect: Z = 1.68 (P = 0.09)						
					Lower Risk Higher Risk	

Figure S29. Relation between intake of green leafy vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for CVD Mortality Massachusetts Health Care Panel - Gaziano 1995 1,299 161 1.2% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 19.8% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 1.00 [0.94, 1.06] 79.0% Total (95% CI) 45,557 7,072 100.0% 0.98 [0.93, 1.04] Heterogeneity: Chi² = 2.59, df = 2 (P = 0.27); l² = 23% 0.5 0.7 1'5 Test for overall effect: Z = 0.66 (P = 0.51) **Higher Risk** Lower Risk **B. Random Effects** Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for CVD Mortality Massachusetts Health Care Panel - Gaziano 1995 1,299 161 2.5% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 0.93 [0.83, 1.05] 34,492 2,316 30.0% Migrant Study - Hjartaker 2015 1.00 [0.94, 1.06] 9,766 4,595 67.6% Total (95% CI) [Random Effects] 45,557 7,072 100.0% 0.97 [0.90, 1.05] Heterogeneity: Tau² = 0.00; Chi² = 2.59, df = 2 (P = 0.27); l² = 23% 0.5 0'7 1'5 Test for overall effect: Z = 0.75 (P = 0.45)

Lower Risk Higher Risk

Figure S30. Relation between tomato intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CVD Mortality
Apricots					
IET-HD - Saglimbene 2017	9,757	515	0.8%	1.84 [1.27, 2.67]	
ubtotal (95% CI)	9,757	515	0.8%	1.84 [1.27, 2.67]	
eterogeneity: Not applicable					
est for overall effect: Z = 3.21 (P = 0.001)					
ananas					
Aigrant Study - Hjartaker 2015 - banana	9,766	4,595	3.0%	1.06 [0.87, 1.29]	
ubtotal (95% CI)	9,766	4,595	3.0%	1.06 [0.87, 1.29]	
leterogeneity: Not applicable					
est for overall effect: Z = 0.60 (P = 0.55)					
erries					
owa WHS - Mink 2007 - strawberries	34,492	2,316	11.8%	0.91 [0.83, 1.01]	
owa WHS - Mink 2007 - blueberries	-	-	6.0%	0.93 [0.81, 1.07]	_
VHS - Sesso 2007	38,176	204	0.2%	0.76 [0.38, 1.55]	
Aigrant Study - Hjartaker 2015	9,766	4,595	18.5%	1.03 [0.95, 1.11]	
K Women's Cohort - Lai 2015	30,458	286	0.8%	0.89 [0.61, 1.29]	
ubtotal (95% Cl)	112,892	7,401	37.4%	0.97 [0.92, 1.03]	
leterogeneity: Chi ² = 4.68, df = 4 (P = 0.32); I ²		.,		[,]	•
rest for overall effect: Z = 1.04 (P = 0.30)					
itrus					
owa WHS - Mink 2007 - grapefruit	34,492	2,316	11.8%	0.93 [0.85, 1.03]	
owa WHS - Mink 2007 - oranges		-	11.8%	0.99 [0.90, 1.09]	
figrant Study - Hjartaker 2015	9,766	4,595	4.1%	1.00 [0.85, 1.18]	
IK Women's Cohort - Lai 2015	30,458	286	0.6%	0.54 [0.35, 0.83]	
ubtotal (95% Cl)	74,716	7,197	28.4%	0.95 [0.90, 1.02]	^
leterogeneity: Chi ² = 7.85, df = 3 (P = 0.05); I ²		,,157	20.4/0	0.00 [0.00, 1.02]	•
est for overall effect: Z = 1.45 (P = 0.15)					
ruit Juice					
IK Women's Cohort - Lai 2015	30,458	286	1.0%	0.81 [0.58, 1.13]	
ubtotal (95% Cl)	30,458	286	1.0%	0.81 [0.58, 1.13]	
leterogeneity: Not applicable					
est for overall effect: Z = 1.24 (P = 0.22)					
rapes					
owa WHS - Mink 2007 - grapes and raisins	34,492	2,316	4.6%	0.94 [0.81, 1.10]	
K Women's Cohort - Lai 2015 - grapes	30,458	286	0.6%	0.56 [0.36, 0.86]	
ligrant Study - Hjartaker 2015 - grapes	9,766	4,595	3.7%	0.93 [0.78, 1.11]	-
ubtotal (95% CI)	74,716	7,197	8.9%	0.90 [0.81, 1.01]	
eterogeneity: Chi ² = 5.12, df = 2 (P = 0.08); I ² est for overall effect: Z = 1.73 (P = 0.08)	= 61%				
ommes					
wa WHS - Mink 2007	34,492	2,316	11.8%	0.87 [0.79, 0.96]	
ligrant Study - Hjartaker 2015	9,766	4,595	6.0%	0.89 [0.77, 1.02]	
K Women's Cohort - Lai 2015	30,458	286	0.4%	1.14 [0.68, 1.90]	
odgson et al. 2016	1,456	235	0.5%	0.76 [0.47, 1.25]	
IET-HD - Saglimbene 2017	9,757	515	1.8%	0.67 [0.52, 0.86]	
ubtotal (95% Cl)	85,929	7,947	20.5%	0.86 [0.80, 0.92]	
eterogeneity: Chi ² = 5.30, df = 4 (P = 0.26); I ²	= 25%				◆
est for overall effect: Z = 4.04 (P < 0.0001)					
est for subgroup differences: Chi ² = 22.57, df	= 6 (P = 0.0010), I	² = 73.4%		_	0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

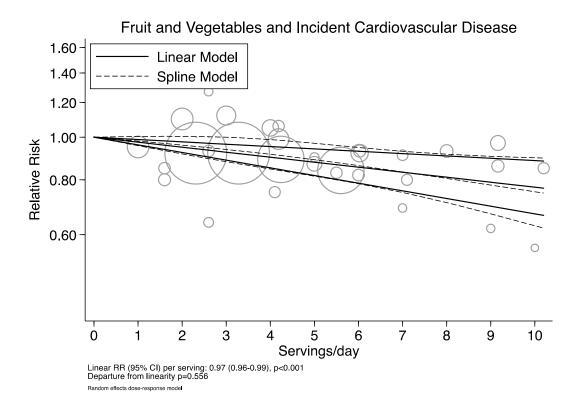
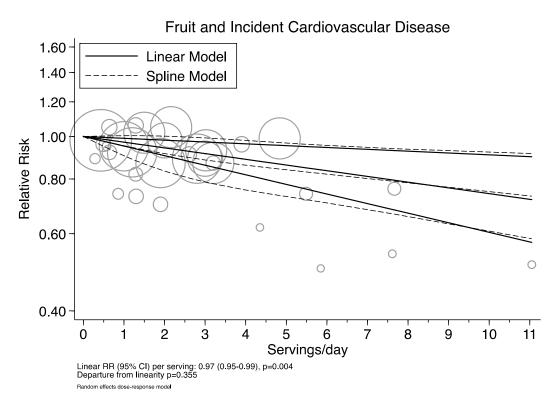
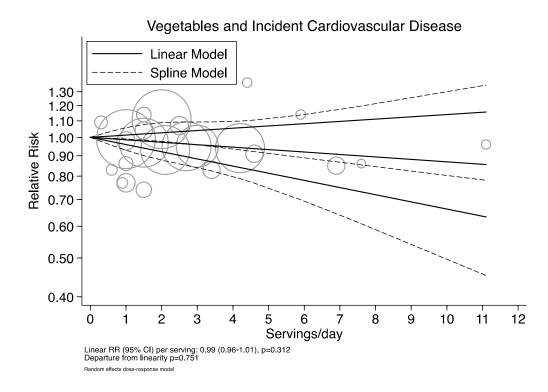
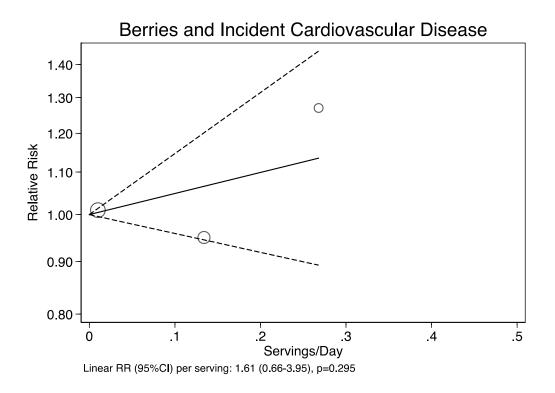

	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
,	515		1.84 [1.27, 2.67	
9,757	515	2.2%	1.84 [1.27, 2.67	
9,766	4,595	5.2%	1.06 [0.87, 1.29	_
-,	.,			
38,176	204	0.7%	0.76 [0.38, 1.55 -	
			. ,	_ -
-	-			
9 766			-	
		28.3%	0.97 [0.90, 1.03	
(P = 0.32); F = 15%				
34 492	2 316	8 7%	0 93 [0 85 1 03	
54,452	,			
0 766				
		25.3%	0.93 [0.83, 1.05	
(P = 0.03);1 = 02%				
			-	
30,458	286	2.6%	0.81 [0.58, 1.13	
34,492	2.316	6.5%	0.94 [0.81, 1.10	
		14.0%	0.00 [0.70, 1.00	
(F - 0.00); I - 01%				
31 102	2 316	8 7%	0 87 [0 79 0 96	
,			-	
			-	
85,929	7,947	22.4%	0.85 [0.77, 0.94	◆
(D 0 0C) 12 0F0/				-
(P = 0.26); I ² = 25%				
(P = 0.26); I ⁻ = 25%				
(P = 0.26); I ² = 25% = 6 (P = 0.003), I ² =				0,5 0,7 1 1,5 2
	34,492 - 9,766 30,458 112,892 (P = 0.32); I ² = 15% 34,492 - - 9,766 30,458 74,716 (P = 0.05); I ² = 62% 30,458 30,458 30,458 9,766 74,716 (P = 0.08); I ² = 61% 34,492 30,458 9,766 74,716 (P = 0.08); I ² = 61%	9,757 515 9,766 4,595 9,766 4,595 34,492 2,316 - 9,766 4,595 30,458 286 112,892 7,401 34,492 2,316 - 9,766 4,595 30,458 286 74,716 7,197 (P = 0.05); I ² = 62% 30,458 286 9,766 4,595 74,716 7,197 (P = 0.08); I ² = 61% 34,492 2,316 30,458 286 9,766 4,595 74,716 7,197 (P = 0.08); I ² = 61%	9,757 515 2.2% 9,766 4,595 5.2% 9,766 4,595 5.2% 34,492 2,316 8.7% - - 7.2% 9,766 4,595 9.5% 30,458 286 2.2% 112,892 7,401 28.3% (P = 0.32); r ² = 15% 7.401 28.3% 30,458 286 1.7% 9,766 4,595 6.1% 30,458 286 1.7% 9,766 4,595 6.1% 30,458 286 1.7% 74,716 7,197 25.3% (P = 0.05); r ² = 62% 2.316 6.5% 30,458 286 1.7% 30,458 286 1.7% 30,458 286 1.7% 30,458 286 1.7% 30,458 286 1.7% 30,458 286 1.3% 9,766 4,595 5.8% 30,458 286 1.7% 9,766 4,595 5.8% <td>9,757 515 2.2% 1.84 [1.27, 2.67 9,766 4,595 5.2% 1.06 [0.87, 1.29 9,766 4,595 5.2% 1.06 [0.87, 1.29 38,176 204 0.7% 0.76 [0.38, 1.55 $-$ 34,492 2,316 8.7% 0.91 [0.83, 1.01 7.2% 0.93 [0.81, 1.07 9,766 4,595 9.5% 1.03 [0.95, 1.11 30,458 286 2.2% 0.89 [0.61, 1.29 112,892 7,401 28.3% 0.97 [0.90, 1.03 (P = 0.32); I² = 15% 34,492 2,316 8.7% 0.93 [0.85, 1.03 8.7% 0.99 [0.90, 1.09 9,766 4,595 6.1% 1.00 [0.85, 1.18 30,458 286 1.7% 0.54 [0.35, 0.83 $-$ 74,716 7,197 25.3% 0.93 [0.83, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 1.7% 0.56 [0.36, 0.86 $-$ 74,716 7,197 14.0% 0.86 [0.70, 1.06 (P = 0.08); I² = 61% 34,492 2,316 8.7% 0.87 [0.79, 0.96 30,458 286 1.3% 1.14 [0.68, 1.90 9,766 4,595 7.2% 0.89 [0.77, 1.02 1,456 235 1.4% 0.76 [0.47, 1.25 9,757 515 3.8% 0.67 [0.52, 0.86</td>	9,757 515 2.2% 1.84 [1.27, 2.67 9,766 4,595 5.2% 1.06 [0.87, 1.29 9,766 4,595 5.2% 1.06 [0.87, 1.29 38,176 204 0.7% 0.76 [0.38, 1.55 $-$ 34,492 2,316 8.7% 0.91 [0.83, 1.01 7.2% 0.93 [0.81, 1.07 9,766 4,595 9.5% 1.03 [0.95, 1.11 30,458 286 2.2% 0.89 [0.61, 1.29 112,892 7,401 28.3% 0.97 [0.90, 1.03 (P = 0.32); I ² = 15% 34,492 2,316 8.7% 0.93 [0.85, 1.03 8.7% 0.99 [0.90, 1.09 9,766 4,595 6.1% 1.00 [0.85, 1.18 30,458 286 1.7% 0.54 [0.35, 0.83 $-$ 74,716 7,197 25.3% 0.93 [0.83, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 1.7% 0.56 [0.36, 0.86 $-$ 74,716 7,197 14.0% 0.86 [0.70, 1.06 (P = 0.08); I ² = 61% 34,492 2,316 8.7% 0.87 [0.79, 0.96 30,458 286 1.3% 1.14 [0.68, 1.90 9,766 4,595 7.2% 0.89 [0.77, 1.02 1,456 235 1.4% 0.76 [0.47, 1.25 9,757 515 3.8% 0.67 [0.52, 0.86

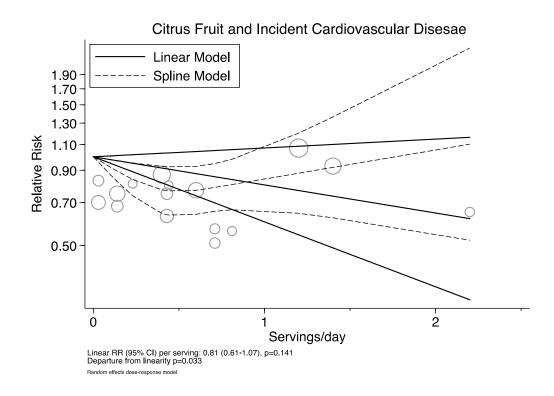
Figure S31. Relation between sources of fruit and CVD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

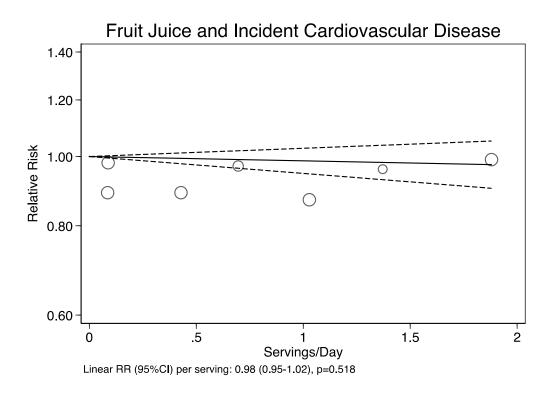

Cohort and Study Perticipants, N. Case, N. Weight R (95% C) Relative Risk (95% C) for CVD Mortality PLSM-: Bitkschotst 2017 1.226 2.88 0.5% 0.33 [0.22, 0.49] PLSM-: Bitkschotst 2017 1.226 2.88 0.5% 0.33 [0.22, 0.49] PLSM-: Bitkschotst 2.5 J.0 < 0.00001) 11.12 Corrols 2.0(9) 2.0(5 1.12, 2.5) 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.35 [0.35, 1.01] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.	A. FIACU Effects					
PLSAM- Bickkenborst 2017 1.226 238 0.5% 0.33 (0.22, 0.49) Heterogeneity: Not applicable Test for overall effect: 2 = 5.50 (< 0.00001) 1.112 Corros Subtral (95% C) Heterogeneity: Tat ² = 0.00; Corrots 559 Subtral (95% C) Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Cor	Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Subtal (95% C) Heterogeneity: Nat applicable Test for overall effect: 2 = 5.50 (P < 0.00001) 11.12 Carrots Zuphen Eidert, Puijss 2006: Carrots 9.766 4.555 8.00% 9.59 (0.68, 1.01) Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 8.00% 9.59 (0.68, 1.01) Heterogeneity: Tat ² = 0.00; (D ² = 1.57, df = 1 (P = 0.21); P = 36% Test for overall effect: 2 = 1.34 (P = 0.21); 11.13 Celery Test for overall effect: 2 = 1.36 (P = 0.07) 11.14 Cuclerous Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 1.299 161 1.00% 0.29 (0.48, 1.01) Migrant Study - Hjartaker 2015 - carrots 1.14 Cuclerous Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 1.299 161 1.00% 0.29 (0.44, 2.10) Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 2.22% 0.85 (0.80, 0.90] 9.766 4.555 2.22% 0.85 (0.80, 0.90] 9.766 4.555 1.299 161 1.06% 1.15 Green left Missaschusetts Health Care Panel - Gaziano 1995 1.299 161 1.266 1.27, 730 1.3081 9.766 4.555 2.22% 0.85 (0.80, 0.90] 9.766 4.555 2.25% 0.94 (0.81, 1.06] Migrant Study - Hjartaker 2015 - cauliflower 9.766 4.555 2.25% 0.94 (0.81, 0.91) 1.15 Green left Missaschusetts Health Care Panel - Gaziano 1995 1.299 161 0.05% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.05% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.29 164 0.3% (0.48, 1.23] 0.4% 0.49 (0.41, 0.48, 1.23] 0.4% 0.48 (0.48, 0.49) 0.4% 0.49 (0.41, 0.49) 0.4% 0.49 (0.41, 0.49)						
Heterageneity: Not applicable Test for overall effect: 2 = 5.50 (p < 0.0001) 1.11.2 Corrost Zuphen Elderly - Bujips 2008: Carrosts 559 197 2.0% 0.83 (0.68, 1.01) Migrant Study - Highrater 2015: - carrost 9, 7.66 4.558 Satobal (95% C) 10, 215 carrost 9, 7.66 4.558 Satobal (95% C) 10, 215 carrost 9, 7.66 4.558 Satobal (95% C) 10, 215 carrost 9, 7.66 4.558 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,210 (1.0) 24,492 2.316 Satobal (95% C) 217 1.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.25 Satobal (95% C) 217 2.25 Satobal (95% C	PLSAW - Blekkenhorst 2017	1,226	238	0.5%	0.33 [0.22, 0.49]	
Test for overall effect: 2 = 5.50 (P < 0.00001) 1.11.2 Carrots 2.112 Carrots 2.112 Carrots 3.766 4.595 8.0% 0.95 (0.86, 1.01) 4.113 Calery 4.102 4.10 4.102 4.102 4.102 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10	Subtotal (95% CI)	1,226	238	0.5%	0.33 [0.22, 0.49]	
1.1.2 Carrols Zurphen Elderly-Builyse 2008: Carrols 559 197 2.0% 0.83 (0.68, 1.01) Wilgrant Study - Hightaber 2015 - carrols 9,766 4.592 8.0% 0.95 (0.85, 1.05) Subtotal (95% C) 10,225 4.792 10.0% 0.95 (0.85, 1.05) Subtotal (95% C) 10,225 4.792 10.0% 0.92 (0.85, 1.01) 11.13 Celery 1007 - celery 34.492 2,316 8.0% 0.91 (0.83, 1.01) 11.14 Cruciferous 11.14 Cruciferous 8.0% 0.91 (0.83, 1.01) 1.00% Mossachusetts Health Care Panel - Gaziano 1995 1.299 161 0.0% 0.29 (0.04, 2.10) Orysey: - Geninger 2004 0.44.92 2.316 8.0% 0.91 (0.83, 1.01) Iwas - Mix 2007 34.492 2.316 8.0% 0.91 (0.83, 1.01) Iwas - Mix 2001 10.13 7.8% 0.83 (0.64, 1.24) Iwas - Mix 2001 10.13 7.8% 0.83 (0.64, 1.24) Iwas - Mix 2011 1.226 2.346 8.0% 0.91 (0.83, 0.61) Iwas - Mix 2011 1.226 2.356 0.05 (0.84, 0.61) 9.10 9.10	Heterogeneity: Not applicable					
2.tpthen Eldenly - Bujise 2008: Carrots 559 197 2.0% 0.83 [0.6.8, 1.01] Migran Study - Hightaker 2015 - carrots 9,766 4,595 8.0% 0.95 [0.6.6, 1.05] Subtrai [95% C] 10,225 4,792 10.0% 0.92 [0.8.5, 1.01] Heterogeneity: Tau' = 0.00(. Ch ² = 1.57, df = 1 (P = 0.21); P' = 36% 10.0% 0.92 [0.83, 1.01] 1113 Colery Image: Coler of the cole of the coler of the cole of the c	Test for overall effect: Z = 5.50 (P < 0.00001)					
2.tpthen Eldenly - Bujise 2008: Carrots 559 197 2.0% 0.83 [0.6.8, 1.01] Migran Study - Hightaker 2015 - carrots 9,766 4,595 8.0% 0.95 [0.6.6, 1.05] Subtrai [95% C] 10,225 4,792 10.0% 0.92 [0.8.5, 1.01] Heterogeneity: Tau' = 0.00(. Ch ² = 1.57, df = 1 (P = 0.21); P' = 36% 10.0% 0.92 [0.83, 1.01] 1113 Colery Image: Coler of the cole of the coler of the cole of the c	1 11 2 Correcto					
Migrant Study - Hjartaler 2015 - carrots 9,766 4,595 8,0% 0.95 [0.86, 1.05] Heterogeneity: Tau' = 0.00; Ch' = 1.57, df = 1 (P = 0.21); h' = 36% Test for overall effect: z = 1.4 (P = 0.15) 1113 Celey Iowa W15 - Mink 2007 - celery 34,492 2,316 8,0% 0.91 [0.83, 1.01] Subtabi [95% C] 34,492 2,316 8,0% 0.91 [0.83, 1.01] Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odyssey - Genkinger 2004 - 6,151 378 0.7% 0.89 [0.64, 1.24] Iowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 12,120, 1.249 Migrant Study - Hjartaler 2015 - califlower 9,766 4,595 2,22% 0.85 [0.80, 0.90] PicSAW - Blekkenhors 2017 12,226 2,38 1,4% 0.48 [0.38, 0.61] Josebcal [95% C] Heterogeneity; Tau' = 0.04; Ch' = 48.35, df = 7 [P o.00001]; J' = 85% Test for overall effect: 2 = 2.75 (P = 0.0001) J115 Green Lesty Missachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Heeltin Food Shoppers - Appleby 2002 10,741 282 5,5% 0.94 [0.84, 1.16] MONICA Switzerland - Vormund 2015 - F 9, 196 6,34 2,0% 0.93 [0.77, 1.28] Migrant Study - Hjartaler 2015 - coutons); J' = 88% Test for overall effect: 2 = 2.75 (P = 0.0001); J' = 88% Test for overall effect: 2 = 1.58 (P = 0.0001); J' = 28% Test for overall effect: 2 = 1.58 (P = 0.0001); J' = 28% Test for overall effect: 2 = -1.59 (J = 0.27); J' = 2.3% Test for overall effect: 2 = -1.59 (J = 0.20); J' = 2.8% Test for overall effect: 2 = -1.59 (J = 0.20); J' = 2.8% Test for overall effect: 2 = -1.59 (J = 0.20); J' = 2.8% Test for overall effect: 2 = -1.59 (J = 0.20); J' = 2.8% Test for overall effect: 2 = -1.59 (J =		FEO	107	2.0%	0 92 [0 69 1 01]	
Subtable (95% C) 10,225 4,792 10,0% 0.52 (0.85, 1.01) Heterogeneity: Tau ² = 0.00; M ² = 7.05, M ² = 1 (P = 0.21); P ² = 36% Test for overall effect: Z = 1.44 (P = 0.15) 1.11.3 Celery lowa W15 - Mink 2007 - celery 34,492 2,316 8,0% 0.91 [0.83, 1.01] Meterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07) 1.11.4 Contierous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odytsey - Genkinger 2004 6,151 378 0.0% 0.29 [0.04, 2.10] Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.26 (1.00, 1.09] Heterogeneity: Tau ² = 0.00; M ² = 48.35, df = 7 (P < 0.00001); P ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 11.15 Green leafy Mossachusets Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 (1.084, 1.06] MONICA Switterland - Vormund 2015 - M .665 751 2.5% 1.04 (1.081, 1.24] PISAW - Biekkenbert 2017 1.226 238 1.1% 0.39 (0.50, 0.69] Subtati (95% C) 40,893 6,661 1.1% 0.3% 0.73 (0.46, 1.17] NONICA Switterland - Vormund 2015 - M .665 751 2.5% 0.93 (1.084, 0.16] Missachusets Health Care Panel - Gaziano 1995 1.299 161 0.3% 0.73 (0.46, 1.17] Now W15 . Mink 2007 3.4492 2.316 5.5% 0.93 (1.081, 0.69] Jub Grant Sudy - Higrater 2015 9.766 4.55% 2.6% 0.93 (1.031, 0.51] Migrant Sudy - Higrater 2015 9.766 4.59 2.20% 0.93 (1.04, 1.06] Jub Grant Sudy - Higrater 2015 9.766 4.55% 0.93 (1.083, 1.06] Jub Grant Sudy - Higrater 2015 9.766 4.55% 0.93 (1.081, 0.69] Jub Grant Sudy - Higrater 2015 9.766 4.55% 0.93 (1.081						
Hetergeneity: Tau ² = 0.00; Ch ² = 1.57, df = 1 (P = 0.21); P = 36% Test for overall effect: 2 = 1.44 (P = 0.15) 1.11.3 Celery 0 aw Vt/5 · Mink 2007 · celery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Subtral (95% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Mascachustets Health Care Panel - Gaziano 1995 1.299 161 0.0% 0.29 [0.04, 2.10] Ody.sey · Genkinger 2004 6.151 378 0.7% 0.89 [0.64, 1.24] 0 aw Wt/5 · Mink 2007 34,492 2,316 8.0% 0.91 [0.83, 1.01] Migrant Study · Higratiker 2015 - cauliflower 9,766 4.595 22.2% 0.65 [0.04, 0.93] Migrant Study · Higratiker 2015 - cauliflower 9,766 4.595 22.2% 0.85 [0.80, 0.90] Heterogeneity: Tau ⁴ = 0.04; Ch ⁴ = 48.35, df = 7 (P < 0.00001); H = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Missachustets Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.48 [0.81, 0.61] Subtral (95% C) 40.995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10.741 282 5.5% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10.741 282 5.5% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,276 4.555 2.2% 1.00 [0.84, 1.06] Subtral (95% C) - 4.04, df = 5 (P < 0.00001); H = 88% Test for overall effect: 2 = 1.58, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 5 (P < 0.00001); J = 88.0%						
Test for overall effect: 2 = 1.44 (P = 0.15) 1.11.3 Celery lowa W15 - Mink 2007 - celery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07) 1.11.4 Crudierous Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.0% 0.92 [0.04, 2.10] Odyssey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 0.10] May M15 - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Odyssey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 0.03] Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cablege - - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cablege - - 2.0% 1.28 [0.82, 0.89] PLSAW - Blekkenhorst 2017 1.226 2.38 1.4% 0.48 [0.31, 0.77] Heterogeneity: Tau* = 0.06; Ch* = 40.34, df = 5 (P < 0.00001); F = 86%			4,792	10.0%	0.92 [0.85, 1.01]	•
1.1.1 Gelery Jowa W15 - Mink 2007 - celery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Subtotal (5% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogenety: Not applicable Test for overall effect: 2 = 1.80 (P = 0.07) 1.1.1 Courderous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Jowa W15 - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Moren Health - Zhang 2011 (a) 73,360 3,442 1.22 0.61 [0.47, 0.79] Shanghai Moren Health - Zhang 2011 (a) 17,3300 3,442 1.22 0.61 [0.47, 0.79] Migrant Study - Hjartaker 2015 - cauliflower 9,766 4,595 2.2.0% 0.85 [0.82, 0.89] PLSAW > Blekkenhorst 2017 1,226 2.38 1.4% 0.48 [0.38, 0.61] Subtotal (5% C) 137,730 13,001 37,45% 0.48 [0.31, 0.77] Heaterogenety: Tau" = 0.04; Ch" = 48.35, df = 7 (P < 0.00001); P = 86%		= 0.21); - = 36%				
lova WHS - Mink 2007 - cellery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Subtotal (95% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07) 1.11 A Cruciferous Massachuetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odysey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 1.24] Jowa WHS - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Migrant Study - Hjartaker 2015 - cabibage - 2 20% 0.55 (0.44, 2.07) Migrant Study - Hjartaker 2015 - cabibage - 2 20% 0.25 (0.80, 0.90] Higrant Study - Hjartaker 2015 - cabibage - 2 20% 0.25 (0.80, 0.90] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); r ² = 88.% Test for overall effect: Z = 1.68 (P = 0.09) 1.115 Green leafy Migrant Study - Hjartaker 2015 - F 9, 196 634 2.0% 0.93 [0.77] Heterogeneity: Tau ² = 0.05; Chi ² = 40.44, df = 5 (P < 0.00001); r ² = 88.% Test for overall effect: Z = 1.68 (P = 0.09) 1.116 Tomates Messachuetts Health Care Panel - Gaziano 1995 1, 299 161 0.4% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.00 (0.94, 1.06] Subtotal (95% C) 4, 953 5, 7, 707 2, 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² - 0.05; Chi ² = 2.0, 75; F = 0.45; Test for overall effect: Z = 0.75; P = 0.45; Test for overall effect: Z = 0.75; P = 0.45; Test for overall effect: Z = 0.75; P = 0.45; Test for overall effect: Z = 0.75; P =	rest for overall effect. 2 – 1.44 (F – 0.13)					
Subtol (95% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogeneity: Not applicable Test for overall effect: 2 = 1.80 (P = 0.07) 111.4 Cruciferous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 210] Odyssey - Genkinger 2004 6,151 378 0.7% 0.88 [0.64, 1.24] Odyssey - Genkinger 2001 (a) 73,360 3,442 1.2% 0.61 [0.42, 0.79] Shanghai Men Health - Zhang 2011 (a) 73,360 3,442 1.2% 0.61 [0.42, 0.79] Shanghai Men Health - Zhang 2011 (a) 61,436 1.951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cablage - 2.0% 0.78 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 2.38 1.4% 0.48 [0.88, 0.61] Subtotal (95% C) 1.87,730 13,081 37.4% 0.48 [0.88, 0.61] Subtotal (95% C) - 1.87,730 13,081 37.4% 0.48 [0.84, 0.38 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); I ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 111.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] PLSAW - Blekkenhorst 2017 1,229 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1.299 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1.299 151 0.3% 0.59 [0.50, 0.69] PLSAW - Blekkenhorst 2017 3,492 2,316 5.5% 0.93 [0.83, 1.08] Heterogeneity: Tau ² = 0.06; Chi ² = 4.04, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.27); I ² = 2.2% Line (D = 9, 1.66] Massachusetts Health Care Panel - Gaziano 1995 1,299 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1,299 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1.299 151 0.3%	1.11.3 Celery					
Heterogeneity: Not applicable Test for overall effect: 2 = 1.80 (P = 0.07) 11.1 Crudierous Massachuests Health Care Panel - Gaziano 1995 1,299 161 0,0% 0.29 [0,04,2.10] Odyssey - Genkinger 2004 6,151 378 0,7% 0.88 [0,64, 1.24] Jowa WH5 - Mink 2007 34,492 2,316 8,0% 0,94 [0.85, 1.04] Shanghai Wome Health - Zhang 2011 (a) 61,436 1,951 2,0% 0,76 [0,63, 0,93] Migrant Study - Hjartaker 2015 - cauliflower 9,766 4,595 22,2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1,4% 0,48 [0.38, 0.61] Subbtal (95% C) 1 127,730 13,081 37,4% 0.48 [0.38, 0.61] Missachuests Health Care Panel - Gaziano 1995 1,299 161 0,4% 0,49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5,5% 0,94 [0.84, 1.06] Migrant Study - Hjartaker 2015 - 9,766 4,595 2,26% 0,49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5,5% 0,49 [0.84, 1.06] Minor Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,6% 104 [0.88, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,6% 104 [0.88, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,6% 104 [0.88, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,26% 104 [0.88, 1.24] Migrant Study - Hjartaker 2015 9,766 4,595 2,26% 104 [0.88, 1.24] Migrant Study - Hjartaker 2015 9,766 4,595 2,26% 104 [0.88, 1.05] Subtal (95% C) 40,84, df = 5 (P < 0.00001); H = 88% Test for overall effect: 2 = 1.68 (P = 0.00) 11.16 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0,3% 0,73 [0.46, 1.17] Now WH5 - Mink 2007 34,492 2,316 5,5% 0,93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 (0.94, 1.06] Subtal (95% C) 45,557 7,702 28,0% 0,98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P < 2.7); f ¹ = 23% Test for overall effect: 2 = 0.75 (P = 0.45) Test fo	Iowa WHS - Mink 2007 - celery	34,492	2,316	8.0%	0.91 [0.83, 1.01]	
Test for overall effect: 2 = 1.80 (P = 0.07) 1.114 Cruciferous Massachusetts Health Grae Panel - Gaziano 1995 1.299 161 0.0% 0.29 [0.04, 2.10] Ordysey - Genkinger 2004 6.151 378 0.7% 0.89 [0.64, 1.24] Iowa WHS - Mink 2007 34,492 2.316 8.0% 0.94 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1.951 2.0% 0.76 [0.63, 0.39] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1.226 2.38 1.4% 0.48 [0.38, 0.61] Subtotal (95% Cl) 187,730 1.30,81 37.4% 0.85 [0.82, 0.89] Heterogenelity: Tau* = 0.04; Chi* = 48.35, df = 7 (P < 0.00001); i* = 86%	Subtotal (95% CI)	34,492	2,316	8.0%	0.91 [0.83, 1.01]	•
1.1.1 Cruciferous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odyssey - Genkinger 2004 6,151 378 0.7% 0.88 [0.64, 1.24] Jowa WH5 - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.65, 0.03] Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 0.76 [0.65, 0.03] Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 0.76 [0.65, 0.03] Vibratot [95% C] 127,700 13,081 37.4% 0.88 [0.80, 0.61] Subtotal [95% C] 127,700 13,081 37.4% 0.88 [0.82, 0.89] Heterogeneity: Tau" = 0.04; Chi" = 48.35, df = 7 (P < 0.00001); f" = 86%	Heterogeneity: Not applicable					•
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0,0% 0.29 [0.04, 2.10] Odysey - Genkinger 2004 6,151 378 0,7% 0.89 [0.64, 1.24] Iowa WH5. Mik 2007 34,492 2,316 8,0% 0.49 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1,951 2,0% 0,76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Heterogeneity: Tau ⁴ = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 6.34 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtoal (95% C) 40,49 = 0.44, f = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Now WH5 - Mink 2007 34,442 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 [0.94, 1.06] Subtoal (95% C) 4,455,57 7,707 2,80% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.06; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overal	Test for overall effect: Z = 1.80 (P = 0.07)					
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0,0% 0.29 [0.04, 2.10] Odysey - Genkinger 2004 6,151 378 0,7% 0.89 [0.64, 1.24] Iowa WH5. Mik 2007 34,492 2,316 8,0% 0.49 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1,951 2,0% 0,76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Heterogeneity: Tau ⁴ = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 6.34 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtoal (95% C) 40,49 = 0.44, f = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Now WH5 - Mink 2007 34,442 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 [0.94, 1.06] Subtoal (95% C) 4,455,57 7,707 2,80% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.06; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overal						
Odyssey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 1.24] lowa WHS - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Wome Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablage - - 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablege - - 2.0% 0.78 [0.63, 0.93] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% C) 1087,770 138,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); h ² = 86% 751 2.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 0.94 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtotal (95% C) 40.48 (9.38, 0.51] 4.049 (9.31, 0.31, 0.34] 4.049 (9.31, 0.31, 0.34] 4.049 (9.31, 0.3		4 200	161	0.001	0.0010.010.01	
Iowa WHS - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 73,360 3,442 1.2% 0.61 [0.47, 0.79] Shanghai Menel Health - Zhang 2011 (a) 61,436 1.951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 0.85 [0.82, 0.89] Heterogeneity: Tau* = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); I ² = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 9,766 4.595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1.226 238 3.1% 0.59 [0.50, 0.69] Subtotal [95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.54] Heterogeneity: Tau* = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: 2 = 1.58 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.3% 0.73 [0.46, 1.17] Lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4.595 2.2.% 1.00 [0.94, 1.06] Subtotal [95% CI) 45,57 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau* = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: 2 = 0.75 (P = 0.45) Test for overall effect: 2 = 0.75 (P = 0.45) Test for overall effect: 2 = 0.75 (P = 0.45) Test for overall effect: 2 = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						·
Shanghai Women Health - Zhang 2011 (a) 73,360 3,442 1.2% 0.61 [0.47, 0.79] Shanghai Men Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablight 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabliflower 9,766 4,595 22.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtoral (95% C) 187,730 13,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Ch ² = 48.35, df = 7 (P < 0.00001); l ² = 86.% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtoral (95% C) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Ch ² = 40.44, df = 5 (P < 0.00001); l ² = 88.% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomates Massachusetts Health fcare Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 7,7072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.05; Ch ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overa						
Shanghai Men Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabibage - 200% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabilfower 9,766 4,595 22.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% C) 187,730 13,081 37.4% 0.85 [0.82, 0.89] 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% C) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.05; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomates Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Missachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Missachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 2 (P = 0.027); I ⁴ = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect						
Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabibage - - 2.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% CI) 17,730 13.081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (p < 0.00001); l ² = 86% 756 4.595 2.5% 0.94 [0.31, 0.77] Heath Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] - MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] - MORICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] - Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.87, 1.24] - MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] - Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.83, 1.04] - - Subtotal (95% CI) 40,893 6,661 16.1% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Migrant Study - Hjartaker 2015 - cauliflower 9,766 4,595 22.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% CI) 187,730 13,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.33, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 40,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z =						
PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% C) 111.15 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MOINCA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.87, 1.24] Meterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.0001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% C)] 45,557 7,072 28.0% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% C)] 45,557 7,072 28.0% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% C)] 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.05; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z						
Subtotal (95% CI) 187,730 13,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Ch ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Bletkehnorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Ch ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for Subtotal (95% CI)						
Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); I ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						
Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Ch ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 11.16 Tomatoes				37.4%	0.85 [0.82, 0.89]	•
1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94]		< 0.00001); ۱ ² = ٤	6%			•
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%	Test for overall effect: $Z = 2.75$ (P = 0.006)					
Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%	1.11.5 Green leafy					
Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%		1,299	161	0.4%	0.49 [0.31, 0.77]	
MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%			282	5.5%		
MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						
Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%			634	2.0%		
PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%						
Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						
Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); i ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); i ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), i ² = 88.0%						
Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45)					,	◆
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%						
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%	4.44.6 7					
Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.5 1 2 1		1 200	161	0.2%	0 72 [0 46 1 17]	
Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 $(0.94, 1.06]$ Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 $(0.93, 1.04]$ Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) $(0.2 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $						
Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.2 0.5 1 2 9						
Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.2 0.5 1 2 2						+
Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.2 0.5 1 2 5			7,072	28.0%	0.98 [0.93, 1.04]	,
Test for subgroup differences: $Chi^2 = 41.70$, df = 5 (P < 0.00001), $I^2 = 88.0\%$ 0.2 0.5 1 2 9		= 0.27); I* = 23%				•
0.2 0.5 1 2 5		1	00 00'			
	Test for subgroup differences: Chi ² = 41.70, df = 5	(P < 0.00001), l ²	= 88.0%			
Lower Risk Higher Risk						
						Lower Risk Higher Risk

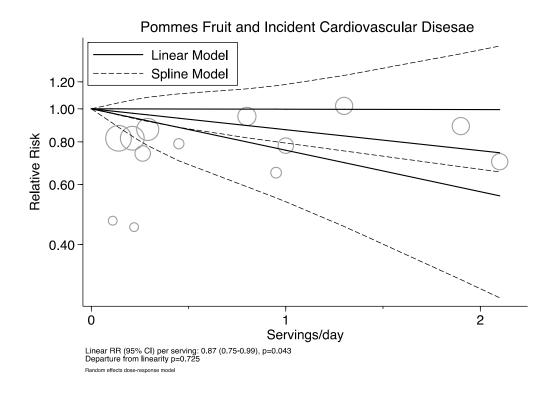
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CVD Mortality
Allium					
PLSAW - Blekkenhorst 2017	1,226	238	2.7%	0.33 [0.22, 0.49]	
Subtotal (95% CI)	1,226	238	2.7%	0.33 [0.22, 0.49]	
Heterogeneity: Not applicable				. , .	
Test for overall effect: Z = 5.50 (P < 0.00001)					
Carrots					
Zutphen Elderly - Buijsse 2008- Carrots	559	197	5.0%	0.83 [0.68, 1.01]	
Miigrant Study - Hjartaker 2015 - carrots	9,766	4,595	6.3%	0.95 [0.86, 1.05]	
Subtotal (95% CI)	10,325	4,792	11.3%	0.91 [0.80, 1.03]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 1.57, df = 1 (P	= 0.21); I ² = 36%				
Test for overall effect: Z = 1.44 (P = 0.15)					
Colom					
Celery Iowa WHS - Mink 2007 - celery	34,492	2,316	6.3%	0.91 [0.83, 1.01]	
Subtotal (95% CI)	34,492 34,492	2,310 2,316	6.3%		◆
	34,472	2,510	0.5%	0.91 [0.83, 1.01]	
Heterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07)					
100 (r - 0.07)					
Cruciferous					
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	0.2%	0.29 [0.04, 2.10]	• • • • • • • • • • • • • • • • • • • •
Odyssey - Genkinger 2004	6,151	378	3.3%	0.89 [0.64, 1.24]	
Iowa WHS - Mink 2007	34,492	2,316	6.3%	0.94 [0.85, 1.04]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	4.2%	0.61 [0.47, 0.79]	.
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	5.0%	0.76 [0.63, 0.93]	_
Migrant Study - Hjartaker 2015 - cabbage	9,766	4,595	5.0%	1.22 [1.00, 1.49]	_ _
Migrant Study - Hjartaker 2015 - cauliflower	-	-	6.7%	0.85 [0.80, 0.90]	-
PLSAW - Blekkenhorst 2017	1,226	238	4.5%	0.48 [0.38, 0.61]	
Subtotal (95% CI)	187,730	13,081	35.1%	0.80 [0.68, 0.94]	◆
Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P					
Test for overall effect: Z = 2.75 (P = 0.006)					
Green leafy					
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	2.3%	0.49 [0.31, 0.77]	
Health Food Shoppers - Appleby 2002	10,741	282	6.1%	0.94 [0.84, 1.06]	
MONICA Switzerland - Vormund 2015 - F	9,196	634	5.0%	0.93 [0.77, 1.13]	
MONICA Switzerland - Vormund 2015 - M	8,665	751	5.3%	1.04 [0.87, 1.24]	<mark>_</mark>
Migrant Study - Hjartaker 2015	9,766	4,595	5.4%	1.04 [0.88, 1.23]	
PLSAW - Blekkenhorst 2017	1,226	238	5.6%	0.59 [0.50, 0.69]	
Subtotal (95% Cl)	40,893	6,661	29.6%	0.84 [0.68, 1.03]	
Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P	-	-	23.070	0.04 [0.00, 1.03]	-
Test for overall effect: $Z = 1.68$ (P = 0.09)	- 0.00001), I - C				
Tomatoes					
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	2.2%	0.73 [0.46, 1.17]	
lowa WHS - Mink 2007	34,492	2,316	6.1%	0.93 [0.40, 1.17]	
Migrant Study - Hjartaker 2015	9,766	4,595	6.7%	1.00 [0.94, 1.06]	I
Subtotal (95% CI)	45,557	4,393 7,072	14.9%	0.97 [0.90, 1.05]	
Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P	-	1,012	17.370	5.57 [0.50, 1.05]	٦
Test for overall effect: Z = 0.75 (P = 0.45)	23/6				
Test for subgroup differences: $Ch^2 = 0.75$ ($P = 0.45$)	(P < 0.00001) 12	= 84 1%			
	(, , , 0.00001), T	J7.1/0			0.2 0.5 1 2 5
					Lower Risk Higher Risk

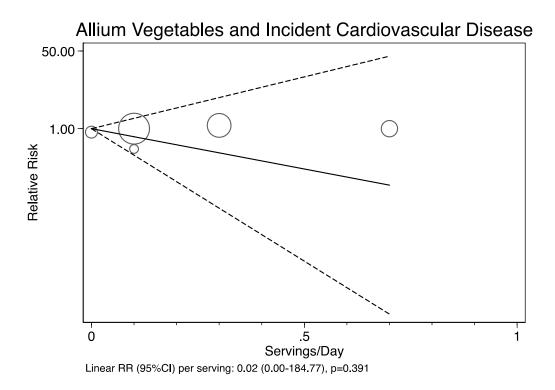

Figure S32. Relation between sources of vegetables and CVD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

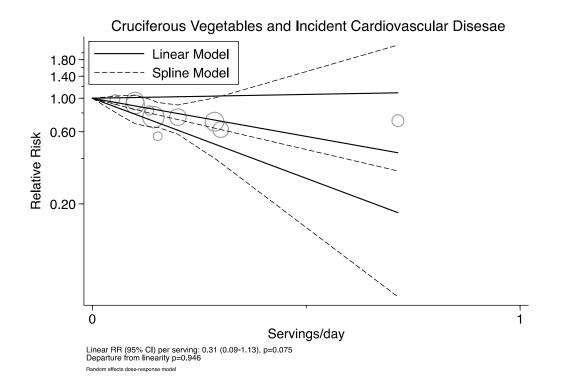

Figure S33. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S34. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S35. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S36. Linear dose-response relation between increasing berries intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S37. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S38. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

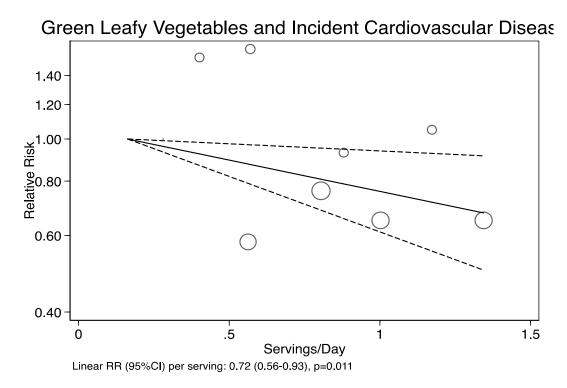
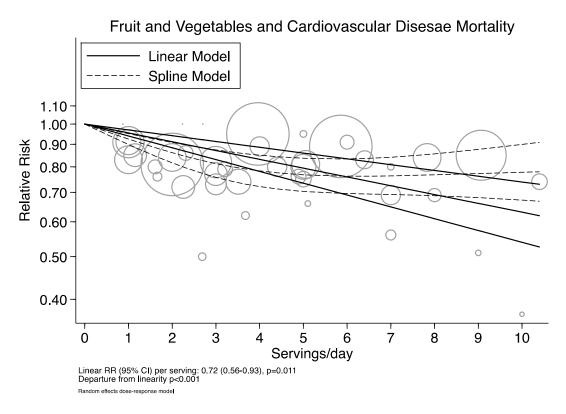
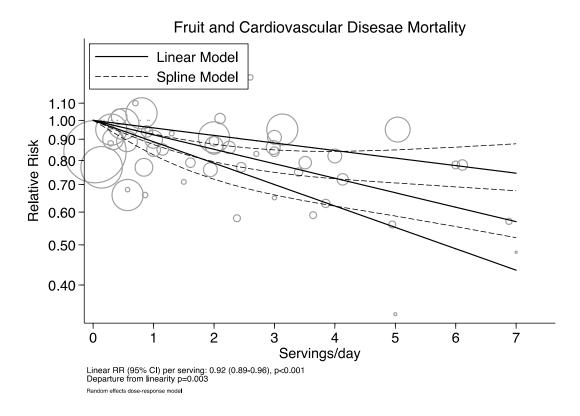
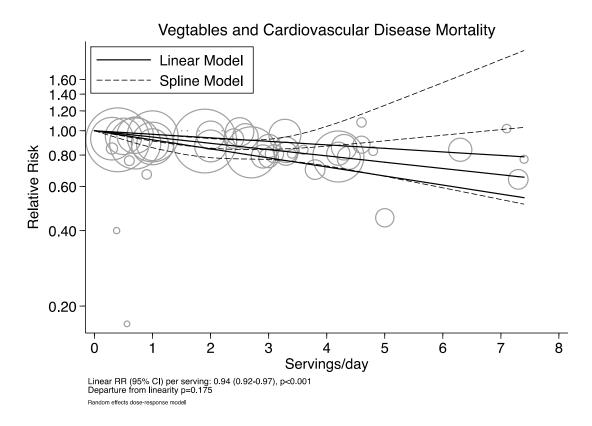
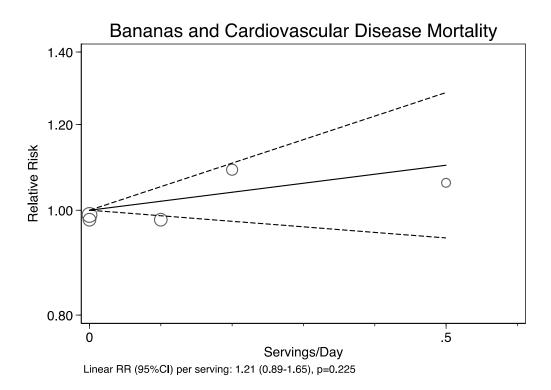

Figure S39. Linear dose-response relation between increasing pommes intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

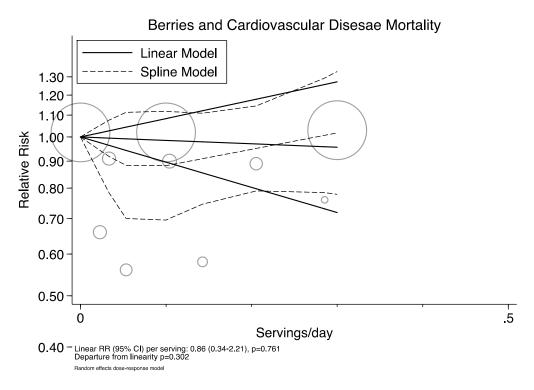

Figure S40. Linear dose-response relation between increasing intake of allium vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

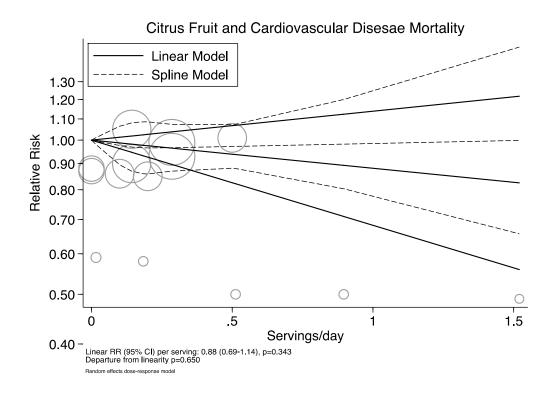

Figure S41. Linear dose-response relation between increasing intake of cruciferous vegetables and incidence of cardiovascular disease y. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

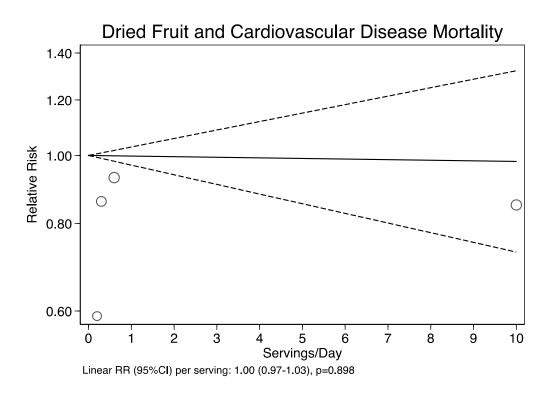

Figure S42. Linear dose-response relation between increasing intake of green leafy vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

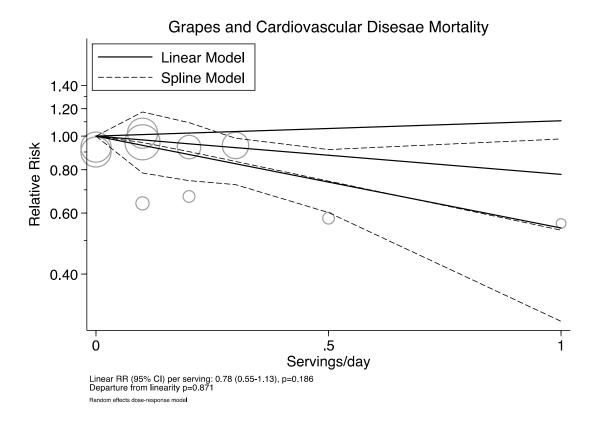

Figure S43. Linear and cubic-spline dose-response relation between increasing tomato intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

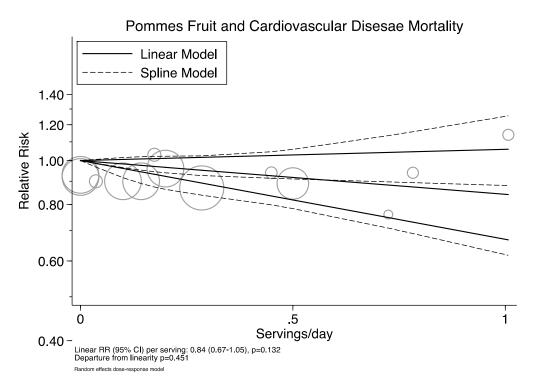

Figure S44. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. The original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

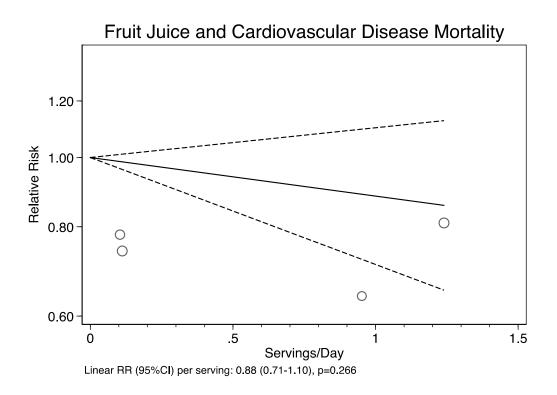

Figure S45. Linear and cubic-spline dose-response relation between increasing fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

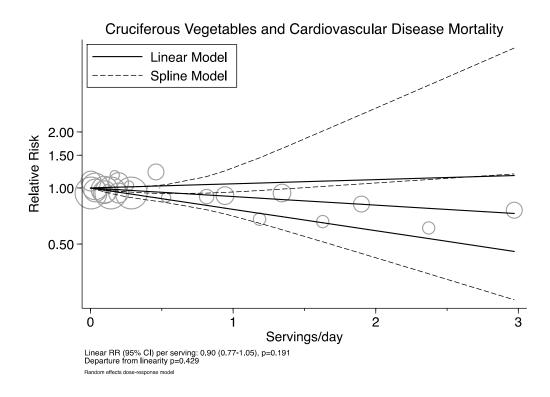

Figure S46. Linear and cubic-spline dose-response relation between increasing intake of vegetables and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S47. Linear dose-response relation between increasing banana intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S48. Linear and cubic-spline dose-response relation between increasing berry fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S49. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S50. Linear and cubic-spline dose-response relation between increasing dried fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S51. Linear and cubic-spline dose-response relation between increasing grapes intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

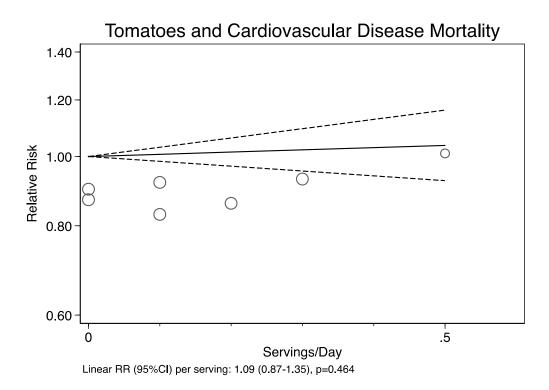

Figure S52. Linear and cubic-spline dose-response relation between increasing pommes intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S53. Linear dose-response relation between increasing fruit juice intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S54. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S55. Linear dose-response relation between increasing tomato intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
WHS - Liu 2000	39,127	126	0.8%	0.63 [0.36, 1.11]	
National Health & Nutrition - Bazzano 2002	9,608	1,786	8.2%	1.01 [0.85, 1.20]	_
ARIC - Steffen 2003	11,940	535	2.0%	0.82 [0.58, 1.17]	
EPIC Norway - Bingham 2008	11,134	678	1.4%	0.90 [0.59, 1.39]	
Swedish National Farm Register - Holmberg 2009	1,738	138	1.7%	0.65 [0.44, 0.96]	
PRIME - Dauchet 2010 - never smokers	2,410	145	0.8%	1.06 [0.60, 1.87]	
PRIME - Dauchet 2010 - former smokers	3,353	140	1.7%	0.98 [0.66, 1.45]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.1%	0.49 [0.30, 0.80]	
EPIC Italy - Bendinelli 2011	29,689	144	0.9%	1.11 [0.65, 1.88]	
MORGEN - Oude Griep 2011 (b)	20,069	245	1.7%	0.70 [0.47, 1.03]	
Japan Diabetes Complications Study - Tanaka 201	1,414	96	0.7%	1.25 [0.68, 2.29]	
HPFS - Bhupathiraju 2013	42,135	3,607	18.4%	0.84 [0.75, 0.95]	
Health and Wellbeing Surveillance - Gunnell 2013	14,890	538	3.9%	0.74 [0.57, 0.96]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	13.5%	0.81 [0.71, 0.93]	_ _
Shanghai Men Health - Yu 2014	67,211	148	1.8%	0.86 [0.59, 1.25]	
Shanghai Women Health - Yu 2014	55,242	217	1.1%	0.67 [0.41, 1.09]	
British Regional Heart - Atkins 2014	3,328	307	2.6%	1.01 [0.74, 1.38]	
SABRE - Eriksen 2015 - European	1,090	207	2.3%	1.11 [0.79, 1.54]	
SABRE - Eriksen 2015 - South Asian	1,006	313	3.9%	1.01 [0.78, 1.30]	
CCHS - Kobylecki 2015	78,527	2,823	26.5%	0.90 [0.81, 0.99]	
PURE - Miller 2017	135,335	2,143	3.4%	0.95 [0.72, 1.25]	
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.8%	1.04 [0.72, 1.51]	
Total (95% CI)	619,182	17,987	100.0%	0.88 [0.83, 0.92]	◆
Heterogeneity: Chi ² = 25.25, df = 21 (P = 0.24); I ²	= 17%			_	0.5 0.7 1 1.5 2
Test for overall effect: Z = 5.12 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
WHS - Liu 2000	39,127	126	1.2%	0.63 [0.36, 1.11]	
National Health & Nutrition - Bazzano 2002	9,608	1,786	9.0%	1.01 [0.85, 1.20]	_
ARIC - Steffen 2003	11,940	535	2.9%	0.82 [0.58, 1.17]	
EPIC Norway - Bingham 2008	11,134	678	2.0%	0.90 [0.59, 1.39]	
Swedish National Farm Register - Holmberg 2009	1,738	138	2.4%	0.65 [0.44, 0.96]	
PRIME - Dauchet 2010 - never smokers	2,410	145	1.2%	1.06 [0.60, 1.87]	
PRIME - Dauchet 2010 - former smokers	3,353	140	2.4%	0.98 [0.66, 1.45]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.5%	0.49 [0.30, 0.80]	
EPIC Italy - Bendinelli 2011	29,689	144	1.3%	1.11 [0.65, 1.88]	
MORGEN - Oude Griep 2011 (b)	20,069	245	2.4%	0.70 [0.47, 1.03]	
Japan Diabetes Complications Study - Tanaka 201	1,414	96	1.0%	1.25 [0.68, 2.29]	
HPFS - Bhupathiraju 2013	42,135	3,607	14.8%	0.84 [0.75, 0.95]	
Health and Wellbeing Surveillance - Gunnell 2013	14,890	538	5.0%	0.74 [0.57, 0.96]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.5%	0.81 [0.71, 0.93]	
Shanghai Men Health - Yu 2014	67,211	148	2.6%	0.86 [0.59, 1.25]	
Shanghai Women Health - Yu 2014	55,242	217	1.5%	0.67 [0.41, 1.09]	
British Regional Heart - Atkins 2014	3,328	307	3.5%	1.01 [0.74, 1.38]	
SABRE - Eriksen 2015 - European	1,090	207	3.2%	1.11 [0.79, 1.54]	
SABRE - Eriksen 2015 - South Asian	1,006	313	5.0%	1.01 [0.78, 1.30]	
CCHS - Kobylecki 2015	78,527	2,823	17.7%	0.90 [0.81, 0.99]	
PURE - Miller 2017	135,335	2,143	4.5%	0.95 [0.72, 1.25]	
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.6%	1.04 [0.72, 1.51]	
Total (95% CI) [Random Effects]	619,182	17,987	100.0%	0.88 [0.82, 0.93]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 25.25, df = 21 ((P = 0.24); I ² = 17	%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.11 (P < 0.0001)					Lower Risk Higher Risk

Figure S56. Relation between total fruit and vegetables intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Adventis Health Study - Fraser -1992	26,473	134	0.6%	1.07 [0.58, 1.97]	
WHS - Liu 2000	39,127	126	0.6%	0.66 [0.36, 1.21]	
PRIME - Dauchet 2010 - never smokers	2,410	79	0.6%	1.34 [0.73, 2.45]	
PRIME - Dauchet 2010 - current smokers	2,297	148	1.1%	0.61 [0.38, 0.98]	
PRIME - Dauchet 2010 - former smokers	3,353	140	1.5%	0.83 [0.56, 1.22]	
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	5.1%	0.93 [0.75, 1.16]	
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.5%	0.80 [0.54, 1.19]	
EPIC Italy - Bendinelli 2011	29,689	144	0.8%	1.25 [0.73, 2.12]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.6%	0.87 [0.76, 1.00]	
HPFS - Bhupathiraju 2013	42,135	3,607	17.1%	0.88 [0.78, 0.99]	
ATBC - Simila 2013	21,955	4,379	6.2%	0.87 [0.71, 1.06]	
Shanghai Men Health - Yu 2014	55,424	217	1.4%	0.96 [0.64, 1.45]	· · · · · · · · · · · · · · · · · · ·
Shanghai Women Health - Yu 2014	67,211	148	0.8%	0.77 [0.45, 1.31]	
MONICA Danish - Tognon 2014	1,849	161	2.4%	1.01 [0.74, 1.38]	
British Regional Heart - Atkins 2014	3,328	307	1.2%	0.86 [0.55, 1.35]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.1%	0.91 [0.69, 1.20]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.2%	1.04 [0.86, 1.27]	_
CCHS - Kobylecki 2015	78,527	2,823	12.6%	0.87 [0.76, 1.00]	_ _
PREDIMED- Buil-Cosiales 2016	7,216	118	0.3%	1.02 [0.41, 2.56]	
China Kadoorie Biobank- Du 2016	451,665	2,551	7.6%	0.66 [0.55, 0.78]	_
PURE - Miller 2017	135,335	2,143	5.1%	0.91 [0.74, 1.13]	-
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.9%	1.15 [0.81, 1.64]	
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	9.6%	0.91 [0.78, 1.07]	
Total (95% CI)	1,170,021	23,856	100.0%	0.88 [0.84, 0.92]	•
Heterogeneity: Chi ² = 24.96, df = 22 (P = 0.30); I ²	² = 12%			-	• • • • • • • • • • • • • • • • • • •
Test for overall effect: Z = 5.11 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	for Incident CHD
Adventis Health Study - Fraser -1992	26,473	134	0.8%	1.07 [0.58, 1.97]		
WHS - Liu 2000	39,127	126	0.8%	0.66 [0.36, 1.21]		_
PRIME - Dauchet 2010 - current smokers	2,297	148	1.3%	0.61 [0.38, 0.98]		
PRIME - Dauchet 2010 - former smokers	3,353	140	1.9%	0.83 [0.56, 1.22]		_
PRIME - Dauchet 2010 - never smokers	2,410	79	0.8%	1.34 [0.73, 2.45]		
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	5.6%	0.93 [0.75, 1.16]		_
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.9%	0.80 [0.54, 1.19]		_
EPIC Italy - Bendinelli 2011	29,689	144	1.0%	1.25 [0.73, 2.12]		•
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	11.4%	0.87 [0.76, 1.00]		
HPFS - Bhupathiraju 2013	42,135	3,607	14.0%	0.88 [0.78, 0.99]		
ATBC - Simila 2013	21,955	4,379	6.5%	0.87 [0.71, 1.06]		
Shanghai Men Health - Yu 2014	55,424	217	1.7%	0.96 [0.64, 1.45]		
Shanghai Women Health - Yu 2014	67,211	148	1.0%	0.77 [0.45, 1.31]		
MONICA Danish - Tognon 2014	1,849	161	2.8%	1.01 [0.74, 1.38]		
British Regional Heart - Atkins 2014	3,328	307	1.4%	0.86 [0.55, 1.35]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.6%	0.91 [0.69, 1.20]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.5%	1.04 [0.86, 1.27]		
CCHS - Kobylecki 2015	78,527	2,823	11.4%	0.87 [0.76, 1.00]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.4%	1.02 [0.41, 2.56]		
China Kadoorie Biobank- Du 2016	451,665	2,551	7.8%	0.66 [0.55, 0.78]		
PURE - Miller 2017	135,335	2,143	5.6%	0.91 [0.74, 1.13]		-
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.3%	1.15 [0.81, 1.64]		· · · · · · · · · · · · · · · · · · ·
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	9.4%	0.91 [0.78, 1.07]		
Total (95% Cl) [Random Effects]	1,170,021	23,856	100.0%	0.88 [0.84, 0.93]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 24.96, df = 22	(P = 0.30); I ² = 129	%			0.5 0.7 1	1.5 2
Test for overall effect: Z = 4.43 (P < 0.00001)					Lower Risk	Higher Risk

Figure S57. Relation between fruit intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
WHS - Liu 2000	39,127	126	0.7%	0.88 [0.50, 1.55]	
Physicians Health Study - Liu 2001	15,520	1,148	3.6%	0.77 [0.60, 0.99]	
ATBC - Hirvonen 2001	25,373	1,122	6.1%	0.77 [0.63, 0.94]	
Danish Diet Cancer Health - Hansen 2010 - F	25,065	255	1.5%	1.09 [0.74, 1.62]	
Danish Diet Cancer Health - Hansen 2010 - M	28,318	820	5.0%	0.93 [0.75, 1.16]	-
PRIME - Dauchet 2010 - never smokers	2,410	79	4.2%	1.25 [0.98, 1.58]	
PRIME - Dauchet 2010 - former smokers	3,353	140	7.5%	1.28 [1.08, 1.53]	
MORGEN - Oude Griep 2010	20,069	245	1.5%	0.88 [0.59, 1.30]	
PRIME - Dauchet 2010 - current smokers	2,297	148	6.1%	0.72 [0.59, 0.87]	-
EPIC Italy - Bendinelli 2011	29,689	144	0.9%	0.62 [0.37, 1.03]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.4%	0.85 [0.74, 0.98]	
HPFS - Bhupathiraju 2013	42,135	3,607	16.9%	0.92 [0.82, 1.04]	
British Regional Heart - Atkins 2014	3,328	307	0.5%	1.28 [0.65, 2.55]	
Shanghai Men Health - Yu 2014	55,424	217	1.7%	1.02 [0.70, 1.48]	
Shanghai Women Health - Yu 2014	67,211	148	1.1%	0.83 [0.52, 1.32]	
MONICA Danish - Tognon 2014	1,849	161	2.4%	0.73 [0.54, 1.00]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.1%	1.22 [0.93, 1.61]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.1%	0.89 [0.73, 1.08]	
CCHS - Kobylecki 2015	78,527	2,823	9.5%	0.88 [0.75, 1.03]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.4%	0.64 [0.30, 1.34]	
PURE - Miller 2017	135,335	2,143	7.5%	0.91 [0.77, 1.09]	—
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.5%	1.07 [0.72, 1.59]	
Total (95% CI)	696,330	17,172	100.0%	0.92 [0.87, 0.96]	•
Heterogeneity: Chi ² = 44.99, df = 21 (P = 0.002);	l² = 53%			-	0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.59 (P = 0.0003)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
WHS - Liu 2000	39,127	126	1.6%	0.88 [0.50, 1.55]	
Physicians Health Study - Liu 2001	15,520	1,148	4.9%	0.77 [0.60, 0.99]	
ATBC - Hirvonen 2001	25,373	1,122	6.3%	0.77 [0.63, 0.94]	-
Danish Diet Cancer Health - Hansen 2010 - F	25,065	255	2.9%	1.09 [0.74, 1.62]	
Danish Diet Cancer Health - Hansen 2010 - M	28,318	820	5.8%	0.93 [0.75, 1.16]	-
PRIME - Dauchet 2010 - never smokers	2,410	79	5.4%	1.25 [0.98, 1.58]	
PRIME - Dauchet 2010 - former smokers	3,353	140	6.8%	1.28 [1.08, 1.53]	 -
MORGEN - Oude Griep 2010	20,069	245	2.9%	0.88 [0.59, 1.30]	
PRIME - Dauchet 2010 - current smokers	2,297	148	6.3%	0.72 [0.59, 0.87]	_
EPIC Italy - Bendinelli 2011	29,689	144	1.9%	0.62 [0.37, 1.03]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	7.8%	0.85 [0.74, 0.98]	_
HPFS - Bhupathiraju 2013	42,135	3,607	8.3%	0.92 [0.82, 1.04]	+
British Regional Heart - Atkins 2014	3,328	307	1.2%	1.28 [0.65, 2.55]	
Shanghai Men Health - Yu 2014	55,424	217	3.1%	1.02 [0.70, 1.48]	
Shanghai Women Health - Yu 2014	67,211	148	2.2%	0.83 [0.52, 1.32]	
MONICA Danish - Tognon 2014	1,849	161	3.9%	0.73 [0.54, 1.00]	
CCHS - Kobylecki 2015	78,527	2,823	7.3%	0.88 [0.75, 1.03]	_
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	4.6%	1.22 [0.93, 1.61]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.3%	0.89 [0.73, 1.08]	-
PREDIMED- Buil-Cosiales 2016	7,216	118	1.0%	0.64 [0.30, 1.34]	
PURE - Miller 2017	135,335	2,143	6.8%	0.91 [0.77, 1.09]	_
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.9%	1.07 [0.72, 1.59]	
Total (95% Cl) [Random Effects]	696,330	17,172	100.0%	0.92 [0.85, 0.99]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 44.99, df = 21	(P = 0.002); I ² = 5	3%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 2.14 (P = 0.03)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S58. Relation between intake of vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BANANAS AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Figure S59. Relation between intake of bananas and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BERRIES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

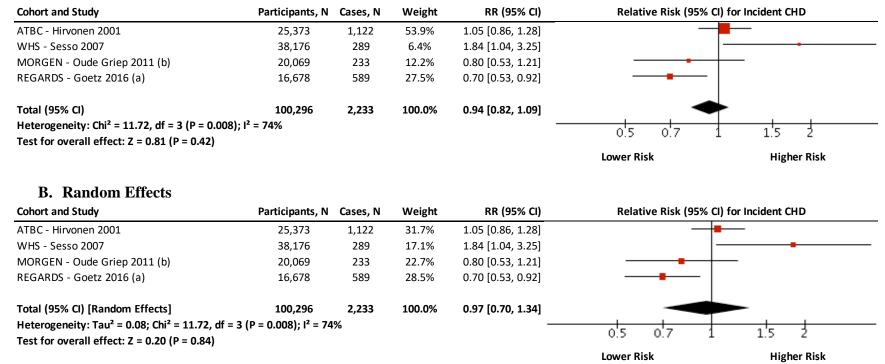


Figure S60. Relation between intake of berries and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

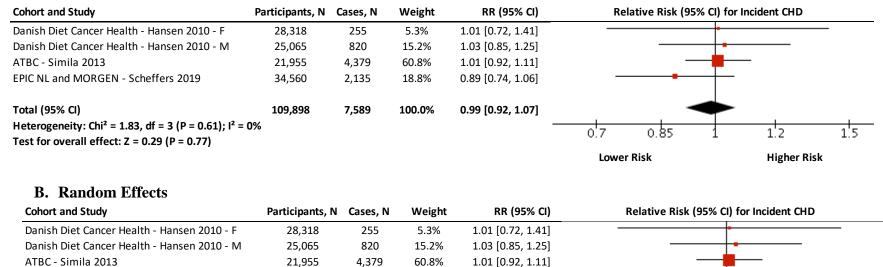
CITRUS FRUIT AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
PRIME - Dauchet 2004	8,087	133	4.9%	0.76 [0.56, 1.04]	_
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	10.3%	1.00 [0.81, 1.24]	_ _
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	3.1%	0.85 [0.58, 1.26]	
EPIC Italy - Bendinelli 2011	29,689	144	1.8%	1.48 [0.89, 2.46]	
MORGEN - Oude Griep 2011 (b)	20,069	233	3.4%	0.94 [0.65, 1.37]	-
Jidni Medical School - Yamada 2011 - M	4,147	53	0.4%	0.99 [0.34, 2.85]	
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1%	0.67 [0.11, 4.15]	
HPFS - Bhupathiraju 2013	42,135	3,607	34.5%	0.92 [0.82, 1.04]	-
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	34.5%	0.89 [0.79, 1.00]	
Shanghai Women Health - Yu 2014	67,211	148	2.3%	0.88 [0.56, 1.38]	
Shanghai Men Health - Yu 2014	55,424	217	3.1%	0.74 [0.50, 1.10]	
PREDIMED- Buil-Cosiales 2016	7,216	118	1.5%	1.25 [0.71, 2.20]	
Total (95% CI)	364,978	8,333	100.0%	0.91 [0.85, 0.98]	•
Heterogeneity: Chi ² = 8.17, df = 11 (P = 0.70); l ²	= 0%				
Test for overall effect: Z = 2.60 (P = 0.009)					0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	for Incident CHD	
PRIME - Dauchet 2004	8,087	133	4.9%	0.76 [0.56, 1.04]			,
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	10.3%	1.00 [0.81, 1.24]	-+-		
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	3.1%	0.85 [0.58, 1.26]			
MORGEN - Oude Griep 2011 (b)	20,069	233	3.4%	0.94 [0.65, 1.37]			
Jidni Medical School - Yamada 2011 - M	4,147	53	0.4%	0.99 [0.34, 2.85]			
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1%	0.67 [0.11, 4.15]			
EPIC Italy - Bendinelli 2011	29,689	144	1.8%	1.48 [0.89, 2.46]	+	•	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	34.5%	0.89 [0.79, 1.00]			
HPFS - Bhupathiraju 2013	42,135	3,607	34.5%	0.92 [0.82, 1.04]			
Shanghai Women Health - Yu 2014	67,211	148	2.3%	0.88 [0.56, 1.38]			
Shanghai Men Health - Yu 2014	55,424	217	3.1%	0.74 [0.50, 1.10]			
PREDIMED- Buil-Cosiales 2016	7,216	118	1.5%	1.25 [0.71, 2.20]			
Total (95% Cl) [Random Effects]	364,978	8,333	100.0%	0.91 [0.85, 0.98]	•		
Heterogeneity: Chi ² = 8.17, df = 11 (P = 0.70); l ² =	0%			5.	.1 0.2 0.5 1	2 5	10
Test for overall effect: Z = 2.60 (P = 0.009)					Lower Risk	Higher Risk	

Figure S61. Relation between citrus fruit intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND CORONARY HEART DISEASE INCIDENCE


A. Fixed Effects

EPIC NL and MORGEN - Scheffers 2019

Test for overall effect: Z = 0.29 (P = 0.77)

Heterogeneity: Tau² = 0.00; Chi² = 1.83, df = 3 (P = 0.61); l² = 0%

Total (95% CI) [Random Effects]

Figure S62. Relation between intake of fruit juice and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I^2 , with values $\geq 50\%$ indicating substantial heterogeneity.

18.8%

100.0%

0.89 [0.74, 1.06]

0.99 [0.92, 1.07]

0.7

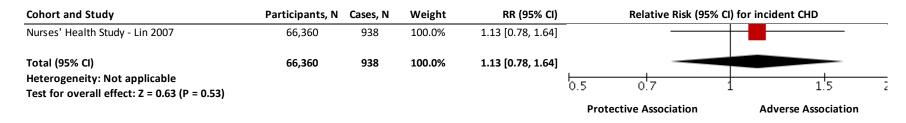
Lower Risk

0.85

1.2

Higher Risk

1.5


34,560

109,898

2,135

7,589

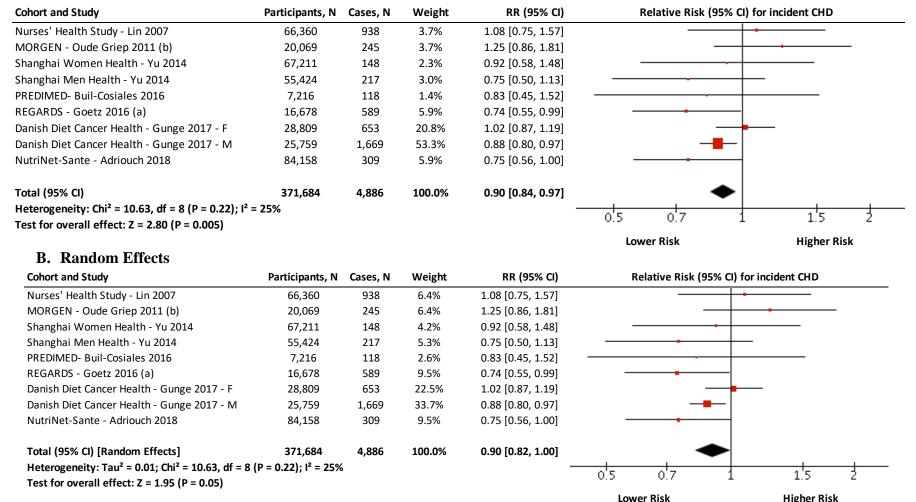

GRAPES AND CORONARY HEART DISEASE INCIDENCE

Figure S63. Relation between intake of grapes and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Figure S64. Relation between intake of pommes fruit and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

WATERMELON AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

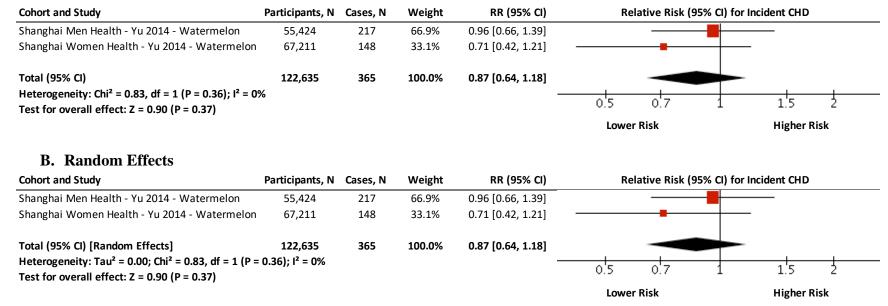
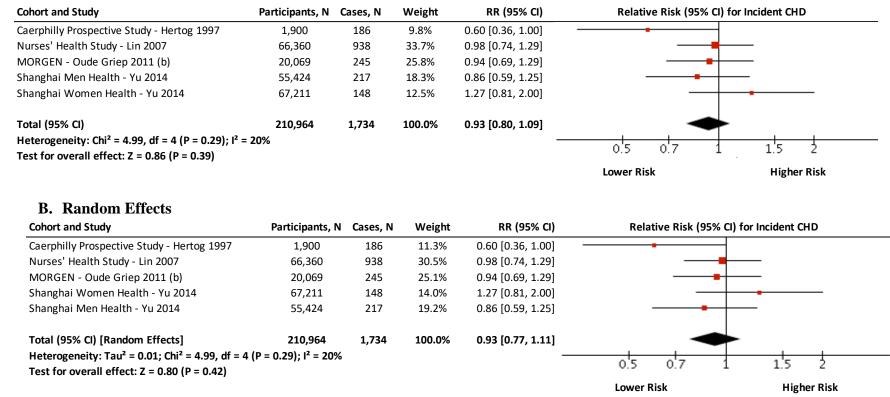



Figure S65. Relation between watermelon intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

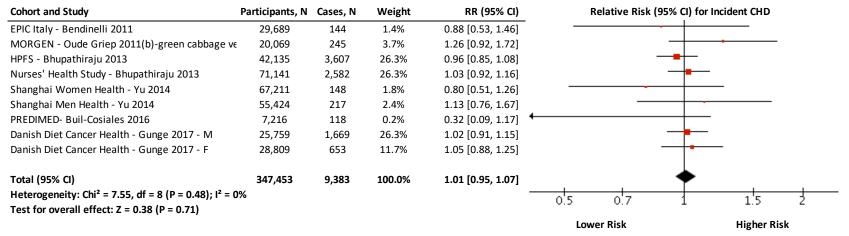
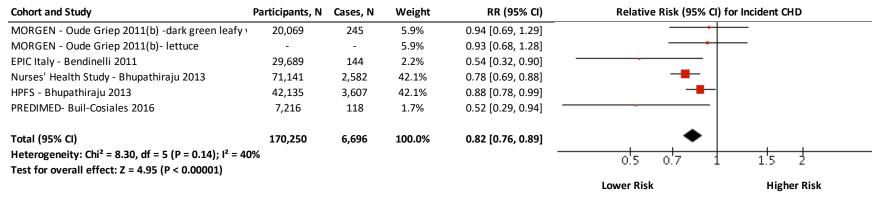

A. Fixed Effects

Figure S66. Relation between intake of allium vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

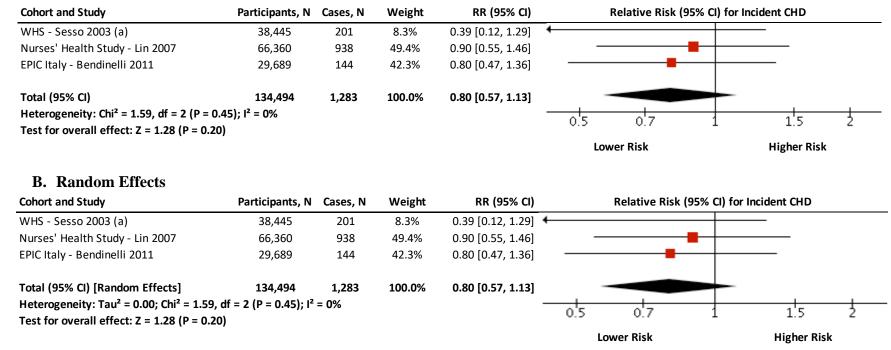

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	for Incident CHD
MORGEN - Oude Griep 2011(b)-green cabbage ve	20,069	245	3.7%	1.26 [0.92, 1.72]		
EPIC Italy - Bendinelli 2011	29,689	144	1.4%	0.88 [0.53, 1.46]		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	26.3%	1.03 [0.92, 1.16]		
HPFS - Bhupathiraju 2013	42,135	3,607	26.3%	0.96 [0.85, 1.08]		
Shanghai Men Health - Yu 2014	55,424	217	2.4%	1.13 [0.76, 1.67]		·
Shanghai Women Health - Yu 2014	67,211	148	1.8%	0.80 [0.51, 1.26]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.2%	0.32 [0.09, 1.17] 🔶		
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	11.7%	1.05 [0.88, 1.25]	-+•	
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	26.3%	1.02 [0.91, 1.15]	-	_
Total (95% CI) [Random Effects]	347,453	9,383	100.0%	1.01 [0.95, 1.07]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 7.55, df = 8 (P =	= 0.48); I ² = 0%			_		
Test for overall effect: Z = 0.38 (P = 0.71)					0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk

Figure S67. Relation between intake of cruciferous vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
MORGEN - Oude Griep 2011(b) - lettuce	20,069	245	11.6%	0.93 [0.68, 1.28]	
MORGEN - Oude Griep 2011(b) - dark green leafy	-	-	11.6%	0.94 [0.69, 1.29]	
EPIC Italy - Bendinelli 2011	29,689	144	5.1%	0.54 [0.32, 0.90]	
HPFS - Bhupathiraju 2013	42,135	3,607	33.9%	0.88 [0.78, 0.99]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	33.9%	0.78 [0.69, 0.88]	
PREDIMED- Buil-Cosiales 2016	7,216	118	4.0%	0.52 [0.29, 0.94] —	
Total (95% CI) [Random Effects]	170,250	6,696	100.0%	0.82 [0.72, 0.92]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 8.30, df = 5 (P =	= 0.14); l ² = 40%			_	
Test for overall effect: Z = 3.23 (P = 0.001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S68. Relation between intake of green leafy vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CORONARY HEART DISEASE INCIDENCE

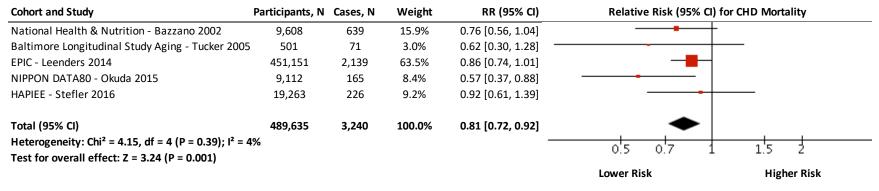
A. Fixed Effects

Figure S69. Relation between intake of tomatoes and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

A. FIACU Effects					
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Bananas					
Shanghai Men Health - Yu 2014 - bananas	55,424	217	1.0%	0.65 [0.44, 0.96]	
Shanghai Women Health - Yu 2014 - bananas	67,211	148	0.7%	0.94 [0.59, 1.51]	
Subtotal (95% CI)	122,635	365	1.7%	0.76 [0.56, 1.02]	-
Heterogeneity: Chi ² = 1.40, df = 1 (P = 0.24); I ² =	29%				
Test for overall effect: Z = 1.81 (P = 0.07)					
Berries					
ATBC - Hirvonen 2001	25,373	1,122	4.0%	1.05 [0.86, 1.28]	
WHS - Sesso 2007	38,176	289	0.5%	1.84 [1.04, 3.25]	
MORGEN - Oude Griep 2011 (b)	20,069	233	0.9%	0.80 [0.53, 1.21]	
REGARDS - Goetz 2016 (a)	16,678	589	2.0%	0.70 [0.53, 0.92]	
Subtotal (95% Cl)	100,296	2,233	7.4%	0.94 [0.82, 1.09]	
leterogeneity: Chi ² = 11.72, df = 3 (P = 0.008); l ² 'est for overall effect: Z = 0.81 (P = 0.42)	= 74%				
est for overall effect. 2 - 0.01 (F - 0.42)					
litrus					
PRIME - Dauchet 2004	8,087	133	1.6%	0.76 [0.56, 1.04]	
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.0%	0.85 [0.58, 1.26]	
anish Diet Cancer Health - Hansen 2010 - M	25,065	820	3.3%	1.00 [0.81, 1.24]	
/ORGEN - Oude Griep 2011 (b)	20,069	233	1.1%	0.94 [0.65, 1.37]	
idni Medical School - Yamada 2011 - M	4,147	53	0.1%	0.99 [0.34, 2.85]	
idni Medical School - Yamada 2011 - F	6,476	23	0.0%	0.67 [0.11, 4.15]	
PIC Italy - Bendinelli 2011	29,689	144	0.6%	1.48 [0.89, 2.46]	+
IPFS - Bhupathiraju 2013	42,135	3,607	11.1%	0.92 [0.82, 1.04]	
Jurses' Health Study - Bhupathiraju 2013					
	71,141	2,582	11.1%	0.89 [0.79, 1.00]	
hanghai Men Health - Yu 2014	55,424	217	1.0%	0.74 [0.50, 1.10]	
Shanghai Women Health - Yu 2014	67,211	148	0.8%	0.88 [0.56, 1.38]	
REDIMED- Buil-Cosiales 2016	7,216	118	0.5%	1.25 [0.71, 2.20]	
ubtotal (95% CI)	364,978	8,333	32.1%	0.91 [0.85, 0.98]	▼
leterogeneity: Chi ² = 8.17, df = 11 (P = 0.70); l ² :	= 0%				
est for overall effect: Z = 2.60 (P = 0.009)					
r uit Juice Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.4%	1 01 [0 72 1 41]	
				1.01 [0.72, 1.41]	
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.0%	1.03 [0.85, 1.25]	T
ATBC - Simila 2013	21,955	4,379	15.9%	1.01 [0.92, 1.11]	†
PIC NL and MORGEN - Scheffers 2019	34,560	2,135	4.9%	0.89 [0.74, 1.06]	-• <u>+</u>
ubtotal (95% CI)	109,898	7,589	26.2%	0.99 [0.92, 1.07]	•
leterogeneity: Chi ² = 1.83, df = 3 (P = 0.61); l ² =	0%				
est for overall effect: Z = 0.29 (P = 0.77)					
Grapes					
Iurses' Health Study - Lin 2007	66,360	938	1.1%	1.13 [0.78, 1.64]	
ubtotal (95% CI)	66,360	938	1.1%	1.13 [0.78, 1.64]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.63 (P = 0.53)					
ommes					
lurses' Health Study - Lin 2007	66,360	938	1.1%	1.08 [0.75, 1.57]	_
IORGEN - Oude Griep 2011 (b)	20,069	245	1.1%	1.25 [0.86, 1.81]	+
hanghai Men Health - Yu 2014	55,424	217	0.9%	0.75 [0.50, 1.13]	
hanghai Women Health - Yu 2014	67,211	148	0.7%	0.92 [0.58, 1.48]	
-					
EGARDS - Goetz 2016 (a)	16,678	589	1.8%	0.74 [0.55, 0.99]	
REDIMED- Buil-Cosiales 2016	7,216	118	0.4%	0.83 [0.45, 1.52]	
anish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	15.9%	0.88 [0.80, 0.97]	-
anish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.2%	1.02 [0.87, 1.19]	+
lutriNet-Sante - Adriouch 2018	84,158	309	1.8%	0.75 [0.56, 1.00]	
ubtotal (95% CI)	371,684	4,886	29.9%	0.90 [0.84, 0.97]	♦
eterogeneity: Chi ² = 10.63, df = 8 (P = 0.22); l ² =					
est for overall effect: $Z = 2.80$ (P = 0.005)					
Vatermelon					
hanghai Men Health - Yu 2014 - Watermelon	55,424	217	1.1%	0.96 [0.66, 1.39]	
hanghai Women Health - Yu 2014 - Watermel	67,211	148	0.5%	0.71 [0.42, 1.21]	
Subtotal (95% CI)	122,635	365	1.6%	0.87 [0.64, 1.18]	
leterogeneity: Chi ² = 0.83, df = 1 (P = 0.36); l ² =					-
rest for overall effect: Z = 0.90 (P = 0.37)					
rest for subgroup differences: Chi ² = 6.45, df = 6	(P = 0.37) 1 ² - 7	.0%		_	
	(i = 0.37), i = 7.				0.2 0.5 1 2 5
					oʻz oʻs 1 2 5
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Bananas Shanghai Men Health - Yu 2014 - bananas	55,424	217	1.6%	0.65 [0.44, 0.96]	
-		217 148	1.6% 1.2%		
Shanghai Women Health - Yu 2014 - bananas	67,211 122,635	148 365	1.2% 2.8%	0.94 [0.59, 1.51]	
Subtotal (95% Cl) Heterogeneity: Tau² = 0.02; Chi² = 1.40, df = 1 (2.0/0	0.76 [0.53, 1.10]	
Heterogeneity: Tau [*] = 0.02; Chi [*] = 1.40, df = 1 (Test for overall effect: Z = 1.47 (P = 0.14)	r - 0.24); I" = 29%				
rest for overall effect. 2 = 1.47 (P = 0.14)					
Berries					
ATBC - Hirvonen 2001	25,373	1,122	5.2%	1.05 [0.86, 1.28]	- -
MORGEN - Oude Griep 2011 (b)	20,069	233	1.5%	0.80 [0.53, 1.21]	
REGARDS - Goetz 2016 (a)	16,678	589	3.0%	0.70 [0.53, 0.92]	
WHS - Sesso 2007	38,176	289	0.8%	1.84 [1.04, 3.25]	
Subtotal (95% CI)	100,296	2,233	10.5%	0.97 [0.70, 1.34]	-
Heterogeneity: Tau ² = 0.08; Chi ² = 11.72, df = 3				• • •	
Test for overall effect: Z = 0.20 (P = 0.84)					
Citrus Danish Diet Cancer Health - Hansen 2010 - E	70 210	255	1 - 0/	0 85 [0 58 1 26]	
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.6%	0.85 [0.58, 1.26]	
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.5%	1.00 [0.81, 1.24]	
EPIC Italy - Bendinelli 2011	29,689	144	1.0%	1.48 [0.89, 2.46]	
HPFS - Bhupathiraju 2013	42,135	3,607	9.8%	0.92 [0.82, 1.04]	
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1%	0.67 [0.11, 4.15]	
Jidni Medical School - Yamada 2011 - M	4,147	53	0.2%	0.99 [0.34, 2.85]	
MORGEN - Oude Griep 2011 (b)	20,069	233	1.8%	0.94 [0.65, 1.37]	+
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	9.8%	0.89 [0.79, 1.00]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.8%	1.25 [0.71, 2.20]	
PRIME - Dauchet 2004	8,087	133	2.4%	0.76 [0.56, 1.04]	
Shanghai Men Health - Yu 2014	55,424	217	1.6%	0.74 [0.50, 1.10]	— — —
Shanghai Women Health - Yu 2014	67,211	148	1.2%	0.88 [0.56, 1.38]	
Subtotal (95% CI)	364,978	8,333	35.0%	0.91 [0.85, 0.98]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 8.17, df = 11 Test for overall effect: Z = 2.60 (P = 0.009)	(P = 0.70); l ² = 0%				
rest for overall effect. 2 - 2.00 (F - 0.009)					
Fruit Juice					
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	5.6%	0.89 [0.74, 1.06]	-+
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.8%	1.03 [0.85, 1.25]	+
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	2.0%	1.01 [0.72, 1.41]	-+
ATBC - Simila 2013	21,955	4,379	10.7%	1.01 [0.92, 1.11]	+
Subtotal (95% CI)	109,898	7,589	23.0%	0.99 [0.92, 1.07]	+
Heterogeneity: Tau ² = 0.00; Chi ² = 1.83, df = 3 (P = 0.61); I ² = 0%				
Test for overall effect: Z = 0.29 (P = 0.77)					
Grapes					
Nurses' Health Study - Lin 2007	66,360	938	1.6%	1.13 [0.78, 1.64]	
Subtotal (95% CI)	66,360	938	1.6%	1.13 [0.78, 1.64]	-
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.63 (P = 0.53)					
Pommes					
NutriNet-Sante - Adriouch 2018	84,158	309	2.5%	0.75 [0.56, 1.00]	
Nurses' Health Study - Lin 2007	66,360	938	1.6%	1.08 [0.75, 1.57]	_ _
MORGEN - Oude Griep 2011 (b)	20,069	245	1.6%	1.25 [0.86, 1.81]	+
Shanghai Women Health - Yu 2014	67,211	148	1.1%	0.92 [0.58, 1.48]	
Shanghai Men Health - Yu 2014	55,424	217	1.4%	0.75 [0.50, 1.13]	
REGARDS - Goetz 2016 (a)	16,678	589	2.5%	0.74 [0.55, 0.99]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.6%	0.83 [0.45, 1.52]	
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	10.7%	0.88 [0.80, 0.97]	-
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.5%	1.02 [0.87, 1.19]	<u> </u>
Subtotal (95% Cl)	371,684	4,886	28.5%	0.90 [0.82, 1.00]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 10.63, df = 8			20.3/0	0.00 [0.02, 1.00]	•
Test for overall effect: $Z = 1.95$ (P = 0.05)	(1 - 0.22), 1 - 25;				
Watermelon		-			
Shanghai Men Health - Yu 2014 - Watermelon	55,424	217	1.6%	0.96 [0.66, 1.39]	
Shanghai Women Health - Yu 2014 - Watermel		148	0.8%	0.71 [0.42, 1.21]	
Subtotal (95% CI)	122,635	365	2.5%	0.87 [0.64, 1.18]	-
Heterogeneity: Tau ² = 0.00; Chi ² = 0.83, df = 1 (P = 0.36); l ² = 0%				
Test for overall effect: Z = 0.90 (P = 0.37)					
Test for subgroup differences: Chi ² = 5.38, df =	6 (P = 0.50), I ² = 09	6			1
					Lower Risk Higher Risk
					Lower hisk night Risk

Figure S70. Relation between sources of fruit and CHD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Allium					
Caerphilly Prospective Study - Hertog 1997	1,900	186	0.8%	0.60 [0.36, 1.00]	
MORGEN - Oude Griep 2011 (b)	20,069	245	2.1%	0.94 [0.69, 1.29]	
Nurses' Health Study - Lin 2007	66,360	938	2.7%	0.98 [0.74, 1.29]	
Shanghai Men Health - Yu 2014	55,424	217	1.5%	0.86 [0.59, 1.25]	
Shanghai Women Health - Yu 2014	67,211	148	1.0%	1.27 [0.81, 2.00]	-
Subtotal (95% CI)	210,964	1,734	8.0%	0.93 [0.80, 1.09]	•
Heterogeneity: Chi ² = 4.99, df = 4 (P = 0.29); l ² =	20%				
Test for overall effect: Z = 0.86 (P = 0.39)					
Cruciferous					
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.5%	1.05 [0.88, 1.25]	_ -
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	14.6%	1.02 [0.91, 1.15]	+
EPIC Italy - Bendinelli 2011	29,689	144	0.8%	0.88 [0.53, 1.46]	
HPFS - Bhupathiraju 2013	42,135	3,607	14.6%	0.96 [0.85, 1.08]	
MORGEN - Oude Griep 2011(b)-green cabbage	20,069	245	2.1%	1.26 [0.92, 1.72]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	14.6%	1.03 [0.92, 1.16]	+
PREDIMED- Buil-Cosiales 2016	7,216	118	0.1%	0.32 [0.09, 1.17]	
Shanghai Men Health - Yu 2014	55,424	217	1.3%	1.13 [0.76, 1.67]	
Shanghai Women Health - Yu 2014	67,211	148	1.0%	0.80 [0.51, 1.26]	
Subtotal (95% CI)	347,453	9,383	55.6%	1.01 [0.95, 1.07]	♦
Heterogeneity: Chi ² = 7.55, df = 8 (P = 0.48); l ² =	0%				
Test for overall effect: Z = 0.38 (P = 0.71)					
Green leafy					
EPIC Italy - Bendinelli 2011	29,689	144	0.8%	0.54 [0.32, 0.90]	
HPFS - Bhupathiraju 2013	42,135	3,607	14.6%	0.88 [0.78, 0.99]	
MORGEN - Oude Griep 2011(b) -dark green lea	20,069	245	2.1%	0.94 [0.69, 1.29]	
MORGEN - Oude Griep 2011(b)- lettuce	-	-	2.1%	0.93 [0.68, 1.28]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	14.6%	0.78 [0.69, 0.88]	-
PREDIMED- Buil-Cosiales 2016	7,216	118	0.6%	0.52 [0.29, 0.94]	
Subtotal (95% CI)	170,250	6,696	34.7%	0.82 [0.76, 0.89]	◆
Heterogeneity: Chi ² = 8.30, df = 5 (P = 0.14); l ² =	40%				
Test for overall effect: Z = 4.95 (P < 0.00001)					
Tomatoes					
EPIC Italy - Bendinelli 2011	29,689	144	0.7%	0.80 [0.47, 1.36]	
Nurses' Health Study - Lin 2007	66,360	938	0.8%	0.90 [0.55, 1.46]	
WHS - Sesso 2003 (a)	38,445	201	0.1%	0.39 [0.12, 1.29]	
Subtotal (95% CI)	134,494	1,283	1.7%	0.80 [0.57, 1.13]	-
Heterogeneity: Chi ² = 1.59, df = 2 (P = 0.45); I ² =		•			
Test for overall effect: Z = 1.28 (P = 0.20)					
Test for subgroup differences: Chi ² = 17.73, df =	3 (P = 0.0005), I ²	= 83.1%			
					0.1 0.2 0.5 1 2 5
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Allium					
Caerphilly Prospective Study - Hertog 1997	1,900	186	1.8%	0.60 [0.36, 1.00]	
MORGEN - Oude Griep 2011 (b)	20,069	245	4.0%	0.94 [0.69, 1.29]	
Nurses' Health Study - Lin 2007	66,360	938	4.7%	0.98 [0.74, 1.29]	_
Shanghai Men Health - Yu 2014	55,424	217	3.1%	0.86 [0.59, 1.25]	
hanghai Women Health - Yu 2014	67,211	148	2.3%	1.27 [0.81, 2.00]	
ubtotal (95% CI)	210,964	1,734	15.9%	0.93 [0.77, 1.11]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 4.99, df = 4 (P = 0.29); I ² = 20%	6			
Test for overall effect: Z = 0.80 (P = 0.42)					
Cruciferous					
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	7.6%	1.05 [0.88, 1.25]	_ _ _
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	10.0%	1.02 [0.91, 1.15]	
PIC Italy - Bendinelli 2011	29,689	144	1.8%	0.88 [0.53, 1.46]	
HPFS - Bhupathiraju 2013	42,135	3,607	10.0%	0.96 [0.85, 1.08]	-
MORGEN - Oude Griep 2011(b)-green cabbage		245	4.0%	1.26 [0.92, 1.72]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	10.0%	1.03 [0.92, 1.16]	+
PREDIMED- Buil-Cosiales 2016	7,216	118	0.3%	0.32 [0.09, 1.17]	
hanghai Men Health - Yu 2014	55,424	217	2.8%	1.13 [0.76, 1.67]	
hanghai Women Health - Yu 2014	67,211	148	2.3%	0.80 [0.51, 1.26]	
Subtotal (95% CI)	347,453	9,383	48.9%	1.01 [0.95, 1.07]	A
				• • •	
Test for overall effect: Z = 0.38 (P = 0.71)					
Green leafy					
PIC Italy - Bendinelli 2011	29,689	144	1.8%	0.54 [0.32, 0.90]	
, IPFS - Bhupathiraju 2013	42,135	3,607	10.0%	0.88 [0.78, 0.99]	
/ORGEN - Oude Griep 2011(b) -dark green lea		245	4.0%	0.94 [0.69, 1.29]	_
MORGEN - Oude Griep 2011(b)- lettuce	-	-	4.0%	0.93 [0.68, 1.28]	_
Iurses' Health Study - Bhupathiraju 2013	71,141	2,582	10.0%	0.78 [0.69, 0.88]	
REDIMED- Buil-Cosiales 2016	7,216	118	1.4%	0.52 [0.29, 0.94]	
ubtotal (95% Cl)	170,250	6,696	31.2%	0.82 [0.72, 0.92]	•
leterogeneity: Tau ² = 0.01; Chi ² = 8.30, df = 5 (P = 0.14); I ² = 40%	, b			
Test for overall effect: Z = 3.23 (P = 0.001)					
omatoes					
EPIC Italy - Bendinelli 2011	29,689	144	1.7%	0.80 [0.47, 1.36]	
, Nurses' Health Study - Lin 2007	66,360	938	2.0%	0.90 [0.55, 1.46]	
WHS - Sesso 2003 (a)	38,445	201	0.4%	0.39 [0.12, 1.29]	
Subtotal (95% CI)	134,494	1,283	4.1%	0.80 [0.57, 1.13]	
Heterogeneity: Tau² = 0.00; Chi² = 1.59, df = 2 (P = 0.45); I ² = 0%	-		•	-
Test for overall effect: Z = 1.28 (P = 0.20)					
Test for subgroup differences: Chi ² = 10.76, df =	: 3 (P = 0.01), I ² =	72.1%			
					0.1 0.2 0.5 1 2 5
					Lower Risk Higher Risk

Figure S71. Relation between sources of vegetables and CHD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mor	tality
National Health & Nutrition - Bazzano 2002	9,608	639	17.0%	0.76 [0.56, 1.04]		
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	3.3%	0.62 [0.30, 1.28]		
EPIC - Leenders 2014	451,151	2,139	60.6%	0.86 [0.74, 1.01]		
NIPPON DATA80 - Okuda 2015	9,112	165	9.2%	0.57 [0.37, 0.88]		
HAPIEE - Stefler 2016	19,263	226	10.0%	0.92 [0.61, 1.39]		
Total (95% CI) [Random Effects]	489,635	3,240	100.0%	0.81 [0.71, 0.92]	◆	
Heterogeneity: $Tau^{2} = 0.00$; $Chi^{2} = 4.15$, df = 4 (P	= 0.39); l ² = 4%					
Test for overall effect: Z = 3.15 (P = 0.002)					0.5 0.7 1 1.5	2
					Lower Risk Hig	her Risk

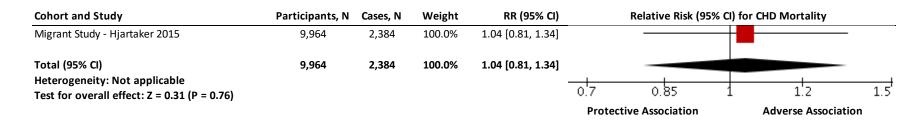
Figure S72. Relation between total fruit and vegetable intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CORONARY HEART DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Adventis Health Study - Fraser -1992	26,473	463	1.5%	1.17 [0.81, 1.70]	
Finish Mobile Clinic Health - Knekt 1994 - F	2,748	58	0.6%	0.77 [0.52, 1.14]	
Finish Mobile Clinic Health - Knekt 1994 - M	2,385	186	1.4%	0.66 [0.36, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	0.5%	0.64 [0.34, 1.19]	
Oxford Vegetarian - Mann 1997	10,802	64	0.4%	0.89 [0.44, 1.80]	
OXCHECK - Whiteman 1999	10,522	144	0.8%	0.84 [0.50, 1.43]	
ATBC - Hirvonen 2001	25,373	815	4.6%	0.87 [0.70, 1.08]	
Health Food Shoppers - Appleby 2002 - M	6,416	258	3.9%	0.52 [0.39, 0.70]	
Health Food Shoppers - Appleby 2002 - F	4,325	347	2.5%	0.89 [0.70, 1.12]	
Baltimore Longitudinal Study Aging - Tucker 2005	4,028	298	1.0%	1.19 [0.76, 1.86]	
Boyd Orr Cohort - Ness 2005	501	71	1.0%	0.94 [0.60, 1.48]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.3%	0.76 [0.51, 1.15]	
JACC - Nagura 2009	59,485	452	2.2%	0.79 [0.57, 1.08]	
EPIC - Leenders 2014	1,849	64	11.3%	0.85 [0.51, 1.42]	_ _
Singapore Chinese Health - Rebello 2014 - F	451,151	2,139	2.5%	0.85 [0.74, 0.98]	
Singapore Chinese Health - Rebello 2014 - M	29,968	638	4.6%	0.71 [0.53, 0.96]	
Multiethnic Cohort - Sharma 2014 - F	23,501	1,022	4.6%	0.84 [0.68, 1.05]	-
MONICA Danish - Tognon 2014	91,751	811	0.8%	0.96 [0.77, 1.19]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	2.8%	0.96 [0.73, 1.26]	
UK Women's Cohort - Lai 2015	30,458	138	0.6%	0.45 [0.25, 0.81] -	
NIPPON DATA80 - Okuda 2015	9,112	165	1.1%	0.89 [0.58, 1.37]	
Migrant Study - Hjartaker 2015	9,766	2,386	15.4%	1.09 [0.97, 1.23]	+ -
Linxian Nutrition - Wang 2016	2,445	355	22.2%	0.89 [0.80, 0.98]	
HAPIEE - Stefler 2016	19,263	226	1.0%	0.86 [0.55, 1.35]	
China Kadoorie Biobank- Du 2017	462,342	2,038	11.3%	0.63 [0.55, 0.72]	
Total (95% CI)	1,398,863	14,786	100.0%	0.86 [0.82, 0.90]	•
Heterogeneity: Chi ² = 62.47, df = 24 (P < 0.0001);	l² = 62%			-	0.5 0.7 1 1.5 2
Test for overall effect: Z = 6.52 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Adventis Health Study - Fraser -1992	26,473	463	3.4%	1.17 [0.81, 1.70]	
Finish Mobile Clinic Health - Knekt 1994 - M	2,748	58	3.2%	0.77 [0.52, 1.14]	
Finish Mobile Clinic Health - Knekt 1994 - F	2,385	186	1.7%	0.66 [0.36, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	1.6%	0.64 [0.34, 1.19]	
Oxford Vegetarian - Mann 1997	10,802	64	1.3%	0.89 [0.44, 1.80]	
OXCHECK - Whiteman 1999	10,522	144	2.1%	0.84 [0.50, 1.43]	
ATBC - Hirvonen 2001	25,373	815	5.6%	0.87 [0.70, 1.08]	
Health Food Shoppers - Appleby 2002 - F	6,416	258	4.4%	0.52 [0.39, 0.70]	
Health Food Shoppers - Appleby 2002 - M	4,325	347	5.3%	0.89 [0.70, 1.12]	
Boyd Orr Cohort - Ness 2005	4,028	298	2.6%	1.19 [0.76, 1.86]	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	2.6%	0.94 [0.60, 1.48]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	3.0%	0.76 [0.51, 1.15]	
JACC - Nagura 2009	59 <i>,</i> 485	452	4.1%	0.79 [0.57, 1.08]	
MONICA Danish - Tognon 2014	1,849	64	2.2%	0.85 [0.51, 1.42]	
EPIC - Leenders 2014	451,151	2,139	7.0%	0.85 [0.74, 0.98]	_
Singapore Chinese Health - Rebello 2014 - F	29,968	638	4.4%	0.71 [0.53, 0.96]	
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	5.6%	0.84 [0.68, 1.05]	
Multiethnic Cohort - Sharma 2014 - F	91,751	811	5.6%	0.96 [0.77, 1.19]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	4.7%	0.96 [0.73, 1.26]	
UK Women's Cohort - Lai 2015	30,458	138	1.8%	0.45 [0.25, 0.81] —	
NIPPON DATA80 - Okuda 2015	9,112	165	2.8%	0.89 [0.58, 1.37]	
Migrant Study - Hjartaker 2015	9,766	2,386	7.4%	1.09 [0.97, 1.23]	+
Linxian Nutrition - Wang 2016	2,445	355	7.7%	0.89 [0.80, 0.98]	
HAPIEE - Stefler 2016	19,263	226	2.6%	0.86 [0.55, 1.35]	
China Kadoorie Biobank- Du 2017	462,342	2,038	7.0%	0.63 [0.55, 0.72]	_ -
Total (95% CI) [Random Effects]	1,398,863	14,786	100.0%	0.84 [0.76, 0.91]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 62.47, df = 24	(P < 0.0001); I ² =	62%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.99 (P < 0.0001)					
					Lower Risk Higer Risk

Figure S73. Relation between fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


VEGETABLES AND CORONARY HEART DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.77 [0.49, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	0.6%	0.51 [0.27, 0.96]	
Finish Mobile Clinic Health - Knekt 1996 - M	29,968	324	2.1%	0.89 [0.65, 1.21]	
CPS 11 - Watkins 2000 - F	609,061	4,605	15.8%	0.84 [0.78, 0.91]	-
CPS 11 - Watkins 2000- M	453,962	9,156	19.5%	0.90 [0.84, 0.95]	+
ATBC - Hirvonen 2001	25,373	815	2.1%	0.68 [0.49, 0.93]	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	0.5%	0.49 [0.25, 0.98] —	
Boyd Orr Cohort - Ness 2005	4,028	298	1.2%	1.01 [0.66, 1.55]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.1%	0.89 [0.57, 1.39]	
JACC - Nagura 2009	59,485	452	2.4%	0.85 [0.64, 1.14]	
Singapore Chinese Health - Rebello 2014 - F	29,968	638	2.4%	0.69 [0.51, 0.93]	
EPIC - Leenders 2014	451,151	2,139	6.9%	0.86 [0.74, 1.01]	
MONICA Danish - Tognon 2014	1,849	64	0.8%	0.58 [0.35, 0.97]	
Multiethnic Cohort - Sharma 2014 - F	91,751	811	2.7%	0.95 [0.72, 1.25]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	3.5%	0.73 [0.58, 0.93]	
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	4.1%	0.84 [0.68, 1.05]	
NIPPON DATA80 - Okuda 2015	9,112	165	1.1%	0.65 [0.41, 1.02]	
Migrant Study - Hjartaker 2015	9,964	2,386	8.4%	0.89 [0.77, 1.02]	
HAPIEE - Stefler 2016	19,263	225	1.3%	1.00 [0.66, 1.51]	
Linxian Nutrition - Wang 2016	2,445	355	15.8%	0.89 [0.82, 0.96]	
PLSAW - Blekkenhorst 2017	1,226	128	4.8%	0.82 [0.67, 1.00]	
NHANES - Conrad 2018	29,133	556	2.0%	0.56 [0.40, 0.78]	
Total (95% CI)	1,968,325	26,007	100.0%	0.86 [0.83, 0.89]	•
Heterogeneity: Chi ² = 26.70, df = 21 (P = 0.18); I ²	= 21%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 8.79 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.77 [0.49, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	0.6%	0.51 [0.27, 0.96] -	· · · · · · · · · · · · · · · · · · ·
Finish Mobile Clinic Health - Knekt 1996 - M	29,968	324	2.1%	0.89 [0.65, 1.21]	
CPS 11 - Watkins 2000 - F	609,061	4,605	15.8%	0.84 [0.78, 0.91]	-+-
CPS 11 - Watkins 2000- M	453,962	9,156	19.5%	0.90 [0.84, 0.95]	+
ATBC - Hirvonen 2001	25,373	815	2.1%	0.68 [0.49, 0.93]	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	0.5%	0.49 [0.25, 0.98] —	
Boyd Orr Cohort - Ness 2005	4,028	298	1.2%	1.01 [0.66, 1.55]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.1%	0.89 [0.57, 1.39]	
JACC - Nagura 2009	59 <i>,</i> 485	452	2.4%	0.85 [0.64, 1.14]	
Singapore Chinese Health - Rebello 2014 - F	29,968	638	2.4%	0.69 [0.51, 0.93]	
EPIC - Leenders 2014	451,151	2,139	6.9%	0.86 [0.74, 1.01]	
MONICA Danish - Tognon 2014	1,849	64	0.8%	0.58 [0.35, 0.97]	
Multiethnic Cohort - Sharma 2014 - F	91,751	811	2.7%	0.95 [0.72, 1.25]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	3.5%	0.73 [0.58, 0.93]	_
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	4.1%	0.84 [0.68, 1.05]	
NIPPON DATA80 - Okuda 2015	9,112	165	1.1%	0.65 [0.41, 1.02]	
Migrant Study - Hjartaker 2015	9,964	2,386	8.4%	0.89 [0.77, 1.02]	
HAPIEE - Stefler 2016	19,263	225	1.3%	1.00 [0.66, 1.51]	
Linxian Nutrition - Wang 2016	2,445	355	15.8%	0.89 [0.82, 0.96]	
PLSAW - Blekkenhorst 2017	1,226	128	4.8%	0.82 [0.67, 1.00]	
NHANES - Conrad 2018	29,133	556	2.0%	0.56 [0.40, 0.78]	
Total (95% CI) [Random Effects]	1,968,325	26,007	100.0%	0.84 [0.80, 0.88]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 26.70, df = 21	(P = 0.18); I ² = 22	1%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 7.10 (P < 0.00001)					Lower Risk Higer Risk

Figure S74. Relation between intake of vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

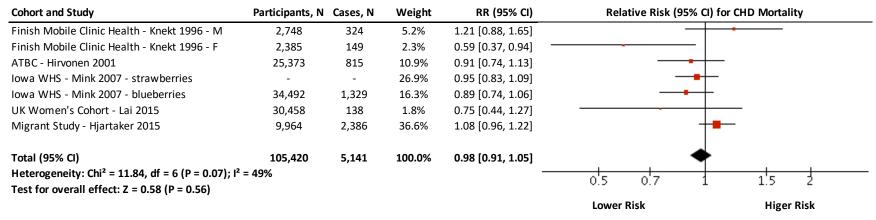
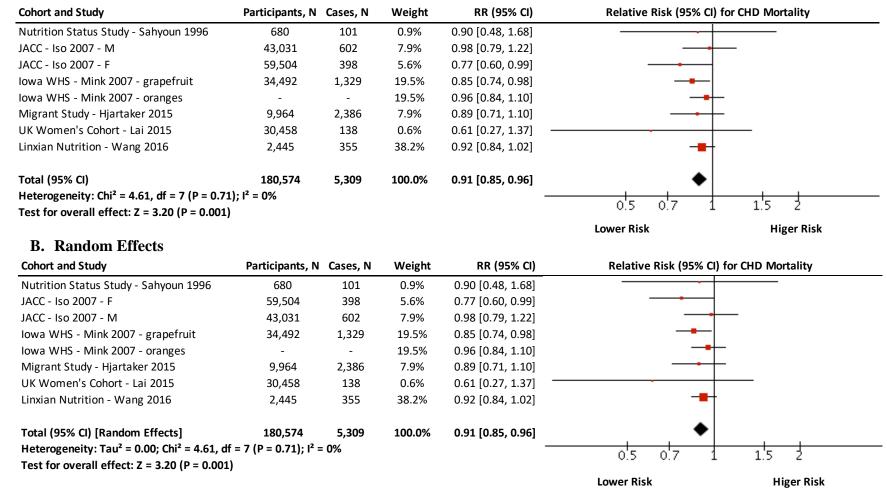

BANANAS AND CORONARY HEART DISEASE MORTALITY

Figure S75. Relation between intake of bananas and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

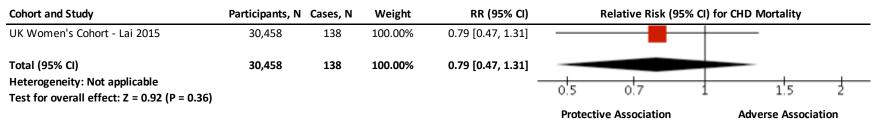
BERRIES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	5.00%	0.59 [0.37, 0.94]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	9.50%	1.21 [0.88, 1.65]	
ATBC - Hirvonen 2001	25,373	815	15.30%	0.91 [0.74, 1.13]	
Iowa WHS - Mink 2007 - blueberries	34,492	1,329	18.70%	0.89 [0.74, 1.06]	
Iowa WHS - Mink 2007 - strawberries	-	-	22.60%	0.95 [0.83, 1.09]	
Migrant Study - Hjartaker 2015	9,964	2,386	24.70%	1.08 [0.96, 1.22]	
UK Women's Cohort - Lai 2015	30,458	138	4.10%	0.75 [0.44, 1.27]	
Total (95% CI) [Random Effects]	105,420	5,141	100.00%	0.95 [0.85, 1.07]	
Heterogeneity: Tau ² = 0.01; Chi ² = 11.84, df = 6	6 (P = 0.07); I ² = 49%	6		_	
Test for overall effect: Z = 0.82 (P = 0.41)				-	0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Figure S76. Relation between intake of berries and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


CITRUS FRUIT AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S77. Relation between citrus fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

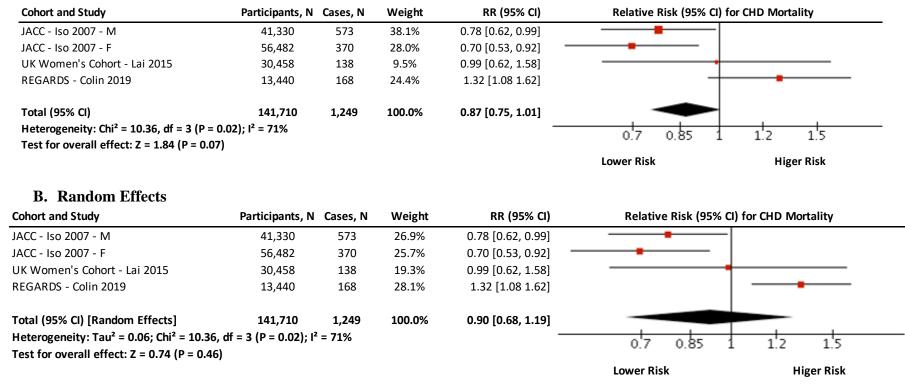

DRIED FRUIT AND CORONARY HEART DISEASE MORTALITY

Figure S78. Relation between dried fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S79. Relation between intake of fruit juice and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

GRAPES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

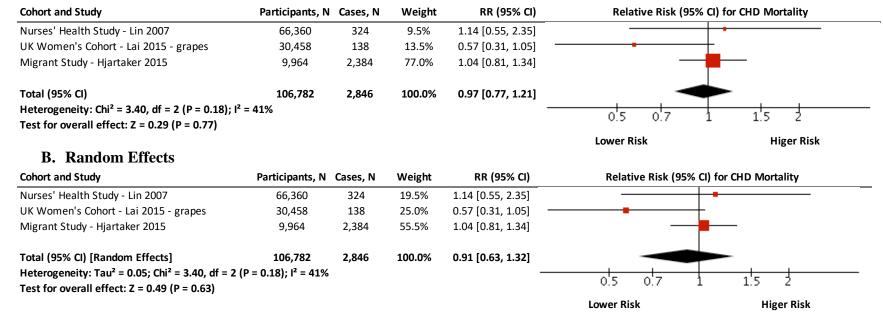
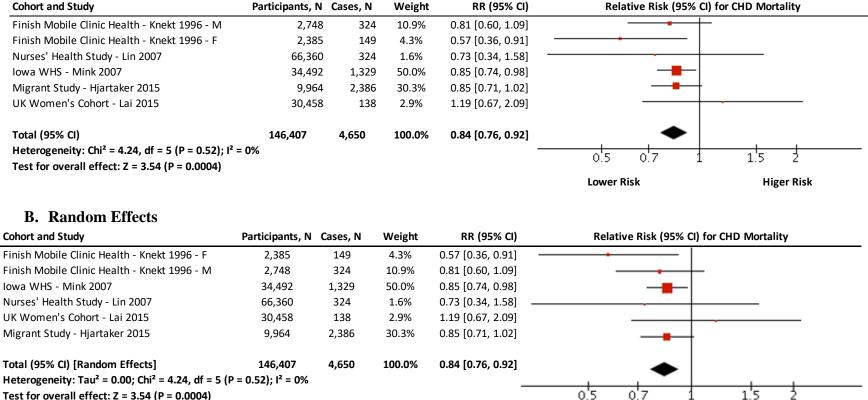
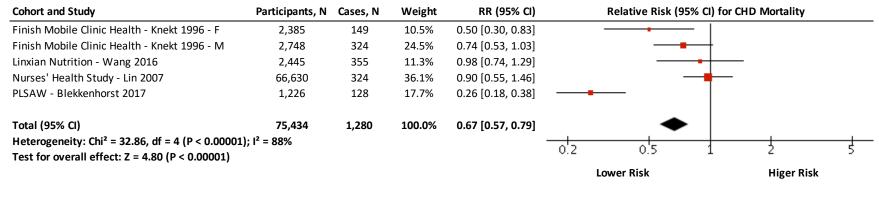



Figure S80. Relation between intake of grapes and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

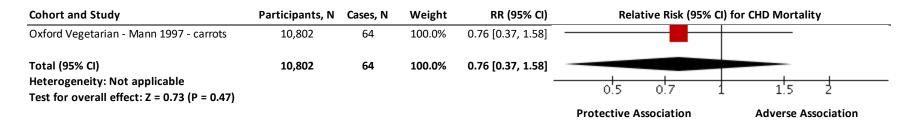

Test for overall effect: Z = 3.54 (P = 0.0004)

Lower Risk **Higer Risk** Figure S81. Relation between pommes fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study

heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

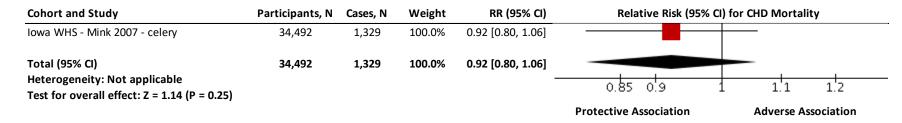
ALLIUM VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

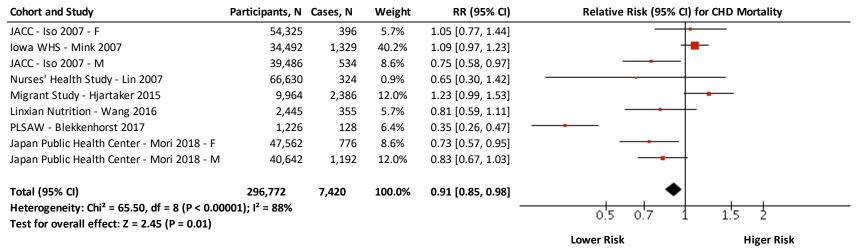


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	18.5%	0.50 [0.30, 0.83]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	20.9%	0.74 [0.53, 1.03]	
Linxian Nutrition - Wang 2016	2,445	355	21.6%	0.98 [0.74, 1.29]	
Nurses' Health Study - Lin 2007	66,630	324	18.8%	0.90 [0.55, 1.46]	
PLSAW - Blekkenhorst 2017	1,226	128	20.2%	0.26 [0.18, 0.38]	
Total (95% CI) [Random Effects]	75,434	1,280	100.0%	0.61 [0.38, 1.00]	
Heterogeneity: Tau ² = 0.27; Chi ² = 32.86, df = 4					
Test for overall effect: Z = 1.95 (P = 0.05)					0.2 0.5 1 2 5
					Lower Risk Higer Risk


Figure S82. Relation between intake of allium vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CARROTS AND CORONARY HEART DISEASE MORTALITY


Supplementary Figure 83. Relation between intake of carrots and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CELERY AND CORONARY HEART DISEASE MORTALITY

Figure S84. Relation between intake of celery and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CORONARY HEART DISEASE MORTALITY

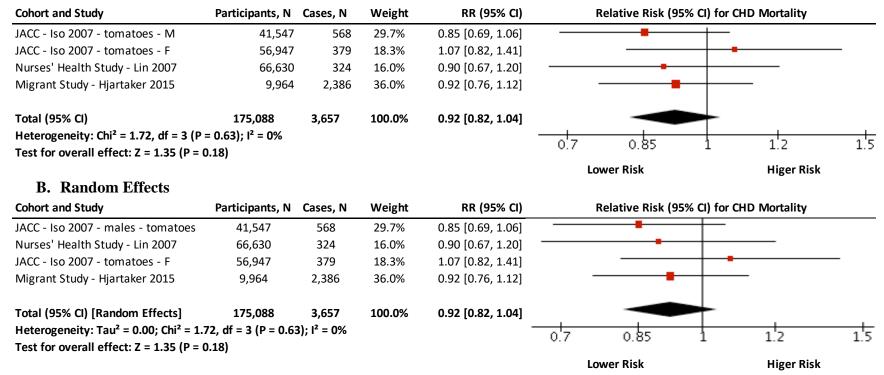
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
JACC - Iso 2007 - F	54,325	396	11.0%	1.05 [0.77, 1.44]	
Iowa WHS - Mink 2007	34,492	1,329	13.2%	1.09 [0.97, 1.23]	+
JACC - Iso 2007 - M	39,486	534	11.8%	0.75 [0.58, 0.97]	
Nurses' Health Study - Lin 2007	66,630	324	5.4%	0.65 [0.30, 1.42]	
Migrant Study - Hjartaker 2015	9,964	2,386	12.3%	1.23 [0.99, 1.53]	
Linxian Nutrition - Wang 2016	2,445	355	11.0%	0.81 [0.59, 1.11]	
PLSAW - Blekkenhorst 2017	1,226	128	11.3%	0.35 [0.26, 0.47]	
Japan Public Health Center - Mori 2018 - M	40,642	1,192	12.3%	0.83 [0.67, 1.03]	
Japan Public Health Center - Mori 2018 - F	47,562	776	11.8%	0.73 [0.57, 0.95]	
Total (95% CI) [Random Effects]	296,772	7,420	100.0%	0.81 [0.64, 1.02]	-
Heterogeneity: Tau ² = 0.11; Chi ² = 65.50, df = 8 (P < 0.00001); I ² = 88%					
Test for overall effect: Z = 1.79 (P = 0.07)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Figure S85. Relation between intake of cruciferous vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I^2 , with values $\geq 50\%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Oxford Vegetarian - Mann 1997	10,802	64	0.8%	1.34 [0.46, 3.85]	
OXCHECK - Whiteman 1999	10,522	144	5.0%	0.63 [0.42, 0.95]	
Health Food Shoppers - Appleby 2002	10,741	605	27.0%	0.85 [0.71, 1.02]	
JACC - Iso 2007 - M	43,850	617	21.9%	0.87 [0.71, 1.06]	
JACC - Iso 2007 - F	59,809	420	12.9%	0.85 [0.66, 1.10]	
Migrant Study - Hjartaker 2015	9,964	2,386	27.0%	0.93 [0.78, 1.11]	
Linxian Nutrition - Wang 2016	2,445	355	5.5%	0.72 [0.49, 1.06]	
Total (95% Cl) Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0%	148,133	4,591	100.0%	0.86 [0.78, 0.94]	0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.25 (P = 0.001)					Lower Risk Higer Risk


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Oxford Vegetarian - Mann 1997	10,802	64	0.8%	1.34 [0.46, 3.85]	
OXCHECK - Whiteman 1999	10,522	144	5.0%	0.63 [0.42, 0.95]	
Health Food Shoppers - Appleby 2002	10,741	605	27.0%	0.85 [0.71, 1.02]	
JACC - Iso 2007 - M	43,850	617	21.9%	0.87 [0.71, 1.06]	
JACC - Iso 2007 - F	59,809	420	12.9%	0.85 [0.66, 1.10]	
Migrant Study - Hjartaker 2015	9,964	2,386	27.0%	0.93 [0.78, 1.11]	
Linxian Nutrition - Wang 2016	2,445	355	5.5%	0.72 [0.49, 1.06]	
Total (95% CI) [Random Effects]	148,133	4,591	100.0%	0.86 [0.78, 0.94]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 4.47, df	= 6 (P = 0.61); l ² = 0%	6		_	0,5 0,7 1 1,5 2
Test for overall effect: Z = 3.25 (P = 0.001)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Figure S86. Relation between intake of green leafy vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S87. Relation between intake of tomatoes and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Bananas					
Vigrant Study - Hjartaker 2015	9,964	2,384	2.3%	1.04 [0.81, 1.34]	
Subtotal (95% CI)	9,964	2,384	2.3%	1.04 [0.81, 1.34]	
Heterogeneity: Not applicable					
Fest for overall effect: Z = 0.31 (P = 0.76)					
Berries					
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	0.7%	0.59 [0.37, 0.94]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	1.5%	1.21 [0.88, 1.65]	
ATBC - Hirvonen 2001	25,373	815	3.3%	0.91 [0.74, 1.13]	
owa WHS - Mink 2007 - strawberries	-	-	8.1%	0.95 [0.83, 1.09]	
owa WHS - Mink 2007 - blueberries	34,492	1,329	4.9%	0.89 [0.74, 1.06]	_
Vigrant Study - Hjartaker 2015	9,964	2,386	11.0%	1.08 [0.96, 1.22]	
JK Women's Cohort - Lai 2015	30,458	138	0.5%	0.75 [0.44, 1.27]	
Subtotal (95% CI)	105,420	5,141	29.9%	0.98 [0.91, 1.05]	A
Heterogeneity: Tau ² = 0.01; Chi ² = 11.84, df = 6					1
Test for overall effect: Z = 0.82 (P = 0.41)		-			
Citrus					
Nutrition Status Study - Sahyoun 1996	680	101	0.4%	0.90 [0.48, 1.68]	
owa WHS - Mink 2007 - grapefruit	34,492	1,329	8.1%	0.85 [0.74, 0.98]	
ACC - Iso 2007 - F	59,504	398	2.3%	0.77 [0.60, 0.99]	
owa WHS - Mink 2007 - oranges	-	-	8.1%	0.96 [0.84, 1.10]	
ACC - Iso 2007 - M	43,031	602	3.3%	0.98 [0.79, 1.22]	
JK Women's Cohort - Lai 2015	30,458	138	0.2%	0.61 [0.27, 1.37]	
Migrant Study - Hjartaker 2015	9,964	2,386	3.3%	0.89 [0.71, 1.10]	
Linxian Nutrition - Wang 2016	2,445	355	15.8%	0.92 [0.84, 1.02]	
Subtotal (95% CI)	180,574	5,309	41.4%	0.91 [0.85, 0.96]	
Heterogeneity: Tau ² = 0.00; Chi ² = 4.61, df = 7 (Fest for overall effect: Z = 3.20 (P = 0.001)	(P = 0.71); I ² = 0%				•
Fruit Juice	44.000	570	2 70/		
IACC - Iso 2007 - M	41,330	573	2.7%	0.78 [0.62, 0.99]	
JACC - Iso 2007 - F	56,482	370	2.0%	0.70 [0.53, 0.92]	
UK Women's Cohort - Lai 2015	30,458	138	0.7%	0.99 [0.62, 1.58]	
REGARDS - Colin 2019	13,440	168	1.8%	1.28 [0.96, 1.72]	
Subtotal (95% CI)	141,710	1,249	7.2%	0.87 [0.75, 1.01]	
Heterogeneity: Tau ² = 0.06; Chi ² = 10.36, df = 3 Fest for overall effect: Z = 0.74 (P = 0.46)	8 (P = 0.02); I ² = 719	%			
lest for overall effect. 2 - 0.74 (r - 0.40)					
Grapes Nurses' Health Study - Lin 2007	66,360	324	0.3%	1.14 [0.55, 2.35]	
JK Women's Cohort - Lai 2015 - grapes	30,458	138	0.3%	0.57 [0.31, 1.05]	
Migrant Study - Hjartaker 2015	9,964	2,384	2.3%	1.04 [0.81, 1.34]	
Subtotal (95% Cl) Jotorogonoituu Touri – 0.05, Chii – 3.40, df – 3.4	106,782	2,846	3.0%	0.97 [0.77, 1.21]	
Heterogeneity: Tau² = 0.05; Chi² = 3.40, df = 2 (Fest for overall effect: Z = 0.49 (P = 0.63)	(r - 0.18); l ⁻ = 41%)			
Pommes					
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	0.7%	0.57 [0.36, 0.91]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	1.8%	0.81 [0.60, 1.09]	
owa WHS - Mink 2007	34,492		8.1%	0.85 [0.74, 0.98]	
Nurses' Health Study - Lin 2007		1,329			
-	66,360	324	0.3%	0.73 [0.34, 1.58]	
JK Women's Cohort - Lai 2015	30,458	138	0.5%	1.19 [0.67, 2.09]	
Vigrant Study - Hjartaker 2015	9,964	2,386	4.9%	0.85 [0.71, 1.02]	
Subtotal (95% Cl)	146,407	4,650	16.1%	0.84 [0.76, 0.92]	
Heterogeneity: Tau ² = 0.00; Chi ² = 4.24, df = 5 (Fest for overall effect: Z = 3.54 (P = 0.0004)	(P = 0.52); I ⁺ = 0%				•
rest for overall effect. 2 = 5.54 (r = 0.0004)					
		9.3%		_	
Test for subgroup differences: Chi ² = 8.23, df =		9.3%		_	0.5 0.7 1 1.5 2

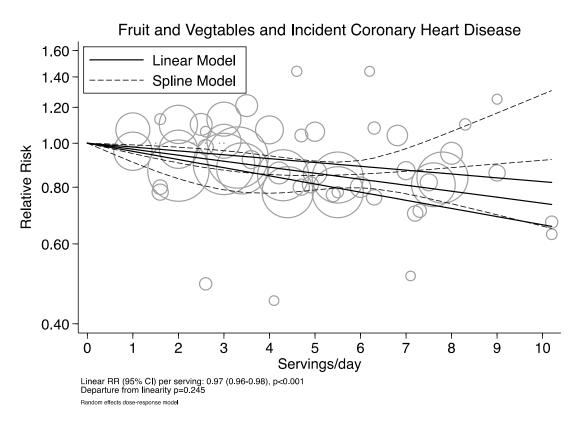
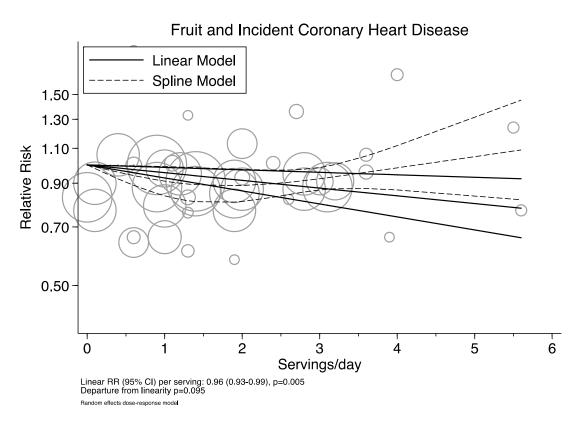
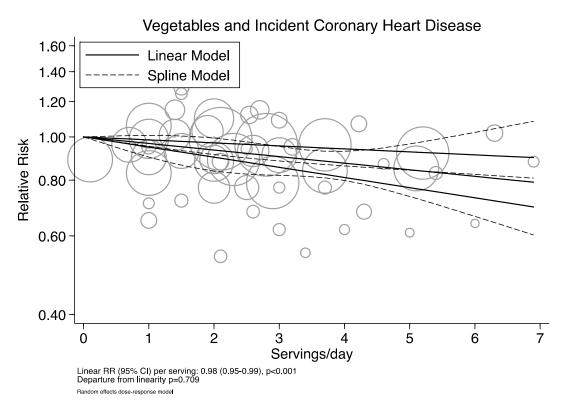
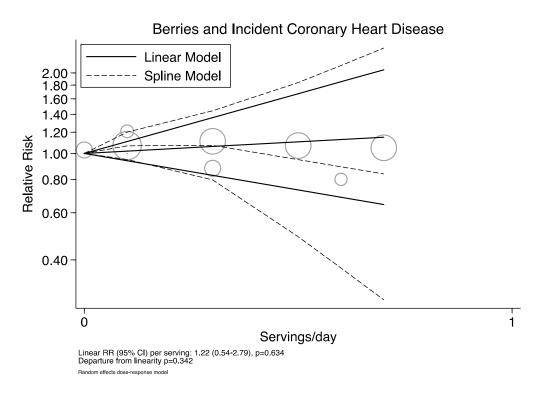

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
ananas	0.000		2.224	4 04 [0 04 + 04]	
Aigrant Study - Hjartaker 2015	9,964	2,384	3.2%	1.04 [0.81, 1.34]	
ubtotal (95% Cl)	9,964	2,384	3.2%	1.04 [0.81, 1.34]	
eterogeneity: Not applicable					
est for overall effect: Z = 0.31 (P = 0.76)					
erries					
inish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.59 [0.37, 0.94]	
inish Mobile Clinic Health - Knekt 1996 - M	2,748	324	2.3%	1.21 [0.88, 1.65]	
TBC - Hirvonen 2001	25,373	815	4.2%	0.91 [0.74, 1.13]	
wa WHS - Mink 2007 - strawberries	-	-	7.3%	0.95 [0.83, 1.09]	
wa WHS - Mink 2007 - blueberries	34,492	1,329	5.5%	0.89 [0.74, 1.06]	
ligrant Study - Hjartaker 2015	9,964	2,386	8.5%	1.08 [0.96, 1.22]	
K Women's Cohort - Lai 2015	30,458	138	0.9%	0.75 [0.44, 1.27]	
ubtotal (95% Cl)	105,420	5,141	29.8%	0.95 [0.85, 1.07]	
eterogeneity: Tau ² = 0.01; Chi ² = 11.84, df = (est for overall effect: Z = 0.82 (P = 0.41)	5 (P = 0.07); F = 49	%			
trus					
utrition Status Study - Sahyoun 1996	680	101	0.7%	0.90 [0.48, 1.68]	
ACC - Iso 2007 - M	43,031	602	4.2%	0.98 [0.79, 1.22]	
ACC - Iso 2007 - F	59,504	398	3.2%	0.77 [0.60, 0.99]	
wa WHS - Mink 2007 - oranges	-	-	7.3%	0.96 [0.84, 1.10]	
wa WHS - Mink 2007 - grapefruit	34,492	1,329	7.3%	0.85 [0.74, 0.98]	
K Women's Cohort - Lai 2015	30,458	138	0.4%	0.61 [0.27, 1.37]	
ligrant Study - Hjartaker 2015	9,964	2,386	4.2%	0.89 [0.71, 1.10]	
nxian Nutrition - Wang 2016	2,445	355	9.8%	0.92 [0.84, 1.02]	<u> </u>
ubtotal (95% CI)	180,574	5,309	37.1%	0.91 [0.85, 0.96]	◆
eterogeneity: Tau ² = 0.00; Chi ² = 4.61, df = 7 est for overall effect: Z = 3.20 (P = 0.001) :ruit Juice	(P = 0.71); T = 0%				
ACC - Iso 2007 - M	41,330	573	3.7%	0.78 [0.62, 0.99]	
ACC - Iso 2007 - F	56,482	370	3.0%	0.70 [0.53, 0.92]	
K Women's Cohort - Lai 2015	30,458	138	1.2%	0.99 [0.62, 1.58]	
EGARDS - Colin 2019	13,440	168	2.7%	1.28 [0.96, 1.72]	
ubtotal (95% CI)	141,710	1,249	10.6%	0.90 [0.68, 1.19]	
eterogeneity: Tau ² = 0.06; Chi ² = 10.36, df = 3 est for overall effect: Z = 0.74 (P = 0.46)	3 (P = 0.02); l ² = 71	%			
rapes		ac :	0.5-1		
urses' Health Study - Lin 2007	66,360	324	0.5%	1.14 [0.55, 2.35]	
K Women's Cohort - Lai 2015 - grapes	30,458	138	0.7%	0.57 [0.31, 1.05]	
ligrant Study - Hjartaker 2015	9,964	2,384	3.2%	1.04 [0.81, 1.34] —	
ubtotal (95% Cl) eterogeneity: Tau ² = 0.05; Chi ² = 3.40, df = 2 est for overall effect: Z = 0.49 (P = 0.63)	106,782 (P = 0.18); I ² = 41%	2,846	4.4%	0.91 [0.63, 1.32]	
ommes					
inish Mobile Clinic Health - Knekt 1996 - M	2,748	324	2.6%	0.81 [0.60, 1.09]	
nish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.57 [0.36, 0.91]	
urses' Health Study - Lin 2007	66,360	324	0.4%	0.73 [0.34, 1.58]	
wa WHS - Mink 2007	34,492	1,329	7.3%	0.85 [0.74, 0.98]	
ligrant Study - Hjartaker 2015	9,964	2,386	5.5%	0.85 [0.71, 1.02]	
K Women's Cohort - Lai 2015	30,458	138	0.8%	1.19 [0.67, 2.09]	
ubtotal (95% CI)	146,407	4,650	17.7%	0.84 [0.76, 0.92]	-
eterogeneity: Tau ² = 0.00; Chi ² = 4.24, df = 5 est for overall effect: Z = 3.54 (P = 0.0004)					
est for subgroup differences: Chi ² = 4.24, df =	5 (P = 0.52), I ² = 0	%			
					0.5 0.7 1 1.5 2

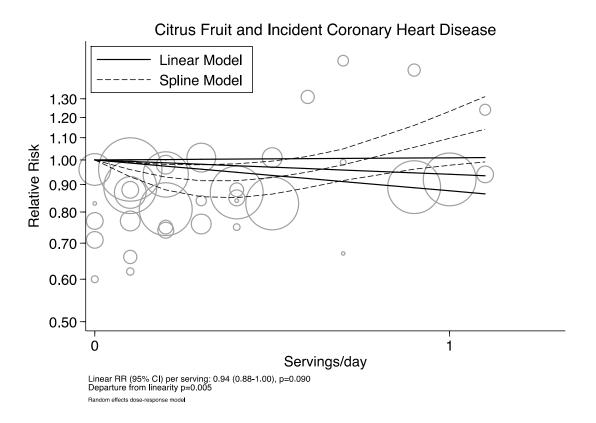
Figure S88. Relation between sources of fruit and CHD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

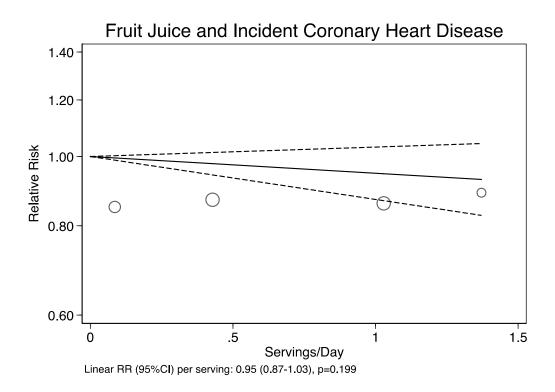

A. FIACU Effects					
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
Allium					
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	1.9%	0.74 [0.53, 1.03]	
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	0.8%	0.50 [0.30, 0.83]	
Nurses' Health Study - Lin 2007	66,630	324	0.9%	0.90 [0.55, 1.46]	
Linxian Nutrition - Wang 2016	2,445	355	2.9%	0.98 [0.74, 1.29]	
PLSAW - Blekkenhorst 2017	1,226	128	1.4%	0.26 [0.18, 0.38]	
Subtotal (95% CI)	75,434	1,280	8.0%	0.67 [0.57, 0.79]	-
Heterogeneity: Chi ² = 32.86, df = 4 (P < 0.00001 Test for overall effect: Z = 4.80 (P < 0.00001)	1); I² = 88%				
Carrots	10 902	64	0.4%	0.76 [0.27, 1.69]	
Oxford Vegetarian - Mann 1997 - carrots	10,802	64 64	0.4% 0.4%	0.76 [0.37, 1.58]	
Subtotal (95% Cl)	10,802	04	0.4%	0.76 [0.37, 1.58]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.73 (P = 0.47)					
Celery					
owa WHS - Mink 2007 - celery	34,492	1,329	11.5%	0.92 [0.80, 1.06]	<u> </u>
Subtotal (95% CI)	34,492	1,329	11.5%	0.92 [0.80, 1.06]	-
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.14 (P = 0.25)					
ruciferous					
Nurses' Health Study - Lin 2007	66,630	324	0.4%	0.65 [0.30, 1.42]	
ACC - Iso 2007 - M	39,486	534	3.3%	0.75 [0.58, 0.97]	
owa WHS - Mink 2007	34,492	1,329	15.6%	1.09 [0.97, 1.23]	+ - -
ACC - Iso 2007 - F	54,325	396	2.2%	1.05 [0.77, 1.44]	
Лigrant Study - Hjartaker 2015	9,964	2,386	4.6%	1.23 [0.99, 1.53]	⊢ •−−
inxian Nutrition - Wang 2016	2,445	355	2.2%	0.81 [0.59, 1.11]	
PLSAW - Blekkenhorst 2017	1,226	128	2.5%	0.35 [0.26, 0.47]	
apan Public Health Center - Mori 2018 - M	40,642	1,192	4.6%	0.83 [0.67, 1.03]	
apan Public Health Center - Mori 2018 - F	47,562	776	3.3%	0.73 [0.57, 0.95]	
Subtotal (95% CI)	296,772	7,420	38.8%	0.91 [0.85, 0.98]	•
leterogeneity: Chi ² = 65.50, df = 8 (P < 0.00001	1); I² = 88%				
est for overall effect: Z = 2.45 (P = 0.01)					
Green leafy					
Dxford Vegetarian - Mann 1997	10,802	64	0.2%	1.34 [0.46, 3.85]	
DXCHECK - Whiteman 1999	10,522	144	1.3%	0.63 [0.42, 0.95]	
lealth Food Shoppers - Appleby 2002	10,741	605	6.9%	0.85 [0.71, 1.02]	
ACC - Iso 2007 - F	59,809	420	3.3%	0.85 [0.66, 1.10]	
ACC - Iso 2007 - M	43,850	617	5.6%	0.87 [0.71, 1.06]	
Лigrant Study - Hjartaker 2015	9,964	2,386	6.9%	0.93 [0.78, 1.11]	
inxian Nutrition - Wang 2016	2,445	355	1.4%	0.72 [0.49, 1.06]	
Subtotal (95% CI)	148,133	4,591	25.7%	0.86 [0.78, 0.94]	
leterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ²				-	▼
est for overall effect: Z = 3.25 (P = 0.001)					
omatoes					
	56,947	379	2.9%	1.07 [0.82, 1.41]	
ACC - Iso 2007 - tomatoes - F		568	4.6%	0.85 [0.69, 1.06]	
ACC - Iso 2007 - tomatoes - M	41,547		2.5%	0.90 [0.67. 1.20]	l l
ACC - Iso 2007 - tomatoes - M Nurses' Health Study - Lin 2007		324	2.5% 5.6%	0.90 [0.67, 1.20] 0.92 [0.76, 1.12]	
ACC - Iso 2007 - tomatoes - M Nurses' Health Study - Lin 2007 Vigrant Study - Hjartaker 2015	41,547 66,630 9,964	324 2,386	5.6%	0.92 [0.76, 1.12]	
ACC - Iso 2007 - tomatoes - M Nurses' Health Study - Lin 2007 Vigrant Study - Hjartaker 2015 Subtotal (95% CI)	41,547 66,630 9,964 175,088	324			•
ACC - Iso 2007 - tomatoes - M Iurses' Health Study - Lin 2007 Aigrant Study - Hjartaker 2015 Subtotal (95% CI) Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); I ² :	41,547 66,630 9,964 175,088	324 2,386	5.6%	0.92 [0.76, 1.12]	•
ACC - Iso 2007 - tomatoes - M Iurses' Health Study - Lin 2007 Aligrant Study - Hjartaker 2015 ubtotal (95% CI) Ieterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); I ² iest for overall effect: Z = 1.35 (P = 0.18)	41,547 66,630 9,964 175,088 = 0%	324 2,386 3,657	5.6%	0.92 [0.76, 1.12]	•
ACC - Iso 2007 - tomatoes - F ACC - Iso 2007 - tomatoes - M Nurses' Health Study - Lin 2007 Wigrant Study - Hjartaker 2015 Subtotal (95% Cl) Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); I ² : Fest for overall effect: Z = 1.35 (P = 0.18) Fest for subgroup differences: Chi ² = 13.08, df =	41,547 66,630 9,964 175,088 = 0%	324 2,386 3,657	5.6%	0.92 [0.76, 1.12]	0.2 0.5 1 2

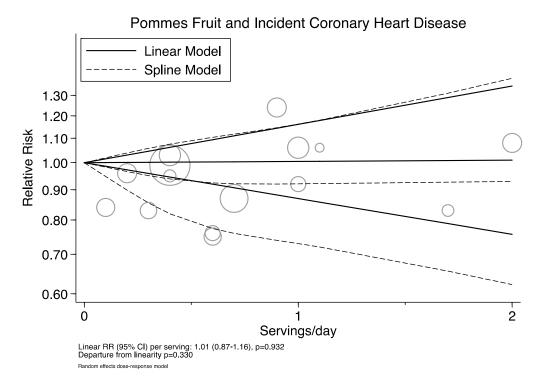
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	IV, Random, 95% CI
Allium Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	3.6%	0.74 [0.53, 1.03]	
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	2.5%	0.50 [0.30, 0.83]	
Nurses' Health Study - Lin 2007	66,630	324	2.5%		
Linxian Nutrition - Wang 2016		324	4.0%	0.90 [0.55, 1.46]	
PLSAW - Blekkenhorst 2017	2,445			0.98 [0.74, 1.29]	
	1,226	128	3.2%	0.26 [0.18, 0.38]	
Subtotal (95% Cl) Heterogeneity: Tau ² = 0.27; Chi ² = 32.86, df =	75,434	1,280	15.8%	0.61 [0.38, 1.00]	
Test for overall effect: Z = 1.95 (P = 0.05)	4 (P < 0.00001); 1 -	- 0070			
Carrots					
Oxford Vegetarian - Mann 1997 - carrots	10,802	64	1.6%	0.76 [0.37, 1.58]	
Subtotal (95% CI)	10,802	64	1.6%	0.76 [0.37, 1.58]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.73 (P = 0.47)					
Celery					
Iowa WHS - Mink 2007 - celery	34,492	1,329	5.0%	0.92 [0.80, 1.06]	
Subtotal (95% CI)	34,492	1,329	5.0%	0.92 [0.80, 1.06]	•
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.14 (P = 0.25)					
Cruciferous					
JACC - Iso 2007 - M	39,486	534	4.2%	0.75 [0.58, 0.97]	
Iowa WHS - Mink 2007	34,492	1,329	5.1%	1.09 [0.97, 1.23]	+
JACC - Iso 2007 - F	54,325	396	3.7%	1.05 [0.77, 1.44]	
Nurses' Health Study - Lin 2007	66,630	324	1.4%	0.65 [0.30, 1.42]	
Migrant Study - Hjartaker 2015	9,964	2,386	4.5%	1.23 [0.99, 1.53]	
Linxian Nutrition - Wang 2016	2,445	355	3.7%	0.81 [0.59, 1.11]	
PLSAW - Blekkenhorst 2017	1,226	128	3.9%	0.35 [0.26, 0.47]	- _
Japan Public Health Center - Mori 2018 - F	47,562	776	4.2%	0.73 [0.57, 0.95]	_
Japan Public Health Center - Mori 2018 - M	40,642	1,192	4.5%	0.83 [0.67, 1.03]	
Subtotal (95% CI)	296,772	7,420	35.2%	0.81 [0.64, 1.02]	-
Heterogeneity: Tau ² = 0.11; Chi ² = 65.50, df =	8 (P < 0.00001); I ² =	- 88%			
Test for overall effect: Z = 1.79 (P = 0.07)					
Green leafy					
Oxford Vegetarian - Mann 1997	10,802	64	0.9%	1.34 [0.46, 3.85]	
OXCHECK - Whiteman 1999	10,522	144	3.0%	0.63 [0.42, 0.95]	
Health Food Shoppers - Appleby 2002	10,741	605	4.8%	0.85 [0.71, 1.02]	
JACC - Iso 2007 - F	59,809	420	4.2%	0.85 [0.66, 1.10]	+
JACC - Iso 2007 - M	43,850	617	4.6%	0.87 [0.71, 1.06]	+
Migrant Study - Hjartaker 2015	9,964	2,386	4.8%	0.93 [0.78, 1.11]	-+
Linxian Nutrition - Wang 2016	2,445	355	3.2%	0.72 [0.49, 1.06]	
Subtotal (95% CI)	148,133	4,591	25.4%	0.86 [0.78, 0.94]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 4.47, df = 6 Test for overall effect: Z = 3.25 (P = 0.001)	(P = 0.61); I ² = 0%				
Tomatoes					
Nurses' Health Study - Lin 2007	66,630	324	3.9%	0.90 [0.67, 1.20]	_
JACC - Iso 2007 - tomatoes - M	41,547	568	4.5%	0.85 [0.69, 1.06]	_ _
JACC - Iso 2007 - tomatoes - F	56,947	379	4.0%	1.07 [0.82, 1.41]	_
Migrant Study - Hjartaker 2015	9,964	2,386	4.6%	0.92 [0.76, 1.12]	_ . _
Subtotal (95% CI)	175,088	3,657	17.0%	0.92 [0.82, 1.04]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 1.72, df = 3		3,037	17.0/0	5.52 [0.02, 1.04]	•
Test for overall effect: Z = 1.35 (P = 0.18)					
Test for subgroup differences: Chi ² = 4.09, df =	= 5 (P = 0.54), I² = 0	%			0.2 0.5 1 2
					Lower Risk Higher Risk

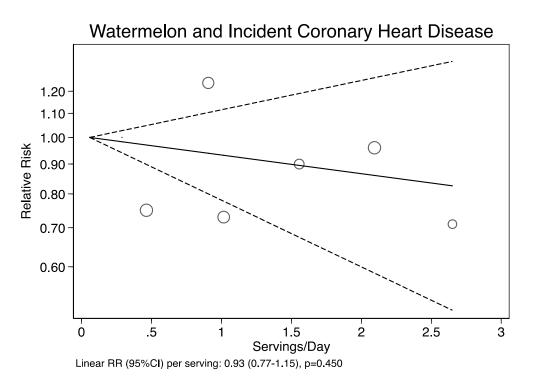

Figure S89. Relation between sources of vegetables and CHD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

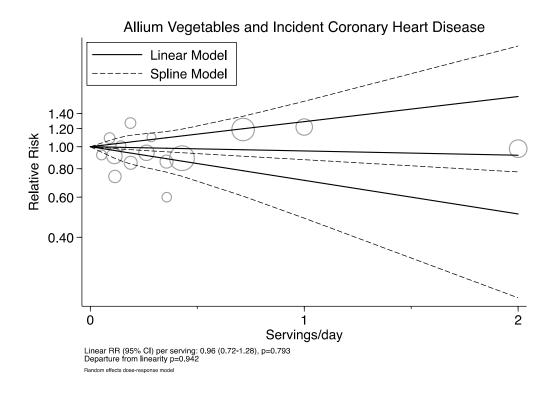

Figure S90. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

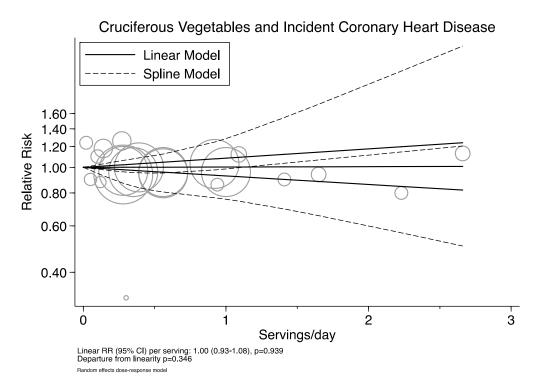

Figure S91. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

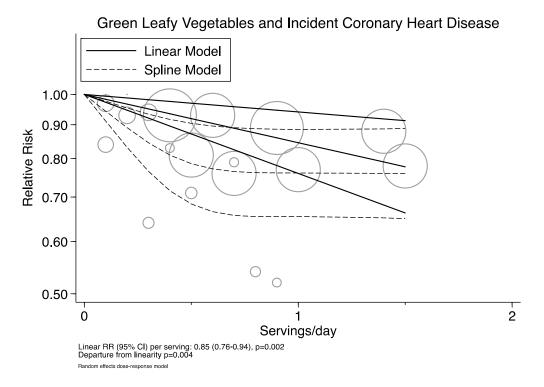

Figure S92. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

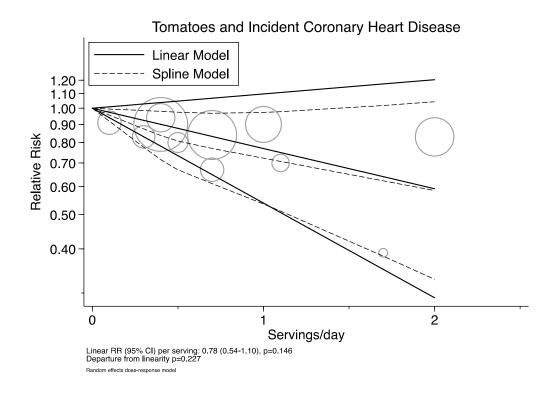

Figure S93. Linear and cubic-spline dose-response relation between increasing berries intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

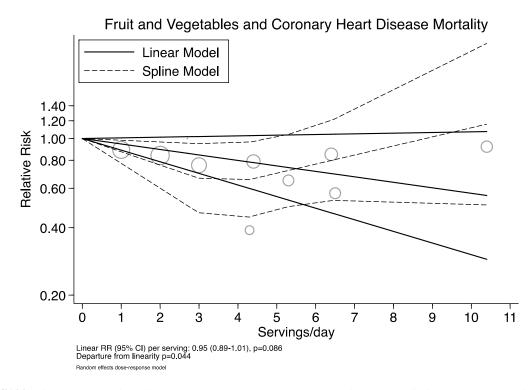

Figure S94. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

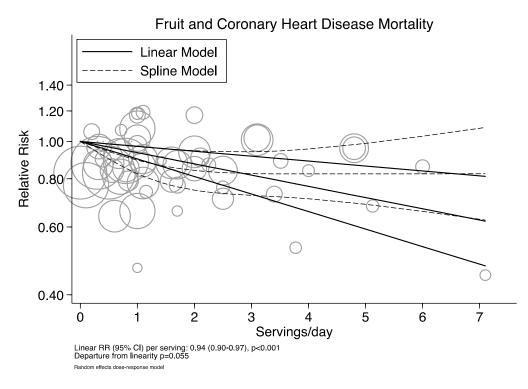

Figure S95. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

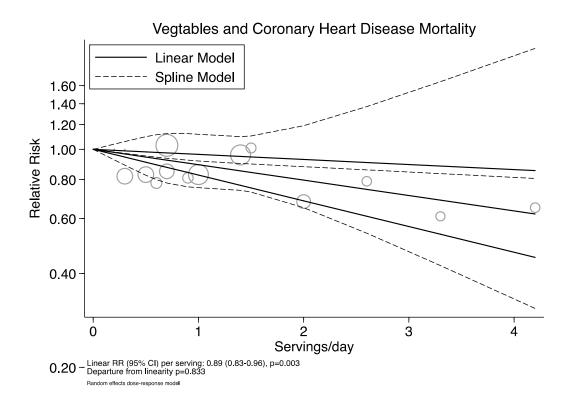

Figure S96. Linear and cubic-spline dose-response relation between increasing pommes intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

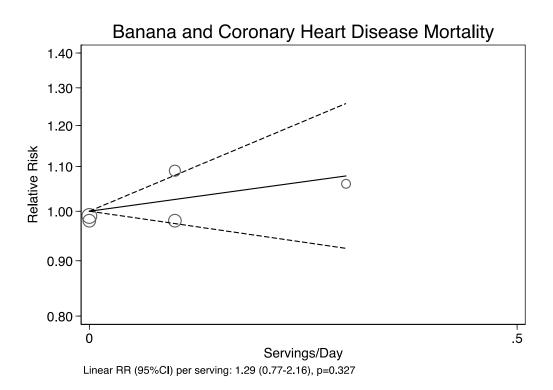

Figure S97. Linear dose-response relation between increasing watermelon intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

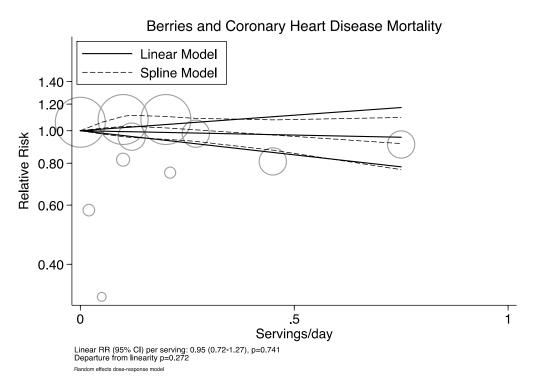

Figure S98. Linear and cubic-spline dose-response relation between increasing intake of allium vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

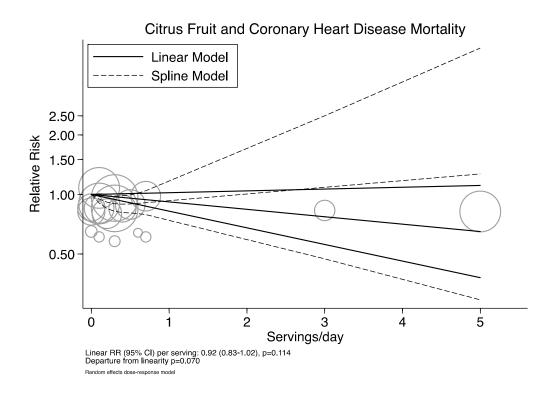

Figure S99. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

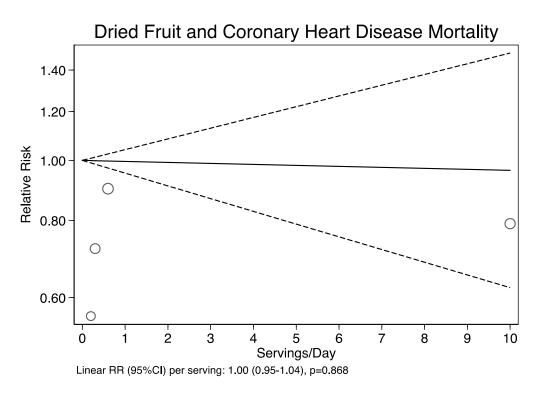

Figure S100. Linear and cubic-spline dose-response relation between increasing intake of green leafy vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

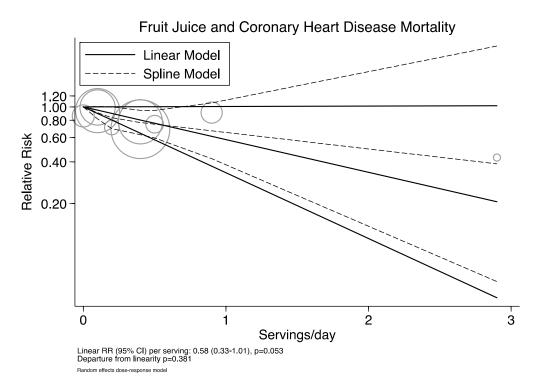

Figure S101. Linear and cubic-spline dose-response relation between increasing tomato intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

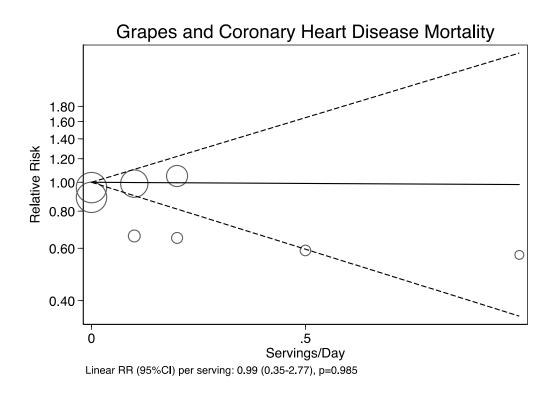

Figure S102. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

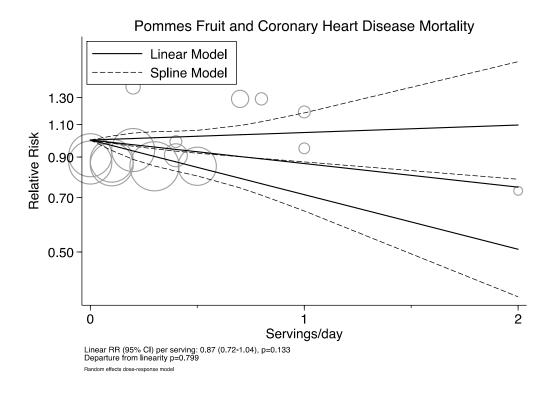

Figure S103. Linear and cubic-spline dose-response relation between increasing fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

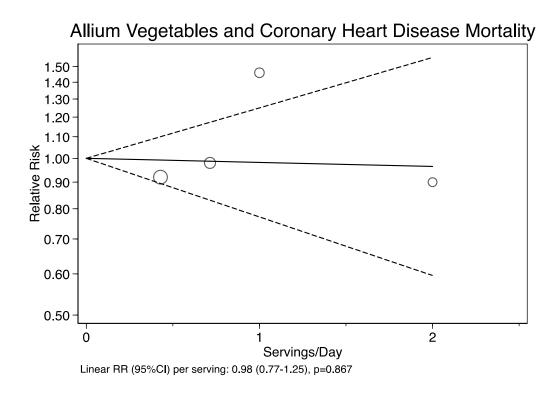

Figure S104. Linear and cubic-spline dose-response relation between increasing intake of vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

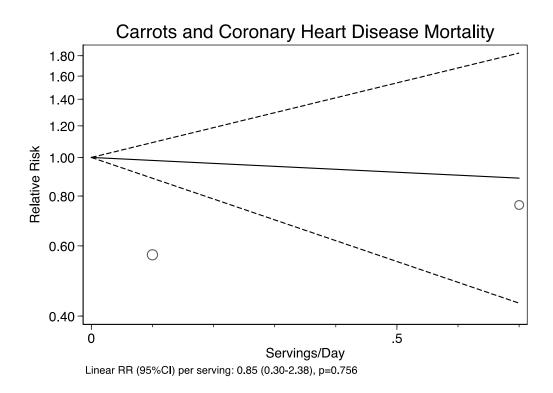

Figure S105. Linear dose-response relation between increasing banana intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

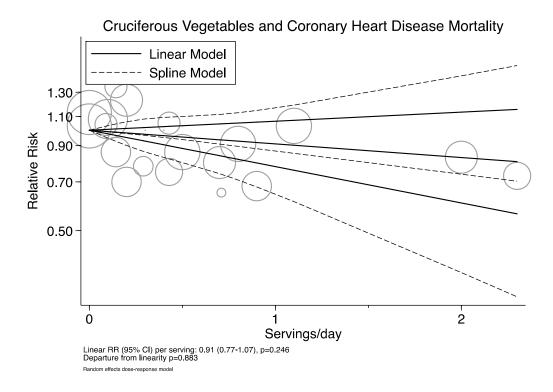

Figure S106. Linear dose-response relation between increasing berries intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

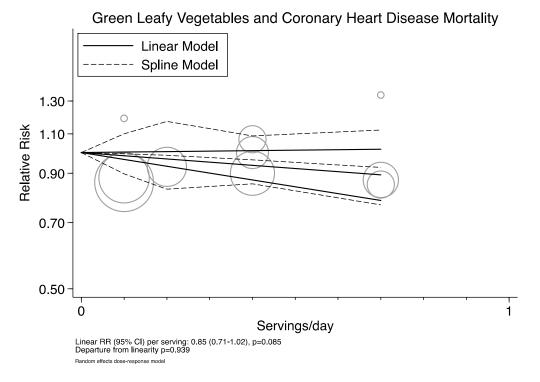

Figure S107. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S108. Linear and cubic-spline dose-response relation between increasing dried fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S109. Linear and cubic-spline dose-response relation between increasing fruit juice intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S110. Linear dose-response relation between increasing grape intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S111. Linear and cubic-spline dose-response relation between increasing pommes intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S112. Linear dose-response relation between increasing intake of allium vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

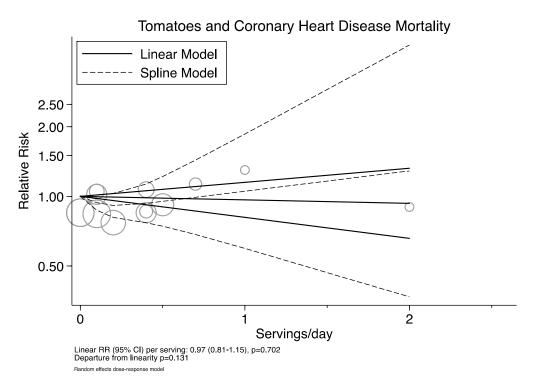

Figure S113. Linear dose-response relation between increasing intake of carrots and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S114. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S115. Linear dose-response relation between increasing intake of green leafy vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S116. Linear dose-response relation between increasing tomato intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND STROKE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Framingham - Gillman 1995	832	97	1.6%	0.61 [0.36, 1.04]	
Nurses' Health Study - Joshipura 1999	75,596	204	3.7%	0.74 [0.52, 1.05]	
HPFS - Joshipura 1999	38,683	336	1.9%	0.61 [0.38, 1.00]	
National Health & Nutrition - Bazzano 2002	9,608	888	7.1%	0.73 [0.57, 0.95]	_
ARIC - Steffen 2003	11,940	214	1.5%	0.94 [0.54, 1.63]	
Danish Diet Cancer Health - Johnsen 2003	54,506	266	2.5%	0.72 [0.47, 1.11]	
MORGEN - Oude Griep 2011 (a)	20,069	233	3.0%	0.97 [0.66, 1.44]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	33.3%	0.87 [0.77, 0.98]	
Japan Diabetes Complications Study - Tanaka 2013	1,414	68	0.9%	0.58 [0.29, 1.18]	
Rotterdam - Bos 2014	3,750	545	2.1%	1.04 [0.65, 1.67]	
CCHS - Manuel 2015 - F	44,776	842	12.0%	0.70 [0.57, 0.85]	_
CCHS - Manuel 2015 - M	37,483	709	9.9%	0.67 [0.54, 0.83]	_
PREDIMED- Buil-Cosiales 2016	7,216	169	1.1%	0.73 [0.38, 1.40]	
PURE - Miller 2017	135,335	2,234	4.7%	0.89 [0.65, 1.21]	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	14.8%	1.06 [0.89, 1.27]	- +
Total (95% CI)	532,667	11,091	100.0%	0.82 [0.77, 0.88]	◆
Heterogeneity: Chi ² = 22.28, df = 14 (P = 0.07); l ² = 379	6				0.5 0.7 1 1.5 2
Test for overall effect: Z = 5.61 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Framingham - Gillman 1995	832	97	3.0%	0.61 [0.36, 1.04]	
Nurses' Health Study - Joshipura 1999	75,596	204	5.8%	0.74 [0.52, 1.05]	
HPFS - Joshipura 1999	38,683	336	3.5%	0.61 [0.38, 1.00]	
National Health & Nutrition - Bazzano 2002	9,608	888	9.0%	0.73 [0.57, 0.95]	
ARIC - Steffen 2003	11,940	214	2.9%	0.94 [0.54, 1.63]	
Danish Diet Cancer Health - Johnsen 2003	54,506	266	4.3%	0.72 [0.47, 1.11]	
MORGEN - Oude Griep 2011 (a)	20,069	233	5.0%	0.97 [0.66, 1.44]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	16.6%	0.87 [0.77, 0.98]	
Japan Diabetes Complications Study - Tanaka 2013	1,414	68	1.8%	0.58 [0.29, 1.18]	
Rotterdam - Bos 2014	3,750	545	3.7%	1.04 [0.65, 1.67]	
CCHS - Manuel 2015 - F	44,776	842	11.8%	0.70 [0.57, 0.85]	- _
CCHS - Manuel 2015 - M	37,483	709	10.7%	0.67 [0.54, 0.83]	
PREDIMED- Buil-Cosiales 2016	7,216	169	2.1%	0.73 [0.38, 1.40]	
PURE - Miller 2017	135,335	2,234	6.9%	0.89 [0.65, 1.21]	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	12.9%	1.06 [0.89, 1.27]	
Total (95% CI) [Random Effects]	532,667	11,091	100.0%	0.80 [0.73, 0.89]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 22.28, df = 14 (P =	0.07); l ² = 37%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.30 (P < 0.0001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S117. Relation between total fruit and vegetables intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND STROKE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	or Incident Stroke
Framingham - Gillman 1995	832	97	0.4%	0.70 [0.37, 1.31]		
Zutphen Elderly Study - Keli 1996	552	42	0.2%	0.52 [0.21, 1.31]		
HPFS - Joshipura 1999	38,683	366	0.6%	0.68 [0.41, 1.11]		
Nurses' Health Study - Joshipura 1999	75,596	204	1.3%	0.69 [0.49, 0.98]		
Shibata Study - Yokoyama 2000 - M	880	91	0.6%	1.14 [0.68, 1.90]		
Shibata Study - Yokoyama 2000 - F	1,241	105	0.5%	0.70 [0.40, 1.21]		_
Danish Diet Cancer Health - Johnsen 2003	54,506	266	0.8%	0.60 [0.38, 0.94]		
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	1.3%	0.84 [0.59, 1.20]		—
ATBC - Larsson 2009 - cerebral infraction	-	2,702	11.3%	0.82 [0.73, 0.92]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	2.8%	0.81 [0.64, 1.03]		
ATBC - Larsson 2009 - subarachnoid hemorrhage	-	196	0.8%	0.80 [0.52, 1.24]		
MONICA Finland - Zhang 2011 (b)	36,686	1,478	4.1%	0.99 [0.81, 1.20]		_
Swedish Mammography & Men - Larsson 2013	74,961	4,089	11.3%	0.87 [0.77, 0.98]		
MONICA Danish - Tognon 2014	1,849	167	1.6%	0.87 [0.64, 1.19]		—
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	2.1%	1.07 [0.82, 1.41]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	1.8%	0.80 [0.60, 1.08]		
China Kadoorie Biobank - Du 2016 - ischemic stroke	451,665	3,523	25.3%	0.75 [0.69, 0.81]	-	
China Kadoorie Biobank-Du 2016 -hemorrhagic stroke	-	14,579	5.0%	0.64 [0.53, 0.76]		
China Kadoorie Biobank - Du 2016 - other	-	11,054	16.2%	0.88 [0.80, 0.97]		
PREDIMED- Buil-Cosiales 2016	7,216	169	0.3%	0.74 [0.35, 1.56]		
PURE - Miller 2017	135,335	2,234	4.1%	0.93 [0.77, 1.13]		-
Japan Public Health Centre - Yoshizaki 2019	16,498	197	5.0%	0.89 [0.74, 1.06]		
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	2.8%	0.93 [0.74, 1.18]		_
Total (95% CI)	987,993	43,702	100.0%	0.82 [0.79, 0.85]	•	
Heterogeneity: Chi ² = 33.36, df = 22 (P = 0.06); l ² = 34%					0.2 0.5 1	
Test for overall effect: Z = 9.77 (P < 0.00001)					0.2 0.0 1	2)
· · · /					Lower Risk	Higher Risk

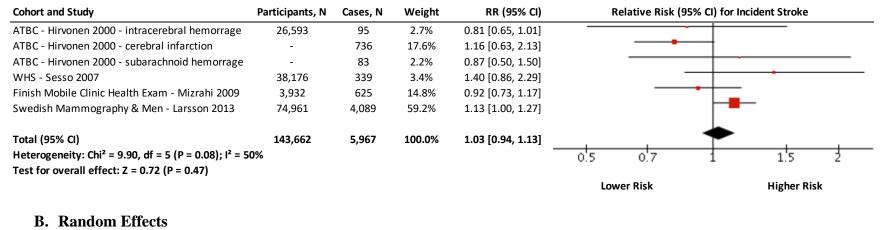
B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Framingham - Gillman 1995	832	97	0.8%	0.70 [0.37, 1.31]	
Zutphen Elderly Study - Keli 1996	552	42	0.4%	0.52 [0.21, 1.31]	
HPFS - Joshipura 1999	38,683	366	1.3%	0.68 [0.41, 1.11]	
Nurses' Health Study - Joshipura 1999	75,596	204	2.3%	0.69 [0.49, 0.98]	
Shibata Study - Yokoyama 2000 - M	880	91	1.2%	1.14 [0.68, 1.90]	
Shibata Study - Yokoyama 2000 - F	1,241	105	1.0%	0.70 [0.40, 1.21]	
Danish Diet Cancer Health - Johnsen 2003	54,506	266	1.5%	0.60 [0.38, 0.94]	
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	2.3%	0.84 [0.59, 1.20]	
ATBC - Larsson 2009 - cerebral infraction	-	2,702	9.9%	0.82 [0.73, 0.92]	
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	4.5%	0.81 [0.64, 1.03]	
ATBC - Larsson 2009 - subarachnoid hemorrhage	-	196	1.6%	0.80 [0.52, 1.24]	
MONICA Finland - Zhang 2011 (b)	36,686	1,478	5.7%	0.99 [0.81, 1.20]	_ _
Swedish Mammography & Men - Larsson 2013	74,961	4,089	9.9%	0.87 [0.77, 0.98]	
MONICA Danish - Tognon 2014	1,849	167	2.8%	0.87 [0.64, 1.19]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.5%	1.07 [0.82, 1.41]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	3.2%	0.80 [0.60, 1.08]	
China Kadoorie Biobank - Du 2016 - ischemic stroke	451,665	3,523	12.8%	0.75 [0.69, 0.81]	+
China Kadoorie Biobank-Du 2016 -hemorrhagic stroke	-	14,579	6.6%	0.64 [0.53, 0.76]	_ —
China Kadoorie Biobank - Du 2016 - other	-	11,054	11.3%	0.88 [0.80, 0.97]	-
PREDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.74 [0.35, 1.56]	
PURE - Miller 2017	135,335	2,234	5.7%	0.93 [0.77, 1.13]	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	6.6%	0.89 [0.74, 1.06]	
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	4.5%	0.93 [0.74, 1.18]	
Total (95% CI) [Random Effects]	987,993	43,702	100.0%	0.83 [0.78, 0.88]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 33.36, df = 22 (P = 0.06	5); I² = 34%			d.	2 0.5 1 2 5
Test for overall effect: Z = 6.30 (P < 0.00001)				U.	.2 0.5 1 2 5
					Lower Risk Higher Risk

Figure S118. Relation between fruit intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND STROKE INCIDENCE

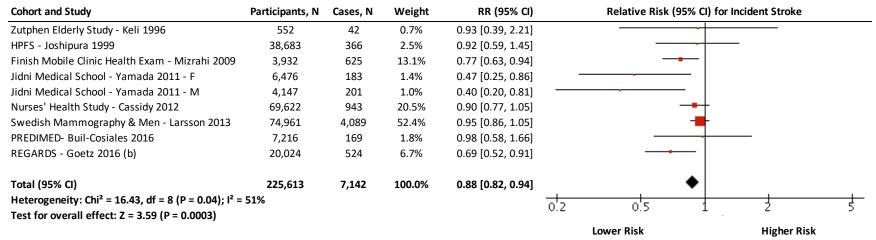
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incide	nt Stroke
Framingham - Gillman 1995	832	97	1.1%	0.61 [0.36, 1.04]		
Zutphen Elderly Study - Keli 1996	552	42	0.4%	0.82 [0.35, 1.94]		_
HPFS - Joshipura 1999	38,683	336	1.5%	0.90 [0.57, 1.41]		
Nurses' Health Study - Joshipura 1999	75,596	204	2.4%	0.89 [0.62, 1.26]		
Shibata Study - Yokoyama 2000 - M	880	91	0.4%	0.33 [0.14, 0.75]		
Shibata Study - Yokoyama 2000 - F	1,241	105	0.2%	0.89 [0.22, 3.64]		
Danish Diet Cancer Health - Johnsen 2003	54,506	266	1.8%	1.00 [0.66, 1.51]		
Miyako Study - Pham 2007	9,651	226	4.0%	1.00 [0.76, 1.32]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	5.5%	1.11 [0.87, 1.40]	_ +•	
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	2.7%	0.80 [0.58, 1.12]		
ATBC - Larsson 2009 - cerebral infraction	26,556	2,702	22.0%	0.75 [0.67, 0.84]		
ATBC - Larsson 2009 - subarachnoid hemorrhage	26,556	196	1.5%	0.62 [0.39, 0.97]		
MONICA Finland - Zhang 2011 (b)	36,686	1,478	7.9%	0.82 [0.67, 1.00]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	22.0%	0.90 [0.80, 1.01]		
MONICA Danish - Tognon 2014	1,849	167	3.1%	0.94 [0.69, 1.29]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	4.0%	0.76 [0.58, 1.00]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	4.0%	0.97 [0.74, 1.28]		
PREDIMED- Buil-Cosiales 2016	7,216	169	0.7%	0.65 [0.34, 1.24]		
PURE - Miller 2017	135,335	2,234	6.6%	1.09 [0.88, 1.36]	_ +	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	7.9%	1.19 [0.97, 1.44]		
Total (95% CI)	564,531	13,607	100.0%	0.88 [0.83, 0.93]	•	
Heterogeneity: Chi ² = 37.99, df = 19 (P = 0.006); i	² = 50%			-	0.2 0.5 1	2 5
Test for overall effect: Z = 4.45 (P < 0.00001)					+	
					Lower Risk	Higher Risk


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident Stroke	
Framingham - Gillman 1995	832	97	2.4%	0.61 [0.36, 1.04]		
Zutphen Elderly Study - Keli 1996	552	42	1.0%	0.82 [0.35, 1.94]		
HPFS - Joshipura 1999	38,683	336	3.1%	0.90 [0.57, 1.41]		
Nurses' Health Study - Joshipura 1999	75,596	204	4.4%	0.89 [0.62, 1.26]		
Shibata Study - Yokoyama 2000 - M	880	91	1.1%	0.33 [0.14, 0.75]		
Shibata Study - Yokoyama 2000 - F	1,241	105	0.4%	0.89 [0.22, 3.64]		
Danish Diet Cancer Health - Johnsen 2003	54,506	266	3.6%	1.00 [0.66, 1.51]		
Miyako Study - Pham 2007	9,651	226	5.9%	1.00 [0.76, 1.32]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	6.9%	1.11 [0.87, 1.40]	.	
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	4.7%	0.80 [0.58, 1.12]	- _	
ATBC - Larsson 2009 - cerebral infraction	26,556	2,702	10.5%	0.75 [0.67, 0.84]		
ATBC - Larsson 2009 - subarachnoid hemorrhage	26,556	196	3.1%	0.62 [0.39, 0.97]		
MONICA Finland - Zhang 2011 (b)	36,686	1,478	8.0%	0.82 [0.67, 1.00]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	10.5%	0.90 [0.80, 1.01]		
MONICA Danish - Tognon 2014	1,849	167	5.1%	0.94 [0.69, 1.29]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	5.9%	0.76 [0.58, 1.00]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	5.9%	0.97 [0.74, 1.28]		
PREDIMED- Buil-Cosiales 2016	7,216	169	1.7%	0.65 [0.34, 1.24]		
PURE - Miller 2017	135,335	2,234	7.5%	1.09 [0.88, 1.36]	_ _	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	8.0%	1.19 [0.97, 1.44]		
Total (95% Cl) [Random Effects]	564,531	13,607	100.0%	0.89 [0.81, 0.97]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 37.99, df = 19	(P = 0.006); I ² = 50	1%		-		+
Test for overall effect: Z = 2.57 (P = 0.01)					o'.2 o'.5 1 2	5
					Lower Risk Higher Risk	

Figure S119. Relation between intake of vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

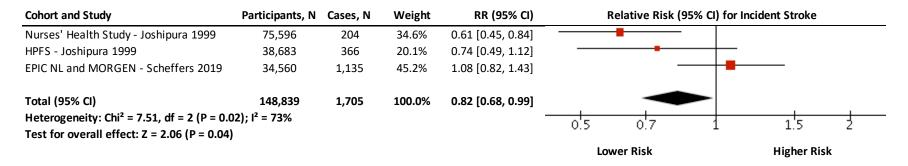
BERRIES AND STROKE INCIDENCE


A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incid	ent Stroke
ATBC - Hirvonen 2000 - cerebral infarction	26,593	736	23.40%	0.81 [0.65, 1.01]		
ATBC - Hirvonen 2000 - subarachnoid hemorrage	-	83	6.10%	1.16 [0.63, 2.13]		
ATBC - Hirvonen 2000 - intracerebral hemorrage	-	95	7.20%	0.87 [0.50, 1.50]		
WHS - Sesso 2007	38,176	339	8.70%	1.40 [0.86, 2.29]		•
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	21.70%	0.92 [0.73, 1.17]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	32.80%	1.13 [1.00, 1.27]		
Total (95% CI) [Random Effects]	143,662	5,967	100.0%	1.00 [0.85, 1.18]	-	
Heterogeneity: Tau ² = 0.02; Chi ² = 9.90, df = 5 (P =	= 0.08); l² = 50%					
Test for overall effect: Z = 0.02 (P = 0.99)					0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk

Figure S120. Relation between intake of berries and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CITRUS FRUIT AND STROKE INCIDENCE

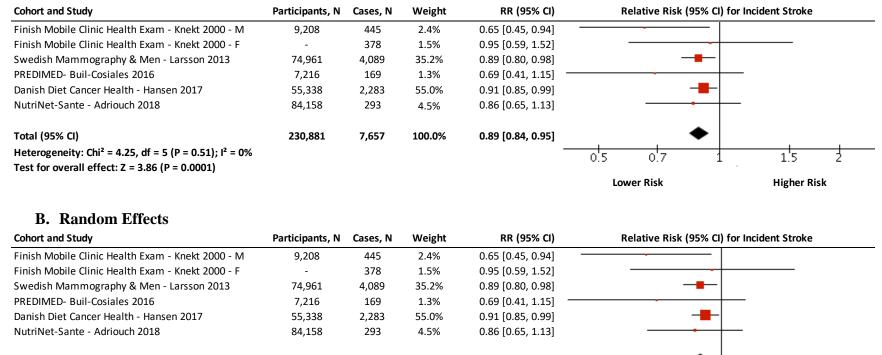

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke	
Zutphen Elderly Study - Keli 1996	552	42	2.3%	0.93 [0.39, 2.21]		
HPFS - Joshipura 1999	38,683	366	7.0%	0.92 [0.59, 1.45]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	18.1%	0.77 [0.63, 0.94]		
Jidni Medical School - Yamada 2011 - M	4,147	201	3.3%	0.40 [0.20, 0.81]		
Jidni Medical School - Yamada 2011 - F	6,476	183	4.3%	0.47 [0.25, 0.86]		
Nurses' Health Study - Cassidy 2012	69,622	943	21.0%	0.90 [0.77, 1.05]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	25.2%	0.95 [0.86, 1.05]		
PREDIMED- Buil-Cosiales 2016	7,216	169	5.4%	0.98 [0.58, 1.66]		
REGARDS - Goetz 2016 (b)	20,024	524	13.4%	0.69 [0.52, 0.91]	_	
Total (95% CI) [Random Effects]	225,613	7,142	100.0%	0.82 [0.71, 0.93]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 16.43, df = 8 (I	P = 0.04); I ² = 51%				++	+
Test for overall effect: Z = 2.93 (P = 0.003)					0.2 0.5 1 2	5
					Lower Risk Higher Risk	

Figure S121. Relation between citrus fruit intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND STROKE INCIDENCE

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident Stroke
Nurses' Health Study - Joshipura 1999	75,596	204	34.40%	0.61 [0.45, 0.84]		
HPFS - Joshipura 1999	38,683	366	29.10%	0.74 [0.49, 1.12]		<u> </u>
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	36.50%	1.08 [0.82, 1.43]		
Total (95% CI) [Random Effects]	148,839	1,705	100.0%	0.80 [0.55, 1.15]		
Heterogeneity: Tau ² = 0.08; Chi ² = 7.51, o	lf = 2 (P = 0.02); I ²	² = 73%				
Test for overall effect: Z = 1.21 (P = 0.23)				0.5 0.7	1 1.5 2
					Lower Risk	Higher Risk

Figure S122. Relation between intake of fruit juice and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND STROKE INCIDENCE

A. Fixed Effects

 Total (95% Cl) [Random Effects]
 230,881

 Heterogeneity: Tau² = 0.00; Chi² = 4.25, df = 5 (P = 0.51); l² = 0%

Test for overall effect: Z = 3.86 (P = 0.0001)

Figure S123. Relation between intake of pommes fruit and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

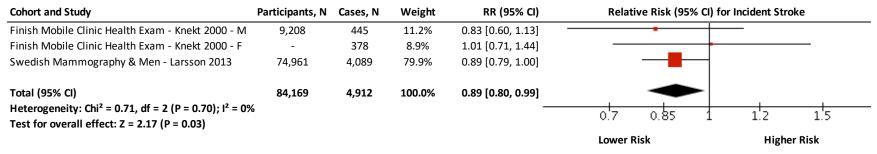
100.0%

0.89 [0.84, 0.95]

0.5

0.7

Lower Risk

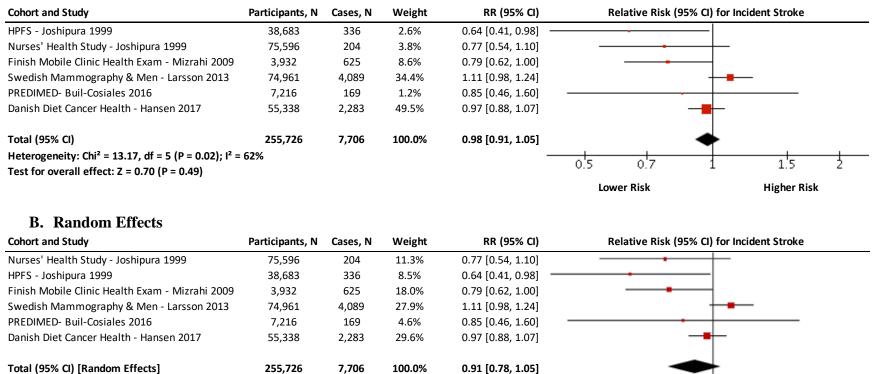

1.5

Higher Risk

7,657

ALLIUM VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects



B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke	
Finish Mobile Clinic Health Exam - Knekt 2000 - M	9,208	445	11.2%	0.83 [0.60, 1.13]		
Finish Mobile Clinic Health Exam - Knekt 2000 - F	-	378	8.9%	1.01 [0.71, 1.44]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	79.9%	0.89 [0.79, 1.00]		
Total (95% CI) [Random Effects]	84,169	4,912	100.0%	0.89 [0.80 <i>,</i> 0.99]	-	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.71, df = 2 (P	= 0.70); l² = 0%			-		1 5
Test for overall effect: Z = 2.17 (P = 0.03)					0.7 0.85 1 1.2	1.5
					Lower Risk Higher Ris	sk

Figure S124. Relation between intake of allium vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

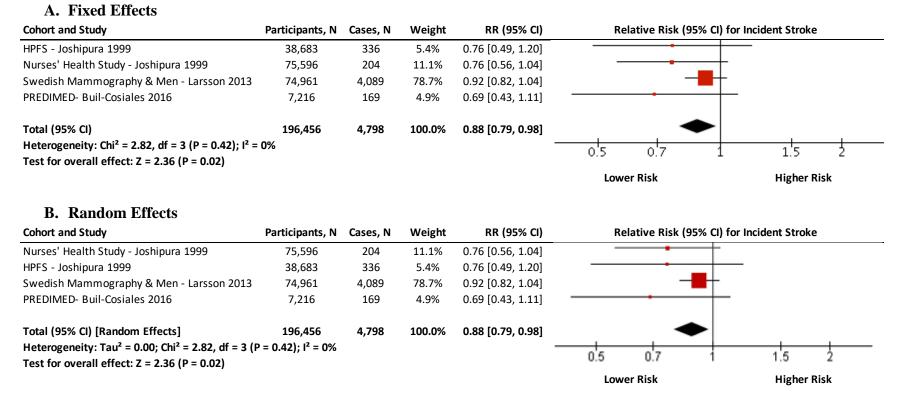
CRUCIFEROUS VEGETABLES AND STROKE INCIDENCE

Heterogeneity: Tau² = 0.02; Chi² = 13.17, df = 5 (P = 0.02); l² = 62%

Test for overall effect: Z = 1.34 (P = 0.18)

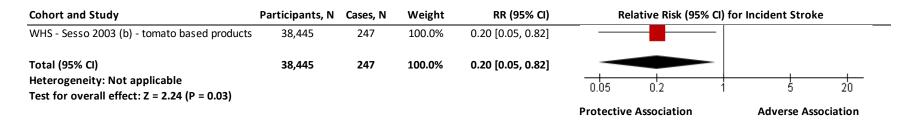
A. Fixed Effects

Lower Risk Higher Risk


1.5

0.7

0.5


Figure S125. Relation between intake of cruciferous vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND STROKE INCIDENCE

Figure S126. Relation between intake of green leafy vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

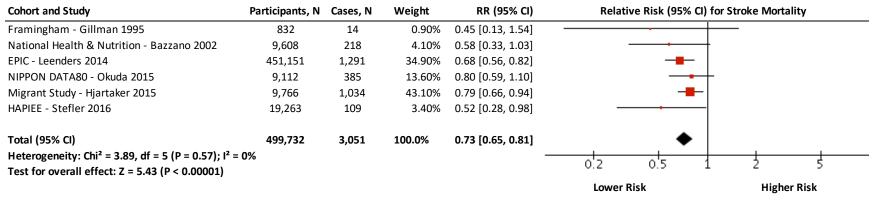
TOMATOES AND STROKE INCIDENCE

Figure S127. Relation between intake of tomatoes and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I, with values $\geq 50\%$ indicating substantial heterogeneity.

ohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
erries					
TBC - Hirvonen 2000 - intracerebral hemorrage	26,593	95	0.5%	0.87 [0.50, 1.50]	
TBC - Hirvonen 2000 - cerebral infarction	-	736	3.3%	0.81 [0.65, 1.01]	
TBC - Hirvonen 2000 - subarachnoid hemorrag	-	83	0.4%	1.16 [0.63, 2.13]	
VHS - Sesso 2007	38,176	339	0.6%	1.40 [0.86, 2.29]	
inish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	2.8%	0.92 [0.73, 1.17]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	11.2%	1.13 [1.00, 1.27]	-
ubtotal (95% CI)	143,662	5,967	18.9%	1.03 [0.94, 1.13]	◆
leterogeneity: Chi ² = 9.90, df = 5 (P = 0.08); l ² :	= 50%				
est for overall effect: Z = 0.72 (P = 0.47)					
itrus					
utphen Elderly Study - Keli 1996	552	42	0.2%	0.93 [0.39, 2.21]	
IPFS - Joshipura 1999	38,683	366	0.8%	0.92 [0.59, 1.45]	
inish Mobile Clinic Health Exam - Mizrahi 2009		625	4.0%	0.77 [0.63, 0.94]	— —
dni Medical School - Yamada 2011 - M	4,147	201	0.3%	0.40 [0.20, 0.81]	
dni Medical School - Yamada 2011 - F	6,476	183	0.4%	0.47 [0.25, 0.86]	
Iurses' Health Study - Cassidy 2012	69,622	943	6.3%	0.90 [0.77, 1.05]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	16.1%	0.95 [0.86, 1.05]	
EGARDS - Goetz 2016 (b)	20,024	524	2.1%	0.69 [0.52, 0.91]	
REDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.98 [0.58, 1.66]	
ubtotal (95% CI)	225,613	7,142	30.8%	0.88 [0.82, 0.94]	•
leterogeneity: Chi ² = 16.43, df = 8 (P = 0.04); l ²		7,142	50.070	0.00 [0.02, 0.04]	•
est for overall effect: Z = 3.59 (P = 0.0003)	- 51/0				
ruit Juice					
Iurses' Health Study - Joshipura 1999	75,596	204	1.6%	0.61 [0.45, 0.84]	
IPFS - Joshipura 1999	38,683	366	0.9%	0.74 [0.49, 1.12]	
PIC NL and MORGEN - Scheffers 2019	34,560	1,135	2.1%	1.08 [0.82, 1.43]	
ubtotal (95% CI)	148,839	1,705	4.5%	0.82 [0.68, 0.99]	◆
eterogeneity: Chi ² = 7.51, df = 2 (P = 0.02); I ² =	= 73%				
est for overall effect: Z = 2.06 (P = 0.04)					
ommes					
inish Mobile Clinic Health Exam - Knekt 2000 -	9,208	445	1.1%	0.65 [0.45, 0.94]	
inish Mobile Clinic Health Exam - Knekt 2000 -	-	378	0.7%	0.95 [0.59, 1.52]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	16.1%	0.89 [0.80, 0.98]	
REDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.69 [0.41, 1.15]	
anish Diet Cancer Health - Hansen 2017	55,338	2,283	25.2%	0.91 [0.85, 0.99]	-
lutriNet-Sante - Adriouch 2018	84,158	293	2.1%	0.86 [0.65, 1.13]	
ubtotal (95% CI)	230,881	7,657	45.8%	0.89 [0.84, 0.95]	•
leterogeneity: Chi ² = 4.25, df = 5 (P = 0.51); l ² :	= 0%				•
est for overall effect: Z = 3.86 (P = 0.0001)					
. ,	3 (P = 0.02), I ² =	70.6%			
est for subgroup differences: Chi ² = 10.20, df =	3 (P = 0.02), I ² =	70.6%			0.2 0.5 1 2

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Berries					
ATBC - Hirvonen 2000 - subarachnoid hemorrag	26,593	83	1.4%	1.16 [0.63, 2.13]	
ATBC - Hirvonen 2000 - intracerebral hemorrage	-	95	1.7%	0.87 [0.50, 1.50]	
ATBC - Hirvonen 2000 - cerebral infarction	-	736	6.3%	0.81 [0.65, 1.01]	
WHS - Sesso 2007	38,176	339	2.1%	1.40 [0.86, 2.29]	
inish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	5.8%	0.92 [0.73, 1.17]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	9.6%	1.13 [1.00, 1.27]	
Subtotal (95% CI)	143,662	5,967	26.9%	1.00 [0.85, 1.18]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 9.90, df = 5 (F	P = 0.08); I ² = 50%	6			
Test for overall effect: Z = 0.02 (P = 0.99)					
Citrus					
utphen Elderly Study - Keli 1996	552	42	0.8%	0.93 [0.39, 2.21]	
HPFS - Joshipura 1999	38,683	366	2.4%	0.92 [0.59, 1.45]	
inish Mobile Clinic Health Exam - Mizrahi کوں?	3,932	625	6.9%	0.77 [0.63, 0.94]	_ -
idni Medical School - Yamada 2011 - F	6,476	183	1.4%	0.47 [0.25, 0.86]	
lidni Medical School - Yamada 2011 - M	4,147	201	1.1%	0.40 [0.20, 0.81]	
Nurses' Health Study - Cassidy 2012	69,622	943	8.2%	0.90 [0.77, 1.05]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	10.3%	0.95 [0.86, 1.05]	
PREDIMED- Buil-Cosiales 2016	7,216	169	1.8%	0.98 [0.58, 1.66]	_
REGARDS - Goetz 2016 (b)	20,024	524	4.8%	0.69 [0.52, 0.91]	
Subtotal (95% CI)	225,613	7,142	37.7%	0.82 [0.71, 0.93]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 16.43, df = 8 Fest for overall effect: Z = 2.93 (P = 0.003)	(P = 0.04); I ² = 51	%			
Fruit Juice					
HPFS - Joshipura 1999	38,683	366	2.4%	0.74 [0.49, 1.12]	
Nurses' Health Study - Joshipura 1999	75,596	204	3.7%	0.61 [0.45, 0.84]	
PIC NL and MORGEN - Scheffers 2019	34,560	1,135	4.4%	1.08 [0.82, 1.43]	
Subtotal (95% Cl)	148,839	1,705	10.5%	0.80 [0.55, 1.15]	
leterogeneity: Tau ² = 0.08; Chi ² = 7.51, df = 2 (F	P = 0.02); I ² = 73%	6			
est for overall effect: Z = 1.21 (P = 0.23)					
ommes			/		
inish Mobile Clinic Health Exam - Knekt 2000 -	9,208	378	2.0%	0.95 [0.59, 1.52]	
inish Mobile Clinic Health Exam - Knekt 2000 -	-	445	2.9%	0.65 [0.45, 0.94]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	9.6%	0.89 [0.80, 0.98]	
REDIMED- Buil-Cosiales 2016	7,216	169	1.7%	0.69 [0.41, 1.15]	
Danish Diet Cancer Health - Hansen 2017	55,338	2,283	10.2%	0.91 [0.85, 0.99]	
NutriNet-Sante - Adriouch 2018	84,158	293	4.4%	0.86 [0.65, 1.13]	
Subtotal (95% CI)	230,881	7,657	30.7%	0.89 [0.84, 0.95]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 4.25, df = 5 (F Fest for overall effect: Z = 3.86 (P = 0.0001)	P = 0.51); I ² = 0%				
Fest for subgroup differences: Chi ² = 3.91, df = 3	(P = 0.27). I ² = 2	3.3%			
······································					0.2 0.5 1 2 Lower Risk Higher Risk

Figure S128. Relation between sources of fruit and stoke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Allium					
Finish Mobile Clinic Health Exam - Knekt 2000 - M	9,208	445	2.6%	0.83 [0.60, 1.13]	
Finish Mobile Clinic Health Exam - Knekt 2000 - F	-	378	2.0%	1.01 [0.71, 1.44]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	18.4%	0.89 [0.79, 1.00]	-
Subtotal (95% CI)	84,169	4,912	23.0%	0.89 [0.80, 0.99]	◆
Heterogeneity: Chi ² = 0.71, df = 2 (P = 0.70); I ² = 0%					
Test for overall effect: Z = 2.17 (P = 0.03)					
Cruciferous					
Nurses' Health Study - Joshipura 1999	75,596	204	2.0%	0.77 [0.54, 1.10]	
HPFS - Joshipura 1999	38,683	336	1.4%	0.64 [0.41, 0.98]	
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	4.6%	0.79 [0.62, 1.00]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	18.4%	1.11 [0.98, 1.24]	
PREDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.85 [0.46, 1.60]	
Danish Diet Cancer Health - Hansen 2017	55,338	2,283	26.5%	0.97 [0.88, 1.07]	+
Subtotal (95% CI)	255,726	7,706	53.5%	0.98 [0.91, 1.05]	4
Heterogeneity: Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62%					
Test for overall effect: Z = 0.70 (P = 0.49)					
Green Leafy					
HPFS - Joshipura 1999	38,683	336	1.3%	0.76 [0.49, 1.20]	
Nurses' Health Study - Joshipura 1999	75,596	204	2.6%	0.76 [0.56, 1.04]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	18.4%	0.92 [0.82, 1.04]	-
PREDIMED- Buil-Cosiales 2016	7,216	169	1.1%	0.69 [0.43, 1.11]	
Subtotal (95% CI)	196,456	4,798	23.4%	0.88 [0.79, 0.98]	
Heterogeneity: Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0%				. , .	•
Test for overall effect: Z = 2.36 (P = 0.02)					
Tomatoes					
WHS - Sesso 2003 (b) - tomato based products	38,445	247	0.1%	0.20 [0.05, 0.82]	
Subtotal (95% CI)	38,445	247	0.1%	0.20 [0.05, 0.82]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 2.24 (P = 0.03)					
Test for subgroup differences: Chi ² = 8.08, df = 3 (P = 0	.04), I² = 62.9%				
					0.05 0.2 1 5 20
					Lower Risk Higher Risk

	Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)		Relative Risk (95% CI) for Incident Stroke
Finish Mobile Clinic Health Exam - Knekt 2000 378 4.6% 101 [0.71, 1.44] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.89 [0.79, 1.00] Heterogeneity: Tau" = 0.00; Ch ² = 0.71, df = 2 (P = 0.70); l* = 0% Text for overall effect: 2 = 2.17 (P = 0.37) Cruiferous Danish Diet Cancer Health - Hansen 2017 55,38 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 0.46 [0.41, 0.98] Writs' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED: Buil-Cosiale 2016 7,216 169 1.7% 0.88 [0.46, 1.60] Wredish Mammography & Men - Larsson 2013 74,961 4.069 14.7% 1.11 [0.98, 1.24] Swedish Mammography & Men - Larsson 2013 74,961 4.069 14.7% 0.91 [0.98, 1.05] Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Tomatos Writs - Jaski (P = 0.32); I* = 0.42; I* = 0.44; U* = 0.20 [0.05, 0.82] Tomatos Writs - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Text for overall effect: Z = 2.36 (P = 0.02); I* = 0.42; I* = 0.42; I* = 0.42; I* = 0.42; I* = 0.42; I* = 0.42; I* = 0.44; U* = 0.44; U* = 0.44; U* = 0	Allium						
Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.89 [0.79, 1.00] Subtotal (55% C) 84,169 4,912 24.8% 0.89 [0.80, 0.99] Heterogeneity: Tau ² = 0.00; Ch ² = 0.71, df = 2 (P = 0.70); P = 0% Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,38 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic health Exam - Mizrahi 2005 3,393 2625 8.1% 0.79 [0.62, 1.00] HPF5 - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] HPFS - Joshipura 1999 75,596 204 4.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.22); P = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 12.7% 0.85 [0.56, 1.04] HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Tomatoes W18 - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.36 (P = 0.02) Test for swell effect: Z = 2.47 (P = 0.03) Test for swell affect: Z = 2.47 (P = 0.30) Test for swell affect: Z = 2.47 (P = 0.30) Test for s	Finish Mobile Clinic Health Exam - Knekt 2000 -	9,208	445	5.5%	0.83 [0.60, 1.13]		
Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Ch ² = 0.71, df = 2 (P = 0.70); l ² = 0% Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% Unres' Health Study - Joshipura 1999 38,683 33.6 Nurse's Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.00] PREDIMED: Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurse's Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 166,456 4,798 26.2% 0.68 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] WHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] UNHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] UNHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] UNHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4%	Finish Mobile Clinic Health Exam - Knekt 2000 -	-	378	4.6%	1.01 [0.71, 1.44]		_
Heterogeneity: Tau ² = 0.00; Ch ² = 0.71; df = 2 (P = 0.70); l ² = 0% Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mitzrah 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED: Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% Cl) 4.13.17, df = 5 (P = 0.02); l ⁴ = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 147% 0.22 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.26 (P = 0.03) Test for subgroup differences: Ch ² = 4.37, df = 3 (P = 0.22), l ² = 31.4% URL - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.26 (P = 0.03) Test for subgroup differences: Ch ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Swedish Mammography & Men - Larsson 2013	74,961	4,089	14.7%	0.89 [0.79, 1.00]		
Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] PHES - Joshipura 1999 38,683 336 0.5% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PHEDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mamography & Men - Larsson 2013 74,961 4.089 14.7% 1.11 [0.98, 1.24] Swedish Mamography & Men - Larsson 2013 74,961 4.089 0.91 [0.78, 1.05] 10.78 Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] 10.78 Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] 10.78 Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] 10.79	Subtotal (95% CI)	84,169	4,912	24.8%	0.89 [0.80, 0.99]		•
Chuiderous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 0.48 0.47 [0.54, 1.00] PREDMED- Buil-Cosiales 2016 7,216 169 1.7% 0.88 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4.089 14.7% 1.11 [0.98, 1.24] Subtoal (95% Cl) 125,726 7.706 48.6% 0.91 [0.78, 1.05] Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] REDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.76 [0.56, 1.04] MPFS - Joshipura 1999 75,596 2.04 5.5% 0.76 [0.56, 1.04] REDIMED- Buil-Cosiales 2016 7.216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4.089 14.7% 0.92 [0.82, 1.04] 0.20 Swe	Heterogeneity: Tau ² = 0.00; Chi ² = 0.71, df = 2 (P = 0.70); I ² = 0%					
Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% C) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); t ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% C) 196,721 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); t ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 30,2 1 5 2 2	Test for overall effect: Z = 2.17 (P = 0.03)						
Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WH5 - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WH5 - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WH5 - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,45 247 0.4% 0.20	Cruciferous						
HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Danish Diet Cancer Health - Hansen 2017	55,338	2,283	16.1%	0.97 [0.88, 1.07]		-
Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 40,89 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) PREDIMED- Buil-Cosiales 2016 7,216 1.002]; I ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 75,596 204 7,216 169 2.9% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] 0.88 [0.79, 0.98] 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.12 4.7% 1.11 4.7% 4	Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	8.1%	0.79 [0.62, 1.00]		
PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for overall effect: Z = 2.24 (P = 0.03) Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	HPFS - Joshipura 1999		336	3.3%	0.64 [0.41, 0.98]		_
Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% C) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMEDE Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% C) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Nurses' Health Study - Joshipura 1999	75,596	204	4.6%	0.77 [0.54, 1.10]		_ _
Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	PREDIMED- Buil-Cosiales 2016	7,216	169	1.7%	0.85 [0.46, 1.60]		
Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for overall effect: C = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Swedish Mammography & Men - Larsson 2013	74,961	4,089	14.7%	1.11 [0.98, 1.24]		-
Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Image: Comparison of the comparison	Subtotal (95% CI)	255,726	7,706	48.6%	0.91 [0.78, 1.05]		•
HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%							
Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%		20 602	226	2 10/	0.76 [0.40, 1.20]		
PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	•						
Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%							
Subtotal (95% Cl) 196,456 4,798 26.2% $0.88 [0.79, 0.98]$ Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%							
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.82$, $df = 3$ (P = 0.42); $l^2 = 0\%$ Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: $Chi^2 = 4.37$, $df = 3$ (P = 0.22), $l^2 = 31.4\%$							
Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) Baseline Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%			4,750	20.278	0.88 [0.75, 0.58]		•
WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%		1 - 0.42),1 - 0/0					
WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Tomatoes						
Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), I ² = 31.4% 0.05 0.2 1 5 2		38.445	247	0.4%	0.20 [0.05, 0.82]		
Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4% 10005 0.2 1 1000 1							
Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%		-					
0.05 0.2 1 5 2	Test for overall effect: Z = 2.24 (P = 0.03)						
	Test for subgroup differences: Chi ² = 4.37, df = 3	3 (P = 0.22), I ² = 3	1.4%				
						0.05	0/2 1 5
							Lower Risk Higher Risk

Figure S129. Relation between sources of vegetables and stoke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mortality
Framingham - Gillman 1995	832	14	0.9%	0.45 [0.13, 1.54]	
National Health & Nutrition - Bazzano 2002	9,608	218	4.1%	0.58 [0.33, 1.03]	
EPIC - Leenders 2014	451,151	1,291	34.9%	0.68 [0.56, 0.82]	
NIPPON DATA80 - Okuda 2015	9,112	385	13.6%	0.80 [0.59, 1.10]	
Migrant Study - Hjartaker 2015	9,766	1,034	43.1%	0.79 [0.66, 0.94]	
HAPIEE - Stefler 2016	19,263	109	3.4%	0.52 [0.28, 0.98]	
Total (95% CI) [Random Effects]	499,732	3,051	100.0%	0.73 [0.65, 0.81]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 3.89, df = 5 (Test for overall effect: Z = 5.43 (P < 0.00001)	P = 0.57); I ² = 0%			_	0.2 0.5 1 2 5
					Lower Risk Higher Risk

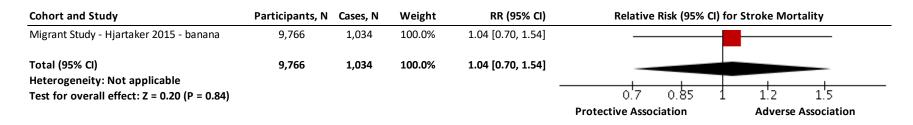
Figure S130. Relation between total fruit and vegetables intake and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND STROKE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mortality
Health Food Shoppers - Appleby 2002 - M	4,325	142	1.3%	0.89 [0.61, 1.29]	
Health Food Shoppers - Appleby 2002 - F	6,416	214	1.6%	0.78 [0.56, 1.09]	
Life Span Study - Sauvaget 2003 - M	14,966	692	3.8%	0.65 [0.52, 0.81]	_
Life Span Study - Sauvaget 2003 - F	23,471	1,234	7.2%	0.75 [0.64, 0.88]	_
Boyd Orr Cohort - Ness 2005	4,028	83	0.3%	0.48 [0.21, 1.10]	_
Miyako Study - Pham 2007	9,651	226	1.1%	0.90 [0.59, 1.35]	
JACC - Nagura 2009	59,485	1,053	3.8%	0.65 [0.52, 0.81]	_ -
Multiethnic Cohort - Sharma 2013 - M	78,410	434	1.4%	1.11 [0.78, 1.57]	
Multiethnic Cohort - Sharma 2013 - F	95,618	426	1.3%	0.83 [0.57, 1.20]	
MONICA Danish - Tognon 2014	1,849	40	0.4%	0.59 [0.31, 1.12]	
EPIC - Leenders 2014	451,151	1,291	5.7%	1.13 [0.95, 1.35]	+•
NIPPON DATA80 - Okuda 2015	9,112	385	2.4%	0.72 [0.55, 0.95]	
UK Women's Cohort - Lai 2015	30,458	148	0.6%	0.70 [0.41, 1.18]	
Migrant Study - Hjartaker 2015	9,766	1,034	4.6%	0.89 [0.73, 1.08]	
Linxian Nutrition - Wang 2016	2,445	452	51.5%	0.98 [0.92, 1.04]	•
HAPIEE - Stefler 2016	19,263	109	0.3%	0.66 [0.28, 1.53]	
China Kadoorie Biobank - Du 2017 - ischemic	462,342	585	3.2%	0.67 [0.53, 0.85]	_
China Kadoorie Biobank- Du 2017-hemorrhagic	-	2,351	9.5%	0.68 [0.59, 0.78]	
Total (95% CI)	1,282,756	10,899	100.0%	0.87 [0.84, 0.91]	•
Heterogeneity: Chi ² = 67.81, df = 17 (P < 0.0000	1); l² = 75%			7	.2 0.5 1 2 5
Test for overall effect: Z = 6.30 (P < 0.00001)				Ť	
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stro	ke Mortality
Health Food Shoppers - Appleby 2002 - F	6,416	214	5.2%	0.78 [0.56, 1.09]		
Health Food Shoppers - Appleby 2002 - M	4,325	142	4.6%	0.89 [0.61, 1.29]		
Life Span Study - Sauvaget 2003 - F	23,471	1,234	8.1%	0.75 [0.64, 0.88]	-	
Life Span Study - Sauvaget 2003 - M	14,966	692	7.1%	0.65 [0.52, 0.81]	-	
Boyd Orr Cohort - Ness 2005	4,028	83	1.5%	0.48 [0.21, 1.10]		
Miyako Study - Pham 2007	9,651	226	4.2%	0.90 [0.59, 1.35]		
JACC - Nagura 2009	59,485	1,053	7.1%	0.65 [0.52, 0.81]	-	
Multiethnic Cohort - Sharma 2013 - M	78,410	434	4.9%	1.11 [0.78, 1.57]		-
Multiethnic Cohort - Sharma 2013 - F	95,618	426	4.6%	0.83 [0.57, 1.20]		
EPIC - Leenders 2014	451,151	1,291	7.8%	1.13 [0.95, 1.35]	+	
MONICA Danish - Tognon 2014	1,849	40	2.3%	0.59 [0.31, 1.12]		
Migrant Study - Hjartaker 2015	9,766	1,034	7.4%	0.89 [0.73, 1.08]		
NIPPON DATA80 - Okuda 2015	9,112	385	6.1%	0.72 [0.55, 0.95]		
UK Women's Cohort - Lai 2015	30,458	148	3.0%	0.70 [0.41, 1.18]		
Linxian Nutrition - Wang 2016	2,445	452	9.4%	0.98 [0.92, 1.04]	-	
HAPIEE - Stefler 2016	19,263	109	1.5%	0.66 [0.28, 1.53]		
China Kadoorie Biobank- Du 2017-hemorrhagic	462,342	2,351	8.4%	0.68 [0.59 <i>,</i> 0.78]	_ 	
China Kadoorie Biobank - Du 2017 - ischemic	-	585	6.7%	0.67 [0.53, 0.85]	_	
Total (95% CI) [Random Effects]	1,282,756	10,899	100.0%	0.79 [0.71, 0.89]	•	
Heterogeneity: Tau ² = 0.03; Chi ² = 67.81, df = 17	′ (P < 0.00001); I ²	= 75%			0.2 0.5 1	
Test for overall effect: Z = 4.12 (P < 0.0001)					0.2 0.5 1	2
					Lower Risk	Higher Risk

Figure S131. Relation between fruit intake and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


VEGETABLES AND STROKE MORTALITY

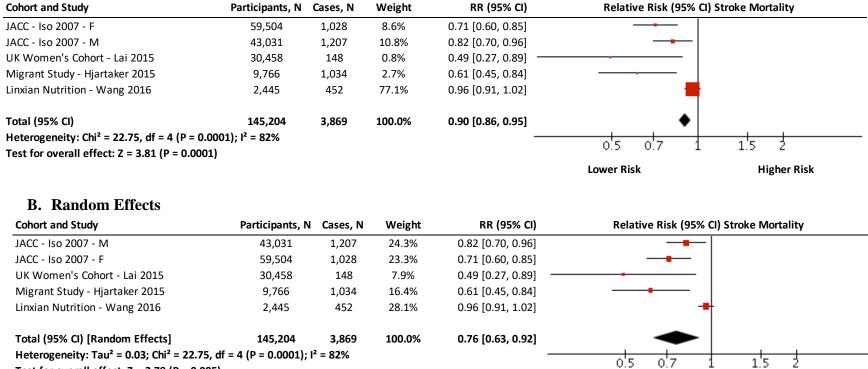
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke N	Nortality
Life Span Study - Sauvaget 2003 - M	14,966	692	4.5%	0.77 [0.62, 0.96]		
Life Span Study - Sauvaget 2003 - F	23,471	1,234	6.7%	0.81 [0.68, 0.97]	_ 	
Boyd Orr Cohort - Ness 2005	4,028	83	0.4%	0.40 [0.19, 0.84]		
Miyako Study - Pham 2007	9,651	226	2.8%	1.00 [0.76, 1.32]		
JACC - Nagura 2009	59,485	1,053	5.4%	1.09 [0.90, 1.33]	_ + •	
Multiethnic Cohort - Sharma 2013 - F	95,618	426	1.3%	0.79 [0.53, 1.16]		
Multiethnic Cohort - Sharma 2013 - M	78,410	434	1.5%	1.01 [0.70, 1.47]		
MONICA Danish - Tognon 2014	1,849	40	0.5%	0.90 [0.48, 1.68]		
EPIC - Leenders 2014	451,151	1,291	5.4%	0.68 [0.56, 0.82]	_ 	
NIPPON DATA80 - Okuda 2015	9,112	385	2.4%	0.81 [0.60, 1.09]	+	
Migrant Study - Hjartaker 2015	9,766	1,034	5.4%	0.95 [0.78, 1.16]	-	
Linxian Nutrition - Wang 2016	2,445	452	60.0%	1.01 [0.95, 1.07]		
HAPIEE - Stefler 2016	19,263	109	0.6%	0.69 [0.38, 1.24]		
PLSAW - Blekkenhorst 2017	1,226	92	3.2%	0.80 [0.62, 1.04]		
Total (95% CI)	780,441	7,551	100.0%	0.94 [0.90, 0.99]	•	
Heterogeneity: Chi ² = 34.54, df = 13 (P = 0.0	0010); I ² = 62%				0,2 0,5 1	<u> </u>
Test for overall effect: Z = 2.58 (P = 0.010)					o.'z o.'s 1	2 5
					Lower Risk H	ligher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mo	rtality
Life Span Study - Sauvaget 2003 - M	14,966	692	9.0%	0.77 [0.62, 0.96]		
Life Span Study - Sauvaget 2003 - F	23,471	1,234	10.3%	0.81 [0.68, 0.97]		
Boyd Orr Cohort - Ness 2005	4,028	83	1.7%	0.40 [0.19, 0.84]		
Miyako Study - Pham 2007	9,651	226	7.2%	1.00 [0.76, 1.32]		
JACC - Nagura 2009	59,485	1,053	9.6%	1.09 [0.90, 1.33]	- +	
Multiethnic Cohort - Sharma 2013 - M	78,410	434	5.0%	1.01 [0.70, 1.47]		
Multiethnic Cohort - Sharma 2013 - F	95,618	426	4.7%	0.79 [0.53, 1.16]		
EPIC - Leenders 2014	451,151	1,291	9.6%	0.68 [0.56, 0.82]	_ 	
MONICA Danish - Tognon 2014	1,849	40	2.3%	0.90 [0.48, 1.68]		
NIPPON DATA80 - Okuda 2015	9,112	385	6.7%	0.81 [0.60, 1.09]		
Migrant Study - Hjartaker 2015	9,766	1,034	9.6%	0.95 [0.78, 1.16]	_	
HAPIEE - Stefler 2016	19,263	109	2.5%	0.69 [0.38, 1.24]		
Linxian Nutrition - Wang 2016	2,445	452	14.1%	1.01 [0.95, 1.07]	+	
PLSAW - Blekkenhorst 2017	1,226	92	7.7%	0.80 [0.62, 1.04]		
Total (95% Cl) [Random Effects]	780,441	7,551	100.0%	0.86 [0.78, 0.96]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 34.54, df	= 13 (P = 0.0010); I ²	= 62%			0.2 0.5 1 2	<u> </u>
Test for overall effect: Z = 2.79 (P = 0.005)						2
					Lower Risk Hig	her Risk

Figure S132. Relation between intake of vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

BANANAS AND STROKE MORTALITY

Figure S133. Relation between intake of bananas and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

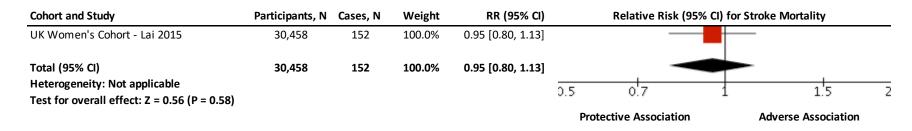

BERRIES AND STROKE MORTALITY

Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for Stroke Mortality UK Women's Cohort - Lai 2015 30,458 10.7% 1.08 [0.65, 1.80] 148 Migrant Study - Hjartaker 2015 9,766 1,034 89.3% 0.96 [0.81, 1.15] Total (95% CI) 40,224 1,182 100.0% 0.97 [0.82, 1.15] Heterogeneity: $Chi^2 = 0.19$, df = 1 (P = 0.66); $I^2 = 0\%$ 0.5 1'5 0.7 Test for overall effect: Z = 0.32 (P = 0.75) Lower Risk **Higher Risk B. Random Effects** Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for Stroke Mortality UK Women's Cohort - Lai 2015 30,458 148 10.7% 1.08 [0.65, 1.80] Migrant Study - Hjartaker 2015 9,766 0.96 [0.81, 1.15] 1,034 89.3% 0.97 [0.82, 1.15] Total (95% CI) [Random Effects] 40,224 1,182 100.0% Heterogeneity: Tau² = 0.00; Chi² = 0.19, df = 1 (P = 0.66); l² = 0% 15 0.5 0.7 Test for overall effect: Z = 0.32 (P = 0.75) Lower Risk **Higher Risk**

Figure S134. Relation between intake of berries and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

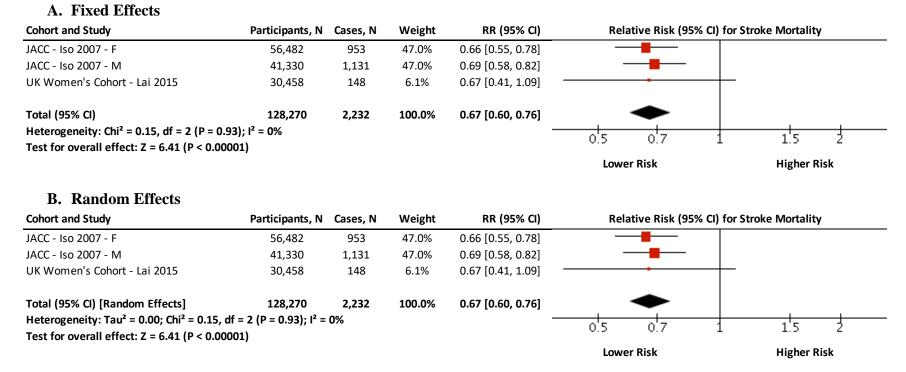
CITRUS FRUIT AND STROKE MORTALITY

A. Fixed Effects

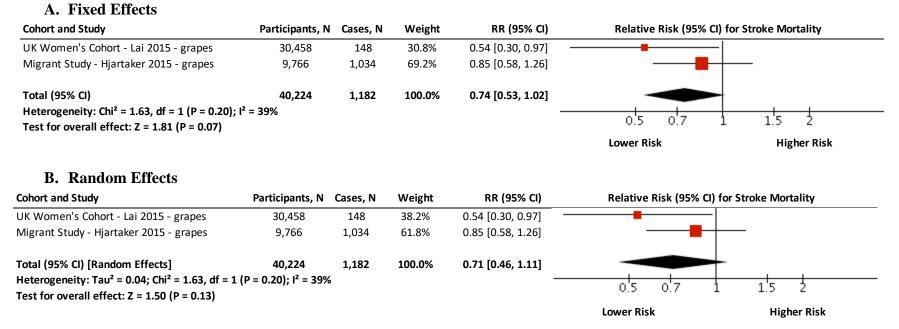


Test for overall effect: Z = 2.79 (P = 0.005)

Lower Risk Higher Risk


Figure S135. Relation between intake of citrus fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

DRIED FRUIT AND STROKE MORTALITY


Figure S136. Relation between intake of dried fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND STROKE MORTALITY

Figure S137. Relation between intake of fruit juice and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GRAPES AND STROKE MORTALITY

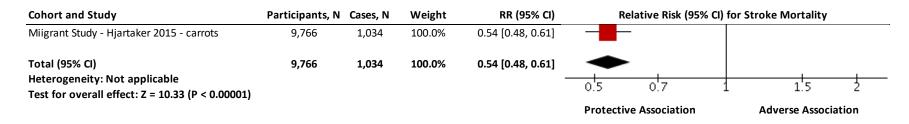
Figure S138. Relation between intake of grapes and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND STROKE MORTALITY

A Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) f	or Stroke Mortality
Iowa WHS - Mink 2007	34,492	469	54.0%	0.85 [0.67, 1.08]		_
UK Women's Cohort - Lai 2015	30,458	148	11.5%	1.13 [0.68, 1.88]		•
Migrant Study - Hjartaker 2015	9,766	1,034	34.5%	0.95 [0.71, 1.28]		
Total (95% CI)	74,716	1,651	100.0%	0.91 [0.77, 1.09]		•
Heterogeneity: $Chi^2 = 1.06$, df = 2 (P = 0	.59); I² = 0%				05 07 1	1 5 2
Test for overall effect: Z = 1.02 (P = 0.32	1)				0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk
B. Random Effects						
	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) f	or Stroke Mortality
Cohort and Study	Participants, N 34,492	Cases, N 469	Weight 54.0%	RR (95% Cl) 0.85 [0.67, 1.08]	Relative Risk (95% CI) f	or Stroke Mortality –
Cohort and Study Iowa WHS - Mink 2007	• •		-		Relative Risk (95% CI) f	or Stroke Mortality - -
Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015	34,492	469	54.0%	0.85 [0.67, 1.08]	Relative Risk (95% Cl) f	or Stroke Mortality
Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015	34,492 30,458	469 148	54.0% 11.5%	0.85 [0.67, 1.08] 1.13 [0.68, 1.88]	Relative Risk (95% CI) f	or Stroke Mortality
Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015 Total (95% Cl) [Random Effects]	34,492 30,458 9,766 74,716	469 148 1,034	54.0% 11.5% 34.5%	0.85 [0.67, 1.08] 1.13 [0.68, 1.88] 0.95 [0.71, 1.28]		-
B. Random Effects Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015 Total (95% CI) [Random Effects] Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, Test for overall effect: Z = 1.02 (P = 0.32	34,492 30,458 9,766 74,716 df = 2 (P = 0.59); I ² = 0%	469 148 1,034	54.0% 11.5% 34.5%	0.85 [0.67, 1.08] 1.13 [0.68, 1.88] 0.95 [0.71, 1.28]	Relative Risk (95% Cl) f	-

Figure S139. Relation between intake of pommes fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


ALLIUM AND STROKE MORTALITY

A Fixed Effects

Cohort and Study	Participants, N C	Cases, N	Weight	RR (95% CI)	Relative Risk	(95% CI) for Stroke Mort	ality
Linxian Nutrition - Wang 2016	2,445	452	51.7%	1.17 [0.93, 1.48]		-	
PLSAW - Blekkenhorst 2017	1,226	92	48.3%	0.14 [0.06, 0.31]	-		
Total (95% CI)	3,671	544	100.0%	0.99 [0.79, 1.24]		•	
Heterogeneity: $Chi^2 = 24.86$, df = 1 (P < 0.12)	.00001); l ² = 96%						<u></u>
Test for overall effect: Z = 0.07 (P = 0.94))				0.05 0.2	1	5 20
					Lower Risk	High	er Risk
B. Random Effects					Lower Misk		
B. Random Effects Cohort and Study	Participants, N C	Cases, N	Weight	RR (95% CI)		(95% CI) for Stroke Mort	
	Participants, N C 2,445	Cases, N 452	Weight 51.7%	RR (95% Cl) 1.17 [0.93, 1.48]			
Cohort and Study							
Cohort and Study Linxian Nutrition - Wang 2016	2,445	452	51.7%	1.17 [0.93, 1.48]			
Cohort and Study Linxian Nutrition - Wang 2016 PLSAW - Blekkenhorst 2017	2,445 1,226 3,671	452 92 544	51.7% 48.3%	1.17 [0.93, 1.48] 0.14 [0.06, 0.31]	Relative Risk		ality
Cohort and Study Linxian Nutrition - Wang 2016 PLSAW - Blekkenhorst 2017 Total (95% CI) [Random Effects]	2,445 1,226 3,671 df = 1 (P < 0.00001); I ² = 96	452 92 544	51.7% 48.3%	1.17 [0.93, 1.48] 0.14 [0.06, 0.31]			

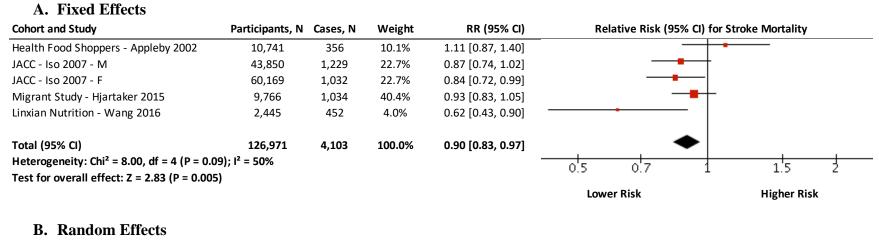
Figure S140. Relation between intake of allium vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CARROTS AND STROKE MORTALITY

Figure S141. Relation between intake of carrots and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND STROKE MORTALITY

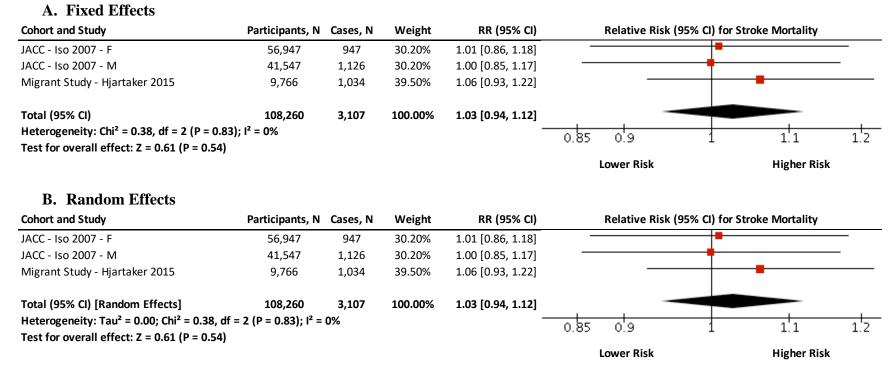
A. Fixed Effects


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mo	ortality
JACC - Iso 2007 - M	39,486	1,098	25.4%	0.97 [0.81, 1.16]		
JACC - Iso 2007 - F	54,325	919	20.6%	0.87 [0.71, 1.06]		
Migrant Study - Hjartaker 2015 - cauliflower	9,766	1,034	8.0%	1.12 [0.82, 1.53]		
Migrant Study - Hjartaker 2015 - cabbage	-	-	3.9%	1.12 [0.71, 1.75]		
Linxian Nutrition - Wang 2016	2,445	452	14.3%	1.06 [0.84, 1.34]		
PLSAW - Blekkenhorst 2017	1,226	92	8.0%	0.70 [0.51, 0.95]	· · · · · · · · · · · · · · · · · · ·	
Japan Public Health Center - Mori 2018 - M	40,642	856	10.5%	0.89 [0.67, 1.17]		
Japan Public Health Center - Mori 2018 - F	47,562	614	9.2%	0.78 [0.58, 1.04]		
Total (95% CI)	195,452	5,065	100.0%	0.92 [0.85, 1.01]	-	
Heterogeneity: Chi ² = 8.55, df = 7 (P = 0.29); l ² = 1 Test for overall effect: Z = 1.75 (P = 0.08)	8%				0.5 0.7 1	1.5 2
1 = 1.75 (F - 0.00)					Lower Risk Hig	gher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Rela	tive Risk (95% Cl)	or Stroke Mortality	
JACC - Iso 2007 - M	39,486	1,098	22.2%	0.97 [0.81, 1.16]				
JACC - Iso 2007 - F	54,325	919	19.2%	0.87 [0.71, 1.06]			-	
Migrant Study - Hjartaker 2015 - cabbage	9,766	1,034	4.7%	1.12 [0.71, 1.75]				_
Migrant Study - Hjartaker 2015 - cauliflower	-	-	9.0%	1.12 [0.82, 1.53]				
Linxian Nutrition - Wang 2016	2,445	452	14.5%	1.06 [0.84, 1.34]			•	
PLSAW - Blekkenhorst 2017	1,226	92	9.0%	0.70 [0.51, 0.95]		•		
Japan Public Health Center - Mori 2018 - F	47,562	614	10.1%	0.78 [0.58, 1.04]			-	
Japan Public Health Center - Mori 2018 - M	40,642	856	11.3%	0.89 [0.67, 1.17]				
Total (95% CI) [Random Effects]	195,452	5,065	100.0%	0.92 [0.83, 1.02]		-		
Heterogeneity: Tau ² = 0.00; Chi ² = 8.55, df = 7 (P = 0.29); l ² = 18%				, t	, 		<u> </u>
Test for overall effect: Z = 1.57 (P = 0.12)					0.5 (0.7 1	1.5	2
					Lowei	r Risk	Higher Risk	

Figure S142. Relation between intake of cruciferous vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


GREEN LEAFY VEGETABLES AND STROKE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for S	Stroke Mortality
Health Food Shoppers - Appleby 2002	10,741	356	15.3%	1.11 [0.87, 1.40]		
JACC - Iso 2007 - M	43,850	1,229	23.7%	0.87 [0.74, 1.02]		
JACC - Iso 2007 - F	60,169	1,032	23.7%	0.84 [0.72, 0.99]		
Migrant Study - Hjartaker 2015	9,766	1,034	29.4%	0.93 [0.83, 1.05]		
Linxian Nutrition - Wang 2016	2,445	452	7.8%	0.62 [0.43, 0.90]		
Total (95% CI) [Random Effects]	126,971	4,103	100.0%	0.89 [0.79, 1.00]	•	
Heterogeneity: Tau ² = 0.01; Chi ² = 8.00, df = 4 (P = 0.09); I ² = 50%				0.5 0.7 1		
Test for overall effect: Z = 1.98 (P = 0.05)				0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk

Figure S143. Relation between intake of green leafy vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND STROKE MORTALITY

Figure S144. Relation between intake of tomatoes and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mortality
Bananas					
Migrant Study - Hjartaker 2015 - banana	9,766	1,034	1.2%	1.04 [0.70, 1.54]	
Subtotal (95% CI)	9,766	1,034	1.2%	1.04 [0.70, 1.54]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.20 (P = 0.84)					
Berries					
Migrant Study - Hjartaker 2015	9,766	1,034	6.1%	0.96 [0.81, 1.15]	
JK Women's Cohort - Lai 2015	30,458	148	0.7%	1.08 [0.65, 1.80]	
Subtotal (95% CI)	40,224	1,182	6.8%	0.97 [0.82, 1.15]	-
leterogeneity: Tau ² = 0.00; Chi ² = 0.19, df =	1 (P = 0.66); I ² = 0%				
est for overall effect: Z = 0.32 (P = 0.75)					
ütrus					
ACC - Iso 2007 - F	59,504	1,028	6.1%	0.71 [0.60, 0.85]	_
ACC - Iso 2007 - M	43,031	1,207	7.7%	0.82 [0.70, 0.96]	_ _
Vigrant Study - Hjartaker 2015	9,766	1,034	1.9%	0.61 [0.45, 0.84]	
JK Women's Cohort - Lai 2015	30,458	148	0.5%	0.49 [0.27, 0.89]	[
inxian Nutrition - Wang 2016	2,445	452	54.7%	0.96 [0.91, 1.02]	-
ubtotal (95% CI)	145,204	3,869	70.9%	0.90 [0.86, 0.95]	◆
leterogeneity: Tau ² = 0.03; Chi ² = 22.75, df est for overall effect: Z = 2.79 (P = 0.005)	= 4 (P = 0.0001); I ² =	82%			
Fruit Juice					
ACC - Iso 2007 - M	41,330	1,131	6.1%	0.69 [0.58, 0.82]	_
ACC - Iso 2007 - F	56,482	953	6.1%	0.66 [0.55, 0.78]	_
JK Women's Cohort - Lai 2015	30,458	148	0.8%	0.67 [0.41, 1.09]	
ubtotal (95% Cl)	128,270	2,232	12.9%	0.67 [0.60, 0.76]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 0.15, df = Test for overall effect: Z = 6.41 (P < 0.00001)	• •				
Grapes					
/ligrant Study - Hjartaker 2015 - grapes	9,766	1,034	1.2%	0.85 [0.58, 1.26]	
JK Women's Cohort - Lai 2015 - grapes	30,458	148	0.5%	0.54 [0.30, 0.97] _	
ubtotal (95% Cl)	40,224	1,182	1.8%	0.74 [0.53, 1.02]	
<pre>leterogeneity: Tau² = 0.04; Chi² = 1.63, df = Test for overall effect: Z = 1.50 (P = 0.13)</pre>	1 (P = 0.20); I ² = 39%				
Pommes					
	34,492	469	3.4%	0.85 [0.67, 1.08]	
owa WHS - Mink 2007	34,492 9,766	469 1,034	3.4% 2.2%	0.85 [0.67, 1.08] 0.95 [0.71, 1.28]	
owa WHS - Mink 2007 Aigrant Study - Hjartaker 2015					
owa WHS - Mink 2007 ⁄ligrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015	9,766	1,034	2.2%	0.95 [0.71, 1.28]	
owa WHS - Mink 2007 Migrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% CI)	9,766 30,458 74,716	1,034 148	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	
owa WHS - Mink 2007 Migrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, df =	9,766 30,458 74,716	1,034 148	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	
Pommes owa WHS - Mink 2007 Migrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, df = Fest for overall effect: Z = 1.02 (P = 0.31) Fest for subgroup differences: Chi ² = 23.18, o	9,766 30,458 74,716 2 (P = 0.59); l ² = 0%	1,034 148 1,651	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	
owa WHS - Mink 2007 Vligrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, df = Fest for overall effect: Z = 1.02 (P = 0.31)	9,766 30,458 74,716 2 (P = 0.59); l ² = 0%	1,034 148 1,651	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	0.5 0.7 1 1.5 2

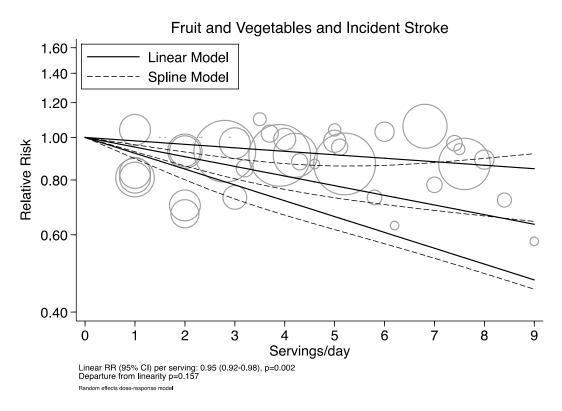
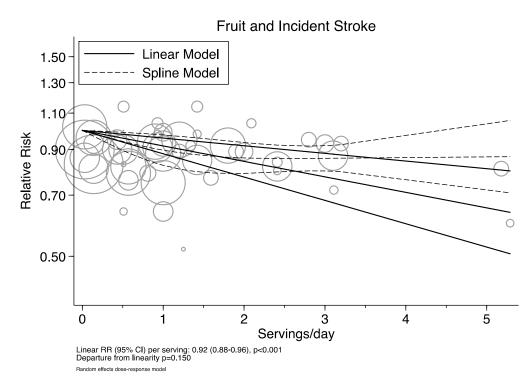
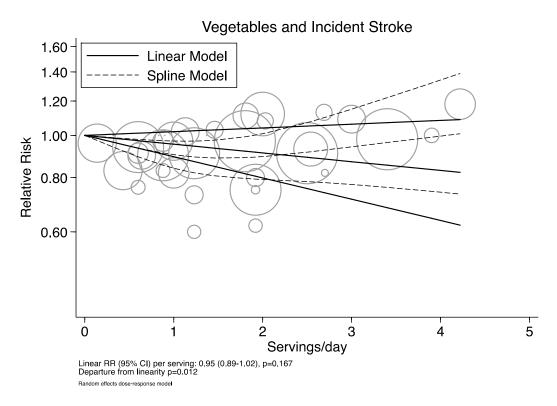
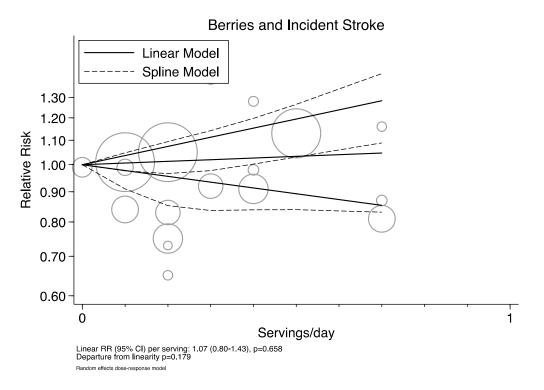

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mortality
Bananas					
/ligrant Study - Hjartaker 2015 - banana	9,766	1,034	4.5%	1.04 [0.70, 1.54]	•
ubtotal (95% CI)	9,766	1,034	4.5%	1.04 [0.70, 1.54]	
leterogeneity: Not applicable					
est for overall effect: Z = 0.20 (P = 0.84)					
Berries					
JK Women's Cohort - Lai 2015	30,458	148	3.2%	1.08 [0.65, 1.80]	
Aigrant Study - Hjartaker 2015	9,766	1,034	8.9%	0.96 [0.81, 1.15]	
ubtotal (95% CI)	40,224	1,182	12.1%	0.97 [0.82, 1.15]	•
leterogeneity: Tau ² = 0.00; Chi ² = 0.19, df = 1	(P = 0.66); I ² = 0%				
est for overall effect: Z = 0.32 (P = 0.75)					
itrus					
ACC - Iso 2007 - F	59,504	1,028	8.9%	0.71 [0.60, 0.85]	_
ACC - Iso 2007 - M	43,031	1,207	9.4%	0.82 [0.70, 0.96]	_ _
JK Women's Cohort - Lai 2015	30,458	148	2.6%	0.49 [0.27, 0.89] 🗕	
Aigrant Study - Hjartaker 2015	9,766	1,034	5.8%	0.61 [0.45, 0.84]	
inxian Nutrition - Wang 2016	2,445	452	11.5%	0.96 [0.91, 1.02]	-
ubtotal (95% CI)	145,204	3,869	38.2%	0.76 [0.63, 0.92]	◆
Heterogeneity: Tau² = 0.03; Chi² = 22.75, df = est for overall effect: Z = 2.79 (P = 0.005)	4 (P = 0.0001); I ² = 3	82%			
ruit Juice					
ACC - Iso 2007 - F	56,482	953	8.9%	0.66 [0.55, 0.78]	_
ACC - Iso 2007 - M	41,330	1,131	8.9%	0.69 [0.58, 0.82]	_ _
JK Women's Cohort - Lai 2015	30,458	148	3.4%	0.67 [0.41, 1.09]	
ubtotal (95% CI)	128,270	2,232	21.2%	0.67 [0.60, 0.76]	◆
leterogeneity: Tau ² = 0.00; Chi ² = 0.15, df = 2 Test for overall effect: Z = 6.41 (P < 0.00001)	: (P = 0.93); I ² = 0%				
Grapes					
JK Women's Cohort - Lai 2015 - grapes	30,458	148	2.6%	0.54 [0.30, 0.97]	· · · · · · · · · · · · · · · · · · ·
Migrant Study - Hjartaker 2015 - grapes	9,766	1,034	4.5%	0.85 [0.58, 1.26]	
ubtotal (95% CI)	40,224	1,182	7.1%	0.71 [0.46, 1.11]	
<pre>leterogeneity: Tau² = 0.04; Chi² = 1.63, df = 1 est for overall effect: Z = 1.50 (P = 0.13)</pre>	. (P = 0.20); I ² = 39%				
Pommes					
owa WHS - Mink 2007	34,492	469	7.5%	0.85 [0.67, 1.08]	
/ligrant Study - Hjartaker 2015	9,766	1,034	6.2%	0.95 [0.71, 1.28]	
K Women's Cohort - Lai 2015	30,458	148	3.2%	1.13 [0.68, 1.88]	
ubtotal (95% CI)	74,716	1,651	16.9%	0.91 [0.77, 1.09]	
leterogeneity: Tau ² = 0.00; Chi ² = 1.06, df = 2 est for overall effect: Z = 1.02 (P = 0.31)					
est for subgroup differences: Chi ² = 17.65, df	ⁱ = 5 (P = 0.003), I ² =	: 71.7%		_	
					0.5 0.7 1 1.5 2
					0.0 0.7 1 1.0 2

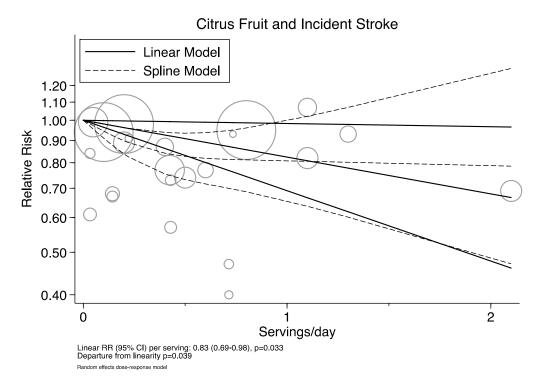
Figure S145. Relation between sources of fruit and stoke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

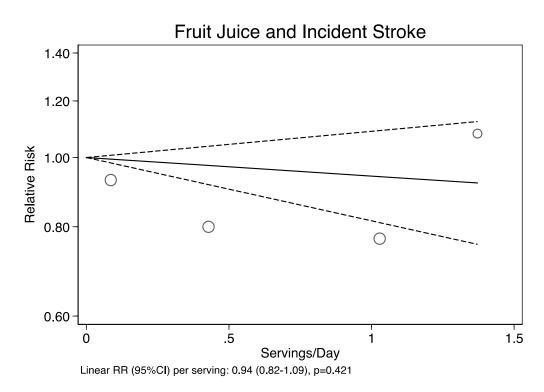

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mortality
Allium					
inxian Nutrition - Wang 2016	2,445	452	3.4%	1.17 [0.93, 1.48]	+
LSAW - Blekkenhorst 2017	1,226	92	0.3%	0.14 [0.06, 0.31] -]
ubtotal (95% CI)	3,671	544	3.7%	0.99 [0.79, 1.24]	•
eterogeneity: Chi ² = 24.86, df = 1 (P < 0.0000	01); I² = 96%				
est for overall effect: Z = 0.07 (P = 0.94)					
arrots					
1iigrant Study - Hjartaker 2015 - carrots	9,766	1,034	13.6%	0.54 [0.48, 0.61]	+
ubtotal (95% CI)	9,766	1,034	13.6%	0.54 [0.48, 0.61]	◆
eterogeneity: Not applicable					
est for overall effect: Z = 10.33 (P < 0.00001))				
uciferous					
CC - Iso 2007 - M	39,486	1,098	6.0%	0.97 [0.81, 1.16]	-4
ACC - Iso 2007 - F	54,325	919	4.9%	0.87 [0.71, 1.06]	-++
ligrant Study - Hjartaker 2015 - cabbage	9,766	1,034	0.9%	1.12 [0.71, 1.75]	_
ligrant Study - Hjartaker 2015 - cauliflower	-	-	1.9%	1.12 [0.82, 1.53]	-
nxian Nutrition - Wang 2016	2,445	452	3.4%	1.06 [0.84, 1.34]	_
LSAW - Blekkenhorst 2017	1,226	92	1.9%	0.70 [0.51, 0.95]	
pan Public Health Center - Mori 2018 - F	47,562	614	2.2%	0.78 [0.58, 1.04]	
ipan Public Health Center - Mori 2018 - M	40,642	856	2.5%	0.89 [0.67, 1.17]	
ubtotal (95% CI)	195,452	5,065	23.8%	0.92 [0.85, 1.01]	•
eterogeneity: Chi ² = 8.55, df = 7 (P = 0.29); l ²	2 = 18%				
est for overall effect: Z = 1.75 (P = 0.08)					
reen Leafy					
ealth Food Shoppers - Appleby 2002	10,741	356	3.4%	1.11 [0.87, 1.40]	- -
ACC - Iso 2007 - M	43,850	1,229	7.6%	0.87 [0.74, 1.02]	
ACC - Iso 2007 - F	60,169	1,032	7.6%	0.84 [0.72, 0.99]	
igrant Study - Hjartaker 2015	9,766	1,034	13.6%	0.93 [0.83, 1.05]	
nxian Nutrition - Wang 2016	2,445	452	1.4%	0.62 [0.43, 0.90]	
ibtotal (95% CI)	126,971	4,103	33.7%	0.90 [0.83, 0.97]	•
eterogeneity: Chi ² = 8.00, df = 4 (P = 0.09); l ²	² = 50%				
est for overall effect: Z = 2.83 (P = 0.005)					
omatoes					
ACC - Iso 2007 - F	56,947	947	7.6%	1.01 [0.86, 1.18]	+
ACC - Iso 2007 - M	41,547	1,126	7.6%	1.00 [0.85, 1.17]	4
ligrant Study - Hjartaker 2015	9,766	1,034	10.0%	1.06 [0.93, 1.22]	+
ubtotal (95% CI)	108,260	3,107	25.3%	1.03 [0.94, 1.12]	
eterogeneity: Chi ² = 0.38, df = 2 (P = 0.83); l ² est for overall effect: Z = 0.61 (P = 0.54)	² = 0%				ſ
est for subgroup differences: Chi ² = 82.07, df	= 4 (P < 0.00001), I	² = 95.1%			
				_	0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

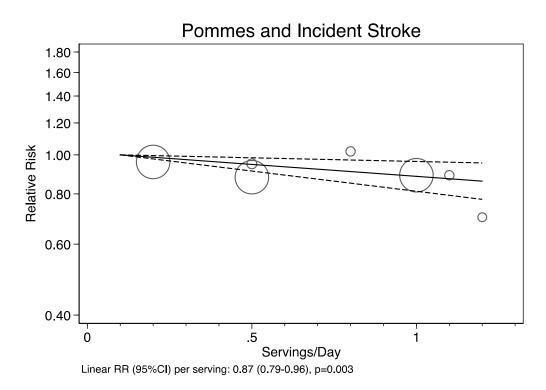
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mortality
Allium					
Linxian Nutrition - Wang 2016	2,445	452	5.4%	1.17 [0.93, 1.48]	
PLSAW - Blekkenhorst 2017	1,226	92	1.7%	0.14 [0.06, 0.31]	
Subtotal (95% CI)	3,671	544	7.0%	0.42 [0.05, 3.38]	
leterogeneity: Tau ² = 2.18; Chi ² = 24.86, df = 1	1 (P < 0.00001); I ² =	96%			
est for overall effect: Z = 0.82 (P = 0.41)					
Carrots					
/liigrant Study - Hjartaker 2015 - carrots	9,766	1,034	6.4%	0.54 [0.48, 0.61]	+
ubtotal (95% CI)	9,766	1,034	6.4%	0.54 [0.48, 0.61]	•
leterogeneity: Not applicable					•
est for overall effect: Z = 10.33 (P < 0.00001)					
ruciferous					
ACC - Iso 2007 - M	39,486	1,098	5.9%	0.97 [0.81, 1.16]	
ACC - Iso 2007 - F	54,325	919	5.7%	0.87 [0.71, 1.06]	
1igrant Study - Hjartaker 2015 - cabbage	9,766	1,034	3.5%	1.12 [0.71, 1.75]	
Aigrant Study - Hjartaker 2015 - cauliflower	-	-	4.6%	1.12 [0.82, 1.53]	
inxian Nutrition - Wang 2016	2,445	452	5.4%	1.06 [0.84, 1.34]	
LSAW - Blekkenhorst 2017	1,226	92	4.6%	0.70 [0.51, 0.95]	
apan Public Health Center - Mori 2018 - M	40,642	856	5.0%	0.89 [0.67, 1.17]	
apan Public Health Center - Mori 2018 - F	47,562	614	4.9%	0.78 [0.58, 1.04]	
ubtotal (95% CI)	195,452	5,065	39.9%	0.92 [0.83, 1.02]	•
leterogeneity: Tau ² = 0.00; Chi ² = 8.55, df = 7 Test for overall effect: Z = 1.57 (P = 0.12)	(P = 0.29); I ² = 18%				
Green Leafy					
lealth Food Shoppers - Appleby 2002	10,741	356	5.4%	1.11 [0.87, 1.40]	_ _
ACC - Iso 2007 - M	43,850	1,229	6.1%	0.87 [0.74, 1.02]	
ACC - Iso 2007 - F	60,169	1,032	6.1%	0.84 [0.72, 0.99]	
1igrant Study - Hjartaker 2015	9,766	1,034	6.4%	0.93 [0.83, 1.05]	-
inxian Nutrition - Wang 2016	2,445	452	4.1%	0.62 [0.43, 0.90]	
ubtotal (95% CI)	126,971	4,103	28.0%	0.89 [0.79, 1.00]	•
eterogeneity: Tau ² = 0.01; Chi ² = 8.00, df = 4 est for overall effect: Z = 1.98 (P = 0.05)	(P = 0.09); I ² = 50%				
omatoes					
ACC - Iso 2007 - F	56,947	947	6.1%	1.01 [0.86, 1.18]	
ACC - Iso 2007 - M	41,547	1,126	6.1%	1.00 [0.85, 1.17]	1
Aigrant Study - Hjartaker 2015	9,766	1,034	6.2%	1.06 [0.93, 1.22]	+
ubtotal (95% CI)	108,260	3,107	18.4%	1.03 [0.94, 1.12]	1
leterogeneity: Tau ² = 0.00; Chi ² = 0.38, df = 2	-	0,207	-0.1/0	[0.0-7, 1112]	Ţ
rest for overall effect: Z = 0.61 (P = 0.54)					
Test for subgroup differences: $Chi^2 = 80.08$, df	= 4 (P < 0.00001).	² = 95.0%			
······································	, <u></u> ,			0.88 [0.78, 0.99] —	0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

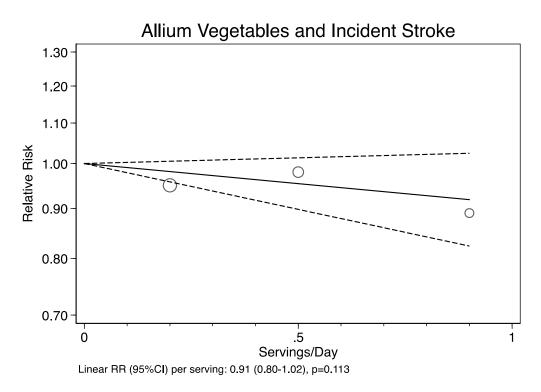

Figure S146. Relation between sources of vegetables and stoke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

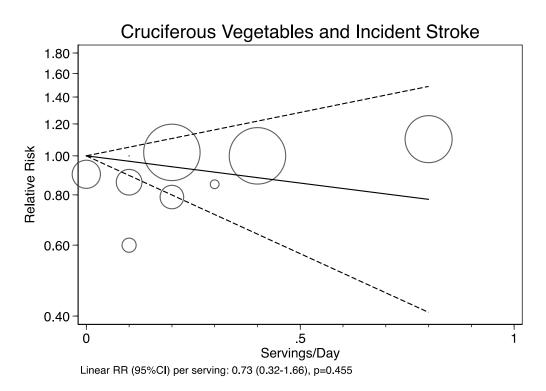

Figure S147. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

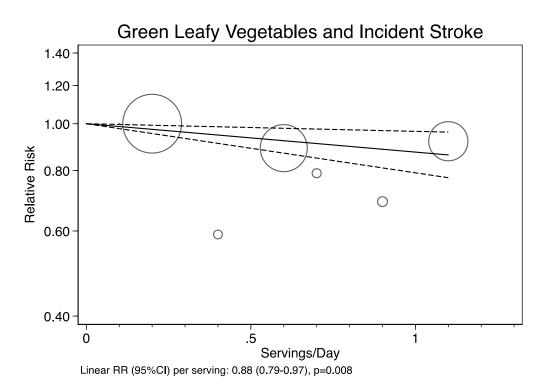

Figure S148. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

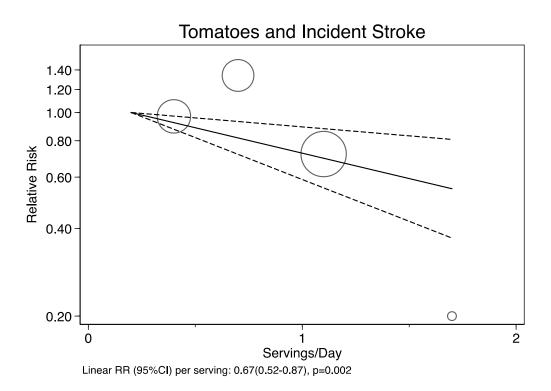

Figure S149. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

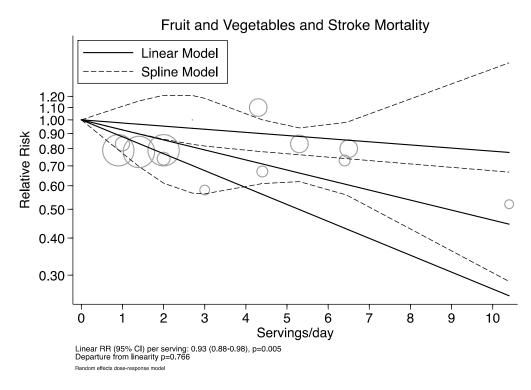

Figure S150. Linear and cubic-spline dose-response relation between increasing berries intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

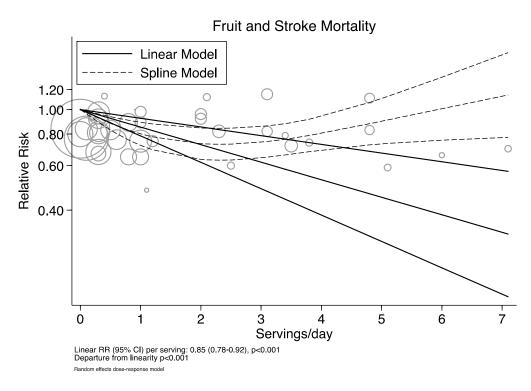

Figure S151. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

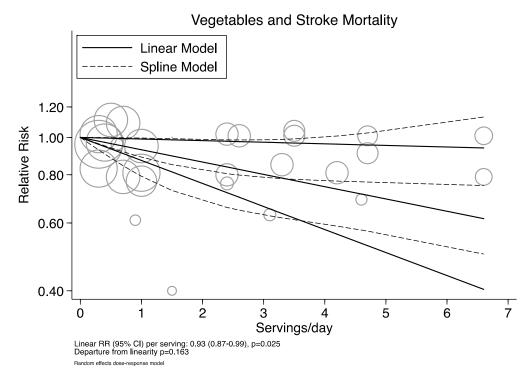

Figure S152. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

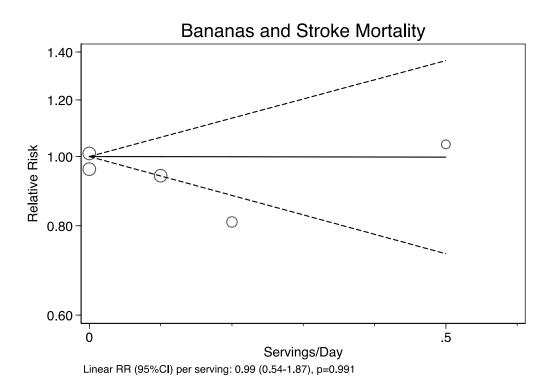

Figure S153. Linear dose-response relation between increasing pommes intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

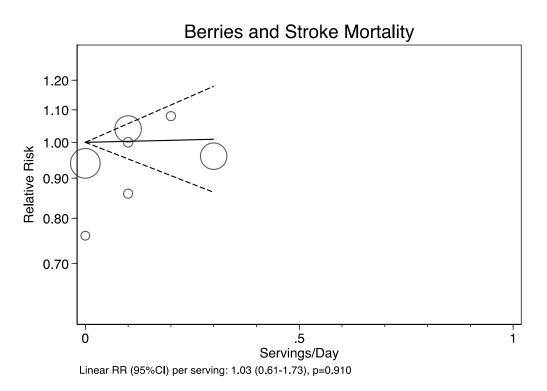

Figure S154 Linear dose-response relation between increasing intake of allium vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

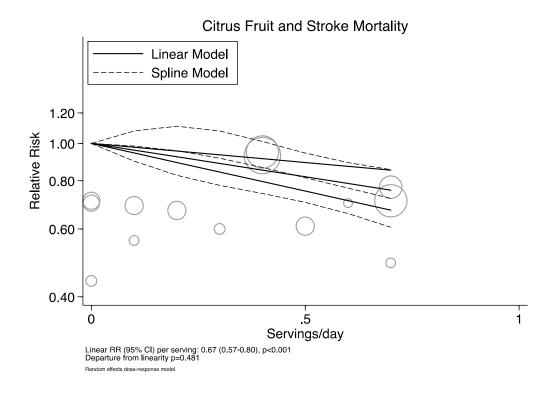

Figure S155. Linear dose-response relation between increasing intake of cruciferous vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

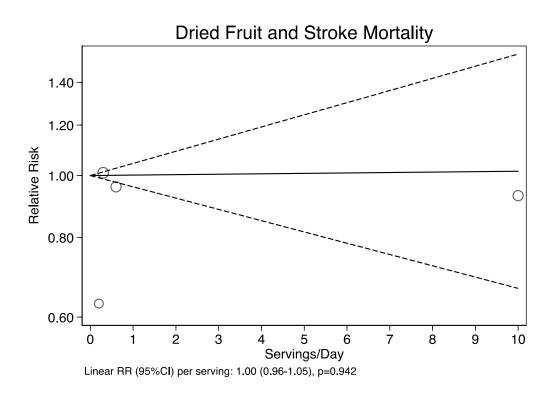

Figure S156. Linear dose-response relation between increasing intake of green leafy vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

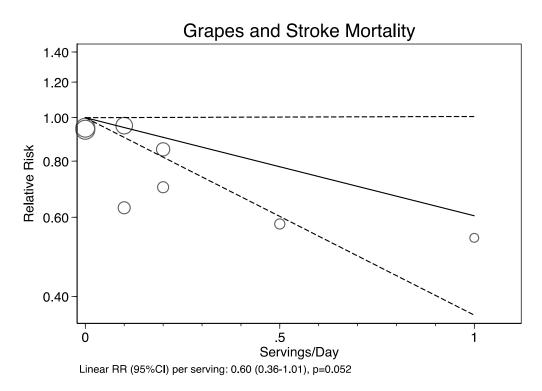

Figure S157. Linear dose-response relation between increasing tomato intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S158. Linear dose-response relation between increasing fruit and vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S159. Linear and cubic-spline dose-response relation between increasing fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S160. Linear and cubic-spline dose-response relation between increasing intake of vegetables and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S161 Linear dose-response relation between increasing banana intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S162. Linear dose-response relation between increasing berries intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

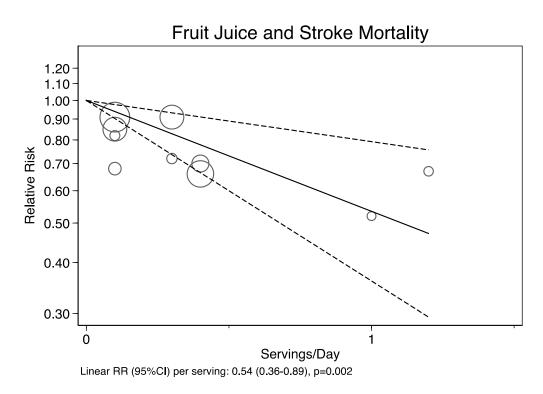

Figure S163. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S164. Linear and cubic-spline dose-response relation between increasing dried fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S165. Linear dose-response relation between increasing grapes intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S166. Linear dose-response relation between increasing fruit juice intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

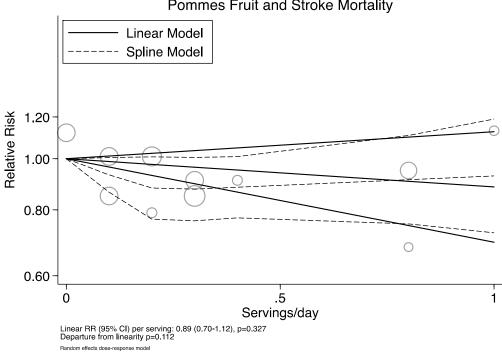
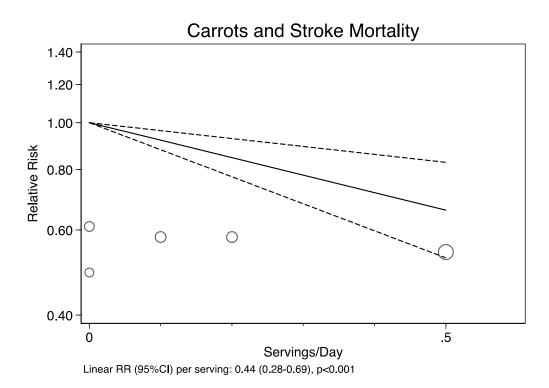
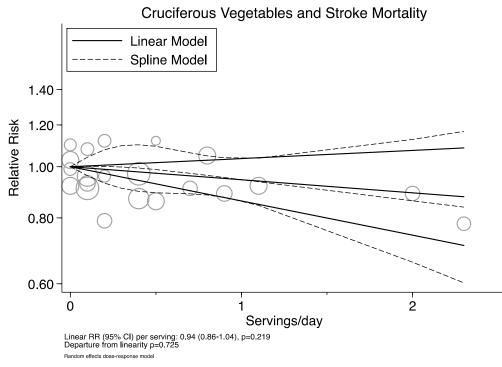
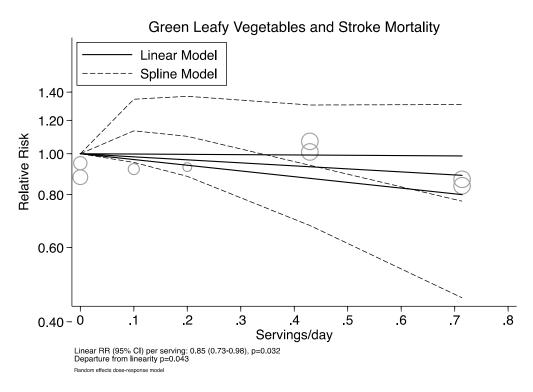




Figure S167. Linear and cubic-spline dose-response relation between increasing pomme fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Pommes Fruit and Stroke Mortality

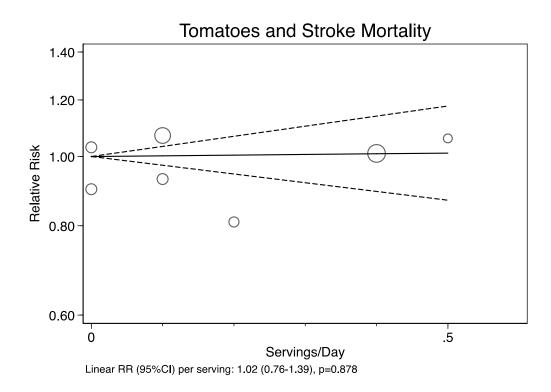

Figure S168. Linear dose-response relation between increasing intake of carrots and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S169. Linear and cubic-spline dose-response relation between increasing cruciferous vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S170. Linear and cubic-spline dose-response relation between increasing green leafy vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S171. Linear dose-response relation between increasing intake of tomatoes and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

						Pool	ed Effect Estimates				Adjusted
Subgroup	Level	Cohorts	Ν	Events	RR [95% CIs] for Fruit and Ve	getables and Inciden	t CVD	Residual I ²	p -value	Alpha Level
					Within Subgro			Between Subgroups			
Total	-	12	501,744	24,310	0.92 [0.88, 0	-		-	-	-	-
Sex	Females	3	174,785	6,980	0.91 [0.80, 1	_		F vs. M: 0.95 [0.79, 1.16]	34.01%	0.88	0.007
	Males	4	49,532	2,776	0.95 [0.83, 1			F vs. Mix: 0.99 [0.85, 1.16]			
	Mxed	7	277,427	14,554	0.92 [0.84, 1			M vs. Mix: 1.03 [0.87, 1.23]			
Age (y)	<60	6	209,845	12,102	0.89 [0.82, 0	_ • _		0.95 [0.86, 1.04]	22.88%	0.23	0.008
	≥60	6	291,899	291,899	0.94 [0.89, 0	-•-					
ollow Up (y)	<10	4	259,569	6,930	0.88 [0.74, 1			0.95 [0.79, 1.13]	28.44%	0.53	0.010
	≥10	10	242,175	17,380	0.93 [0.88, 0	↓					
itatistical Adjustments	<8	2	5,563	1,334	0.98 [0.79, 1			1.06 [0.86, 1.33]	28.70%	0.54	0.013
	≥ 8	10	496,181	22,976	0.92 [0.87, 0	- • -					
NOS	<6	-	-	-	-			-	-	-	0.017
	≥6	12	501,744	24,310	0.92 [0.88, 0	-•					
xposure Assessment Tool	Validated FFQ	9	474,421	18,022	0.93 [0.89, 0	-•		vFFQ vs. uFFQ: 1.06 [0.89, 1.27]	17.71%	0.19	0.025
	Unvalidated FFQ	2	4,331	1,323	0.99 [0.83, 1		_	vFFQ vs. record: 0.90 [0.80, 1.03]			
	Food Record	1	22,992	4,965	0.84 [0.75, 0	_		uFFQ vs. record: 0.85 [0.69, 1.05]			
ocation	Asia	1	77,891	1,386	0.93 [0.72, 1		_	+	39.02%	0.98	0.050
	Europe	5	22,935	2,859	0.95 [0.82, 1	_					
	North America	5	265,583	15,281	0.92 [0.85, 0						
	Global	1	135,335	4,784	0.93 [0.63, 1	•					
					0.5	1.0	1.5				
						Lower Risk	Higher Risk				

Figure S172. Categorical subgroup analyses of total fruit and vegetable intake and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD - cardiovascular disease; FFQ - food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR - relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.98 [0.74, 1.31]; Europe vs. Global 0.99 [0.64, 1.51]; Europe vs. North America 0.97 [0.83, 1.14]; Asia vs. Global 0.99 [0.62, 1.60]; Asia vs. North America 1.00 [0.78, 1.32]; Global vs. North America 1.02 [0.68, 1.53];

FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

							Pooled	Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		R	R [95% Cis] for Fruit a	nd Incident CVD		Residual I ²	p -value	Alpha Level
			0.0471227		Within Subgroups				Between Subgroups			
Total	-	16	577,323	27,205	0.91 [0.86, 0.97]				-	-	-	-
Sex	Females	5	189,962	9,212	0.90 [0.78, 1.03]		+		F vs. M: 0.96 [0.79, 1.18]	45.27%	0.91	0.007
	Males	5	58,075	3,944	0.93 [0.80, 1.09]		_	_	F vs. Mix: 0.98 [0.83, 1.16]			
	Mxed	8	329,286	14,049	0.92 [0.83, 1.01]				M vs. Mix: 1.02 [0.85, 1.22]			
Age (y)	<59	8	255,899	11,747	0.92 [0.83, 1.01]		_ _		1.01 [0.88, 1.15]	42.56%	0.94	0.008
	≥59	8	321,424	15,458	0.91 [0.83, 1.00]		_ • _					
Follow Up (y)	<10	5	247,053	7,204	0.93 [0.82, 1.06]		_	_	1.02 [0.88, 1.19]	40.64%	0.88	0.010
	≥10	11	330,270	20,001	0.91 [0.84, 0.98]		_ -					
Statistical Adjustments	<8	4	8,987	1,892	0.87 [0.72, 1.05]				0.94 [0.78, 1.15]	41.21%	0.57	0.013
	≥8	12	568,336	24,953	0.92 [0.86, 0.99]		- - -					
NOS	<6	2	37,907	1,423	0.86 [0.66, 1.12]		6		0.94 [0.72, 1.23]	41.54%	0.63	0.017
	≥6	14	539,416	25,782	0.92 [0.86, 0.98]		- - -					
Exposure Assessment Tool	Validated FFQ	13	571,664	25,895	0.86 [0.67, 1.10]		•		vFFQ vs. uFFQ: 1.07 [0.83, 1.38]	44.25%	0.85	0.025
	Unvalidated FFQ	2	3,810	555	0.92 [0.85, 0.99]		_ _		vFFQ vs. record: 1.02 [0.62, 1.67]			
	Food record	1	1,849	755	0.88 [0.58, 1.35]	-	•		uFFQ vs. record: 0.96 [0.63, 1.47]			
Location	Asia	1	77,891	1,386	0.80 [0.62, 1.03]		+		+	43.21%	0.65	0.050
	Europe	10	125,806	10,043	0.94 [0.85, 1.03]		_ + _					
	North America	4	238,291	10,992	0.91 [0.80, 1.03]		 +					
	Global	1	135,335	4,784	0.89 [0.69, 1.13]		-					
								ı				
						0.5	1.0	1.	5			
							Lower Risk	Higher Risk				

Figure S173. Categorical subgroup analyses of fruit intake and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.85 [0.65, 1.12]; Europe vs. Global 0.94 [0.73, 1.23]; Europe vs. North America 0.96 [0.82, 1.13]; Asia vs. Global 0.90 [0.63, 1.29]; Asia vs. North America 0.88 [0.67, 1.18]; Global vs. North America 0.98 [0.74, 1.29]

VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

						Pooled Effect Estimates	5			Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and Incident	CVD	Residual I ²	p-value	Alpha Level
					Within Subgroups		Between Subgroups			
otal	-	14	539,683	22,810	0.92 [0.88, 0.97]	-	-	-	-	-
ex	Females	3	170,485	7,656	0.93 [0.79, 1.09]	•	F vs. M: 0.98 [0.80, 1.20]	50.46%	0.97	0.007
	Males	4	48,027	1,985	0.95 [0.84, 1.07]	_	F vs. Mix: 0.98 [0.82, 1.19]			
	Mxed	7	321,171	13,169	0.94 [0.85, 1.03]	• _	M vs. Mix: 1.00 [0.86, 1.18]			
Age (y)	<59	7	197,808	15,244	0.95 [0.86, 1.04]		1.01 [0.89, 1.15]	47.34%	0.86	0.008
	≥59	7	318,344	7,566	0.93 [0.85, 1.03]					
ollow Up (y)	<10	3	220,442	6,264	0.98 [0.87, 1.11]		1.06 [0.91, 1.22]	44.16%	0.44	0.010
	≥10	11	319,241	16,546	0.93 [0.86, 1.00]					
tatistical Adjustments	<8	3	5,907	1,546	0.86 [0.72, 1.03]		0.91 [0.75, 1.10]	42.70%	0.29	0.013
	≥8	11	533,776	21,264	0.95 [0.89, 1.02]					
NOS	<6	1	34,827	1,094	0.89 [0.66, 1.19]		0.94 [0.69, 1.28]	46.72%	0.68	0.017
	≥6	13	504,856	21,716	0.94 [0.88, 1.01]	_				
xposure Assessment Tool	Validated FFQ	12	537,104	21,846	0.95 [0.89, 1.02]		vFFQ vs. uFFQ: 0.80 [0.59, 1.11]	42.86%	0.32	0.025
	Unvalidated FFQ	1	730	209	0.77 [0.57, 1.05]	-+-	vFFQ vs. record: 0.92 [0.72, 1.18]			
	Food record	1	1,849	755	0.88 [0.69, 1.12]		uFFQ vs. record: 1.13 [0.77, 1.69]			
ocation	Asia	1	77,891	1,138	0.96 [0.76, 1.23]		+	53.51%	0.99	0.050
	Europe	9	88,166	5,896	0.94 [0.85, 1.03]					
	North America	3	238,291	10,992	0.93 [0.81, 1.06]	_				
	Global	1	135,335	4,784	0.95 [0.73, 1.24]					
						0.5 1.0	1.5			
						Lower Risk Higher Risk				

Figure S174. Categorical subgroup analyses of intake of vegetables and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 1.03 [0.79, 1.33]; Europe vs. Global 1.01 [0.76, 1.34]; Europe vs. NA 0.99 [0.84, 1.16]; Asia vs. Global 1.01 [0.71, 1.45]; Asia vs. NA 1.04 [0.79, 1.37]; Global vs. NA 1.03 [0.76, 1.38]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events	F	R [95% CIs] for Fruit and Vegetables and CVD Mortality		Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	14	798,391	17,439	0.84 [0.76, 0.94]	_ -	-	-	-	-
Sex	Females	1	71,243	755	0.84 [0.53, 1.33]		F vs. M: 0.90 [0.52, 1.58]	63.21%	0.73	0.007
	Males	3	15,044	5,037	0.93 [0.68, 1.29]		F vs. Mix: 1.03 [0.63, 1.68]			
	Mxed	10	712,104	11,647	0.82 [0.69, 0.95]	_	M vs. Mix: 1.14 [0.80, 1.64]			
Age (y)	<55	7	616,198	9,288	0.81 [0.67, 0.97]		0.92 [0.70,1.20]	65.40%	0.49	0.008
	≥55	7	182,193	8,151	0.88 [0.73, 1.07]					
Follow Up (y)	<10	5	298,283	4,500	0.73 [0.59, 0.92]		0.82 [0.63, 1.07]	64.71%	0.14	0.010
	≥10	9	500,108	12,939	0.89 [0.77, 1.03]					
Statistical Adjustments	<8	3	13,655	705	0.93 [0.69, 1.24]		1.13 [0.81, 1.57]	70.67%	0.44	0.013
	≥ 8	11	784,736	16,734	0.82 [0.71, 0.95]	_				
NOS	<6	-	-	-	-					0.017
	≥6	14	798,391	17,439	0.84 [0.76, 0.94]	_ -				
Exposure Assessment Tool	Validated FFQ	8	703,295	9,921	0.84 [0.76, 0.94]	_	vFFQ vs. uFFQ: 1.21 [1.03, 1.41]	30.71%	<0.01	0.025
	Unvalidated FFQ	2	14,632	5,026	1.01 [0.91, 1.14]	×	vFFQ vs. record: 0.85 [0.69, 1.03]			
	Food record	4	80,464	9,921	0.71 [0.60, 0.85]	ľ	uFFQ vs. record: 0.70 [0.57, 0.86]			
Location	Asia	3	84,531	1,578	0.76 [0.58, 1.00]	_	+	68.09%	0.61	0.050
	Europe	8	562,766	12,689	0.87 [0.72 1.06]					
	North America	2	15,759	1,523	0.95 [0.66, 1.38]					
	Global	1	135335	1649	0.69 [0.38, 1.26]					
						0.5 1.0 1.5	i			
						Lower Risk Higher Risk				

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S175. Categorical subgroup analyses of total fruit and vegetable intake and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD - cardiovascular disease; FFQ - food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.87 [0.63, 1.22]; Europe vs. Global 0.79 [0.42, 1.49]; Europe vs. North America 1.09 [0.72, 1.66]; Asia vs. Global 1.10 [0.57, 2.13]; Asia vs. North America 0.80 [0.50, 1.27]; Global vs. North America 0.73 [0.36, 1.47]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit and CVD Mortality		Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	27	1,581,506	39,623	0.83 [0.77, 0.89]	—	-	-	-	-
Sex	Females	5	135,154	5,157	0.76 [0.63, 0.91]	_	F vs. M: 0.84 [0.66, 1.07]	77.74%	0.33	0.007
	Males	7	101,605	8,641	0.92 [0.75, 1.13]	_	F vs. Mix: 0.92 [0.75, 1.13]			
	Mxed	17	329,286	14,049	0.82 [0.75, 0.90]	_ - -	M vs. Mix: 1.10 [0.92, 1.31]			
Age (y)	<54	10	1,115,225	15,507	0.77 [0.69, 0.86]		0.88 [0.77, 1.02]	71.00%	0.08	0.008
	≥54	17	466,281	24,116	0.87 [0.80, 0.94]	••				
Follow Up (y)	<11	13	916,897	17,780	0.80 [0.72, 0.90]		0.95 [0.82, 1.09]	76.29%	0.44	0.010
	≥11	14	664,609	21,843	0.85 [0.77, 0.93]					
Statistical Adjustments	<8	8	57,260	5,303	0.88 [0.78, 0.99]		1.10 [0.95, 1.27]	79.15%	0.22	0.013
	≥ 8	19	1,524,246	34,320	0.80 [0.73, 0.88]					
NOS	<6	2	20,531	1,717	0.89 [0.73, 1.08]		1.08 [0.88, 1.33]	78.84%	0.45	0.017
	≥6	24	1,560,975	37,906	0.82 [0.76, 0.89]	_ _				
Exposure Assessment Tool	Validated FFQ	15	990,789	22,863	0.84 [0.76, 0.93]		vFFQ vs. uFFQ: 0.97 [0.80, 1.17]	78.17%	0.93	0.025
	Unvalidated FFQ	4	483,979	12,238	0.81 [0.69, 0.95]	_	vFFQ.vs. record: 0.99 [0.83, 1.18]			
	Food record	6	106,738	4,522	0.83 [0.72, 0.96]		uFFQ vs. record: 1.02 [0.83, 1.27]			
Location	Asia	6	752,255	20,127	0.80 [0.71, 0.89]		+	78.55%	0.32	0.050
	Australia	1	40,653	697	0.69 [0.46, 1.05]					
	Europe	14	629,562	16,072	0.83 [0.75, 0.91]					
	North America	2	13,944	563	1.02 [0.77, 1.38]	_ -				
	Global	2	145,092	2,164	0.94 [0.75 1.19]					
						0.5 1.0 1.	5			
						Lower Risk Higher Risk	-			

FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

Figure S176. Categorical subgroup analyses of fruit intake and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.96 [0.83, 1.13]; Europe vs Australia 0.84 [0.55, 1.28]; Europe vs. Global 1.14 [0.89, 1.47]; Europe vs. North America 1.25 [0.92, 1.70]; Asia vs. Australia 1.15 [0.75, 1.77]; Asia vs. Global 0.85 [0.65, 1.10]; Asia vs. North America 0.77 [0.56, 1.06]; Australia vs. Global 0.73 [0.46, 1.18]; Australia vs. North America 0.67 [0.41, 1.12]; Global vs. North America 0.92 [0.63, 1.33]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and CVD Mortality		Residual I ²	p-value	Alpha Level
Total	-	21	1,101,435	33,516	Within Subgroups 0.83 [0.78, 0.89]	—	Between Subgroups -	-	-	-
Sex	Females Males Mxed	4 6 14	99,506 97,280 904,649	4,498 8,050 20,968	0.90 [0.74, 1.09] 0.85 [0.72, 1.00] 0.82 [0.74, 0.91]		F vs. M: 1.07 [0.82, 1.38] F vs. Mix: 1.10 [0.88, 1.37] M vs. Mix: 1.03 [0.85 1.25]	59.31%	0.69	0.007
Age (y)	<55 ≥55	12 9	733,002 368,433	13,359 20,157	0.82 [0.74, 0.91] 0.86 [0.78, 0.96]		0.95 [0.82, 1.10]	54.86%	0.47	0.008
Follow Up (y)	<10 ≥10	7 14	352,675 748,760	7582 25,934	0.77 [0.68, 0.89] 0.87 [0.81, 0.95]	_	0.88 [0.76, 1.03]	52.02%	0.11	0.010
Statistical Adjustments	<8 ≥8	7 11	47,233 1,054,202	4,788 28,728	0.88 [0.78, 1.00] 0.82 [0.75, 0.90]		1.07 [0.92, 1.25]	57.47%	0.38	0.013
NOS	<6 ≥6	1 20	10,471 1,090,964	1,202 32,314	0.94 [0.71, 1.25] 0.83 [0.79, 0.90]		1.13 [0.84, 1.52]	56.90%	0.40	0.017
Exposure Assessment Tool	Validated FFQ Unvalidated FFQ Food record	10 4 7	942,971 22,593 135,871	21,958 6,310 5,248	0.84 [0.75, 0.94] 0.83 [0.70, 0.98] 0.84 [0.73, 0.98]		vFFQ vs. uFFQ: 0.99 [0.81, 1.21] vFFQ vs. record: 1.00 [0.83, 1.21] uFFQ vs. record: 1.01 [0.81, 1.27]	59.53%	0.99	0.025
Location	Asia Australia Europe North America Global	5 2 11 2 1	289,553 41,879 591,591 43,077 135,335	13,961 935 15,682 1289 1,649	0.85 [0.73, 0.99] 0.76 [0.57, 1.01] 0.86 [0.76, 0.96] 0.77 [0.59, 1.00] 0.87 [0.59, 1.28]		+	59.70%	0.87	0.050
						0.5 1.0 1.5				

Figure S177. Categorical subgroup analyses of intake of vegetables and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.99 [0.82, 1.19]; Europe vs Australia 0.88 [0.65, 1.20]; Europe vs. Global 1.01 [0.68, 1.52]; Europe vs. North America 0.90 [0.67, 1.20]; Asia vs. Australia 1.12 [0.81, 1.56]; Asia vs. Global 0.98 [0.64, 1.48]; Asia vs. North America 1.11 [0.81, 1.50]; Australia vs. Global 0.87 [0.54, 1.41]; Australia vs. North America 0.98 [0.66, 1.46]; Global vs. North America 1.13 [0.71, 1.81]

							Pooled Eff	fect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% (Cls] for Fruit and Vegeta	bles and Incident Cl	ID	Residual I ²	p-value	Alpha Level
			0.02904962		Within Subgroups				Between Subgroups			
Total	-	19	619,182	17,987	0.88 [0.82, 0.93]					-	-	-
Sex	Females	4	195,199	3,069	0.84 [0.76, 0.94]		_ • _		F vs. M: 0.96 [0.80, 1.14]	9.65%	0.18	0.007
	Males	5	122,472	4,715	0.81 [0.70, 0.93]		_		F vs. Mix: 0.88 [0.75, 1.03]			
	Mxed	10	301,511	10,203	0.92 [0.85, 0.99]		_ _		M vs. Mix: 0.92 [0.81, 1.05]			
Age (y)	<54	10	406,180	11,508	0.87 [0.80, 0.95]				0.99 [0.87, 1.13]	20.41%	0.85	0.008
	≥54	9	213,002	6,479	0.88 [0.80, 0.98]							
Follow Up (y)*	<10	7	342,908	3412	0.85 [0.76, 0.95]				0.95 [0.82, 1.10]	24.09%	0.45	0.010
	≥10	11	265,140	13,897	0.90 [0.82, 0.99]							
Statistical Adjustments	<8	2	5,066	445	0.85 [0.65, 1.14]				0.97 [0.72, 1.31]	20.60%	0.82	0.013
	≥8	17	614,116	17,542	0.88 [0.82, 0.94]			_				
NOS	<6	4	126,148	7,005	0.82 [0.75, 0.91]		•		0.91 [0.81, 1.02]	9.12%	0.10	0.017
103	≥6	15	493,034	10,982	0.91 [0.85, 0.97]				0.51 [0.81, 1.02]	5.12/0	0.10	0.017
	20	15	493,034	10,962	0.91 [0.83, 0.97]		-•					
Exposure Assessment Tool	Validated FFQ	15	521,931	13,968	0.88 [0.83, 0.94]		_ • _		vFFQ vs. uFFQ: 0.84 [0.62, 1.14]	16.44%	0.37	0.025
	Unvalidated FFQ	3	82,361	3,481	0.74 [0.55, 1.00]				vFFQ vs. record: 1.18 [0.76, 1.84]			
	Food record	1	14,890	538	1.04 [0.67, 1.61]		•		uFFQ vs. record: 1.41 [0.83, 2.38]			
Location	Asia	4	140,365	1,300	0.92 [0.70, 1.19]				+	23.70%	0.71	0.050
	Australia	1	14,890	538	0.74 [0.54, 1.02]							
	Europe	8	154,641	5,370	0.90 [0.81, 1.00]		·					
	North America	5	173951	8636	0.86 [0.77, 0.95]		·					
	Global	1	135,335	2,143	0.95 [0.68, 1.34]		+					
						0.5	1.0	1.5				
						0.5						
							Lower Risk	Higher Risk				

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Figure S178. Categorical subgroup analyses of total fruit and vegetable intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. * Follow-up years incudes 17 cohorts as Bingham et al. 2008 (EPIC Norfolk) did not report follow-up time. † Europe vs. Asia 1.02 [0.77, 1.35]; Europe vs. Australia 0.82 [0.59, 1.14]; Europe vs. Global 1.06 [0.74, 1.51]; Europe vs. North America 0.95 [0.83, 1.10]; Asia vs. Australia 1.24 [0.82, 1.87]; Asia vs. Global 0.96 [0.63, 1.48]; Asia vs. North America 1.07 [0.81, 1.42]; Australia vs. Global 0.78 [0.49, 1.24]; Australia vs. North America 0.86 [0.62, 1.21]; Global vs. North America 1.11 [0.78, 1.58]

						Pooled E	ffect Estimates			Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit an	d Incident CHD	Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	20	1,170,021	23,856	0.88 [0.84, 0.93]	-+-	-	-	-	-
Sex	Females	6	251,883	3,255	0.86 [0.76, 1.00]	_	F vs. M: 0.97 [0.82, 1.15]	11.32%	0.88	0.007
	Males	6	166,015	9,697	0.90 [0.82, 0.99]	_ -	F vs. Mix: 1.00 [0.85, 1.19]			
	Mxed	10	752,123	10,904	0.87 [0.79, 0.96]	_ -	M vs. Mix: 1.03 [0.90, 1.18			
Age (y)	<55	10	899,185	13,731	0.86 [0.80, 0.93]	_	0.94 [0.84, 1.06]	3.79%	0.31	0.008
	≥55	10	270,836	10,125	0.91 [0.83, 0.99]	_ -				
Follow Up (y)	<10	9	865,523	6,656	0.82 [0.74, 0.92]	_ —	0.92 [0.82, 1.04]	0.00%	0.16	0.010
	≥10	11	304,498	17,200	0.90 [0.85, 0.95]					
Statistical Adjustments	<8	4	206,008	11,296	0.91 [0.77, 1.09]	_	- 1.04 [0.87, 1.25]	8.05%	0.63	0.013
-	≥ 8	16	964,013	12,560	0.88 [0.82, 0.93]	_ -				
NOS	<6	2	113,276	6,189	0.87 [0.77, 0.99]	_	0.99 [0.86, 1.14]	8.97%	0.89	0.017
	≥6	18	1,056,745	17,667	0.88 [0.82, 0.95]	- - -				
Exposure Assessment Tool	Validated FFQ	17	637,980	18,321	0.90 [0.85, 0.95]		vFFQ vs. uFFQ: 0.87 [0.76, 0.9	9] 0.00%	0.07	0.025
	Unvalidated FFQ	2	530,192	5,374	0.78 [0.69, 0.88]		vFFQ vs. record: 1.12 [0.80, 1	57]		
	Food record	1	1,849	161	1.01 [0.72, 1.41]		uFFQ vs. record: 1.29 [0.91, 1.	-		
ocation	Asia	4	590,798	3,755	0.76 [0.65, 0.89]	_ -	t	0.00%	0.22	0.050
	Europe	11	265,012	11,509	0.90 [0.84, 0.97]	_ -				
	North America	4	178876	6449	0.87 [0.80, 0.96]	_ -				
	Global	1	135,335	2,143	0.91 [0.73, 1.15]		<u> </u>			
						0.5 1.0	1.5			
						Lower Risk	Higher Risk			

FRUIT AND CORONARY HEART DISEASE INCIDENCE

Figure S179. Categorical subgroup analyses of fruit intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.84 [0.71, 0.99]; Europe vs. Global 1.01 [0.79, 1.29]; Europe vs. North America 0.96 [0.85, 1.08]; Asia vs. Global 0.83 [0.63, 1.10]; Asia vs. North America 0.87 [0.73, 1.04]; Global vs. North America 1.05 [0.82, 1.34]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and Incident CHD		Residual I ²	p-value	Alpha Level
			0.0246607		Within Subgroups		Between Subgroups			
Total	•	18	696,330	17,172	0.92 [0.85, 0.99]	-•-		-	-	-
ex	Females	6	251,883	3,820	0.87 [0.77, 0.98]	•	F vs. M: 0.99 [0.86, 1.14]	0.00%	0.86	0.007
	Males	8	184,953	7,023	0.88 [0.81, 0.95]	_ -	F vs. Mix: 0.96 [0.82, 1.13]			
	Mxed	6	259,494	6,329	0.91 [0.81, 1.01]		M vs. Mix: 0.97 [0.85, 1.11]			
ge (y)	<55	11	422,076	10,304	0.88 [0.81, 0.94]	_ —	0.98 [0.87, 1.09]	0.00%	0.67	0.008
	≥55	7	274,254	6,868	0.90 [0.82, 0.97]					
bllow Up (y)	<10	9	403,213	5986	0.83 [0.74, 0.94]	_	0.95 [0.83, 1.09]	0.00%	0.43	0.010
	≥10	9	252,241	10,712	0.88 [0.82, 0.95]					
tatistical Adjustments	<8	2	5,177	468	0.96 [0.73, 1.26]		1.09 [0.82, 1.44]	0.00%	0.53	0.013
	≥ 8	16	691,153	16,704	0.88 [0.83, 0.93]	_ -				
os	<6	2	113,276	6,189	0.87 [0.80, 0.96]	_ —	0.99 [0.88, 1.11]	0.00%	0.78	0.017
	≥6	16	583,054	10,983	0.89 [0.83, 0.95]	- -				
xposure Assessment Tool	Validated FFQ	16	615,954	14,188	0.88 [0.83, 0.94]	-•	vFFQ vs. uFFQ: 0.99 [0.84, 1.16]	0.00%	0.69	0.025
	Unvalidated FFQ	1	78,527	2,823	0.87 [0.75, 1.01]		vFFQ vs. record: 1.15 [0.82, 1.61]			
	Food record	1	1,849	161	1.01 [0.72, 1.41]		uFFQ vs. record: 1.16 [0.81, 1.68]			
ocation	Asia	3	139,133	1,204	0.96 [0.73, 1.25]		+	0.00%	0.79	0.050
	Europe	10	253,939	6,362	0.89 [0.83, 0.97]					
	North America	4	167,923	7,463	0.86 [0.79, 0.94]					
	Global	1	135,335	2,143	0.91 [0.73, 1.15]					
						0.5 1.0 1.5				
						Lower Risk Higher Risk				

VEGETABLE AND CORONARY HEART DISEASE INCIDENCE

Figure S180. Categorical subgroup analyses of intake of vegetables and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 1.07 [0.81, 1.41]; Europe vs. Global 1.02 [0.80, 1.30]; Europe vs. NA 0.96 [0.85, 1.08]; Asia vs. Global 1.05 [0.74, 1.49]; Asia vs. NA 1.11 [0.84, 1.48]; Global vs. NA 1.07 [0.83, 1.37]

CITRUS FRUIT AND CORONARY HEART DISEASE INCIDENCE

						_		Adjusted		
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Citrus Fruit and Incident CHD	1	Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	10	364,978	8,333	0.91 [0.85, 0.98]	•	-	-	-	-
Sex	Females	5	202,835	3,152	0.90 [0.80, 1.02]	_	F vs. M: 0.99 [0.84, 1.17]	0.00%	0.76	0.007
	Males	5	134,858	4,830	0.91 [0.82, 1.02]	_	F vs. Mix: 0.88 [0.60, 1.29]			
	Mxed	2	27,285	351	1.02 [0.72, 1.47]	•	- M vs. Mix: 0.89 [0.61, 1.29]			
Age (y)	<55	7	293,756	7,064	0.90 [0.83, 0.98]	_	0.91 [0.74, 1.14]	0.00%	0.38	0.008
	≥55	3	71,222	1,269	0.99 [0.81, 1.20]					
- ollow Up (y)	<10	5	212,923	1702	0.97 [0.82, 1.15]		1.08 [0.90, 1.31]	0.00%	0.38	0.010
	≥10	5	152,055	6,631	0.90 [0.82, 0.98]					
Statistical Adjustments	<8	-	-	-	-		-	-	-	0.013
	≥8	10	364,978	8,333	0.91 [0.85, 0.98]					
NOS	<6	2	113,276	6,189	0.91 [0.82, 1.00]	_ _	0.97 [0.82, 1.15]	0.00%	0.73	0.017
	≥6	8	251,702	2,144	0.93 [0.81, 1.07]					
Exposure Assessment Tool	Validated FFQ	10	364,978	8,333	0.91 [0.85, 0.98]		-	-	-	0.025
	Unvalidated FFQ	-	-	-	-	•				
	Food record	-	-	-	-			-		
ocation	Asia	3	133,258	441	0.81 [0.58, 1.12]	_	Europe vs. Asia: 0.84 [0.58, 1.20]	0.00%	0.54	0.050
	Europe	5	118,444	1,703	0.96 [0.82, 1.13]	·	Europe vs. NA: 0.94 [0.78, 1.13]			
	North America	2	113,276	6,189	0.91 [0.82, 1.00]	+	Asia vs. NA: 0.89 [0.64, 1.25			
						0.5 1.0	1.5			
						Lower Risk Higher Risk				

Figure S181. Categorical subgroup analyses of citrus fruit intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals.

						Pooled Effect Estimates		_		Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% Cls] for Fruit and CHD Mortality		Residual I ²	p-value	Alpha Level
					Within Subgroups		Between Subgroups	-		
Total	-	21	1,398,863	14,786	0.84 [0.76, 0.91]	_ -	-	-	-	-
Sex	Females	5	160,978	1,903	0.69 [0.56, 0.85]	_	F vs. M: 0.75 [0.58, 0.97]	52.61%	0.1	0.007
	Males	7	139,080	5,967	0.92 [0.80, 1.07]	_	F vs. Mix: 0.83 [0.65, 1.06]			
	Mxed	13	1,237,885	12,883	0.84 [0.74, 0.95]		M vs. Mix: 1.10 [0.91, 1.34]			
Age (y)	<55	10	1,014,095	6,488	0.79 [0.71, 0.89]		0.89 [0.75, 1.06]	54.99%	0.1	0.008
	≥55	11	384,768	8,298	0.89 [0.78, 1.02]					
Follow Up (y)	<10	6	708,590	5637	0.86 [0.73, 1.02]		1.05 [0.85, 1.28]	60.64%	0.65	0.010
	≥10	15	690,273	9,149	0.82 [0.74, 0.92]					
Statistical Adjustments	<8	10	237,290	4,289	0.86 [0.75, 0.99]		1.05 [0.88, 1.27]	62.86%	0.57	0.013
	≥8	11	1,161,573	10,497	0.82 [0.72, 0.92]					
NOS	<6	4	178,483	3,012	0.83 [0.70, 0.98]		0.99 [0.80, 1.21]	63.13%	0.9	0.017
	≥6	17	1,220,380	11,774	0.84 [0.75, 0.94]					
Exposure Assessment Tool	Validated FFQ	10	881,744	8,315	0.85 [0.74, 0.97]		vFFQ vs. uFFQ: 0.94 [0.77, 1.14]	64.54%	0.63	0.025
	Unvalidated FFQ	6	500,949	5,772	0.80 [0.68, 0.92]		vFFQ vs. record: 1.07 [0.79, 1.45]			
	Food record	4	16,170	699	0.91 [0.69, 1.19]		uFFQ vs. record: 1.14 [0.84, 1.56]			
Location	Asia	5	586,853	4,670	0.78 [0.66, 0.91]		+	60.03%	0.44	0.050
	Australia	1	40,653	407	0.76 [0.45, 1.30]					
	Europe	11	579,086	7,123	0.84 [0.73, 0.96]					
	North America	4	192,271	2,586	0.96 [0.77, 1.20]					
	North America	4	192,271	2,560	0.96 [0.77, 1.20]					
						0.5 1.0	1.5			
						Lower Risk Higher Ris	k			

FRUIT AND CORONARY HEART DISEASE MORTALITY

Figure S182. Categorical subgroup analyses of fruit intake and coronary heart disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.93 [0.76, 1.14]; Europe vs. Australia 0.91 [0.53, 1.57]; Europe vs. North America 1.15 [0.89, 1.47]; Asia vs. Australia 1.01 [0.59, 1.77]; Asia vs. North America 0.81 [0.62, 1.06]; Australia vs. North America 0.80 [0.45, 1.41]

						Pooled Effect Estimate	25	_		Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and CHD Mo	rtality	Residual I ²	p -value	Alpha Level
Total	-	18	1,968,325	26,007	Within Subgrou 0.84 [0.80, 0.8	-	Between Subgroups -		-	-
Sex	Females	4	704,423	5,693	0.85 [0.76, 0.9	_	F vs. M: 0.96 [0.88, 1.06]	26.01%	0.73	0.007
	Males	6	592,634	13,892	0.86 [0.78, 0.9	- _	F vs. Mix: 0.98 [0.89, 1.09]			
	Mxed	12	671,268	6,422	0.83 [0.76, 0.9		M vs. Mix: 1.02 [0.93 1.11]			
Age (y)	<56	10	1,054,654	14,251	0.87 [0.83, 0.9	—	1.04 [0.96, 1.13]	20.98%	0.31	0.008
	≥56	10	913,671	11,756	0.84 [0.78, 0.8	_				
Follow Up (y)	<13	9	1,404,076	18332	0.84 [0.78, 0.9		0.98 [0.89, 1.10]	25.06%	0.73	0.010
	≥13	9	564,249	7,675	0.85 [0.79, 0.9	_ _				
Statistical Adjustments	<8	5	205,972	3,242	0.86 [0.78, 0.9	_ _	1.01 [0.91, 1.14]	24.96%	0.81	0.013
-	≥ 8	13	1,762,353	22,765	0.84 [0.80, 0.9	- • -				
NOS	<6	3	167,742	2,407	0.86 [0.77, 0.9	_ _	1.02 [0.90, 1.15]	24.72%	0.73	0.017
	≥6	15	1,800,583	23,600	0.84 [0.80, 0.8	- - -				
Exposure Assessment Tool	Validated FFQ	7	814,011	7,649	0.82 [0.75, 0.9	_ —	vFFQ vs. uFFQ: 1.07 [0.96, 1.18]	0.00%	0.02	0.025
	Unvalidated FFQ	5	1,109,011	17,103	0.88 [0.84, 0.9		vFFQ vs. record: 0.77 [0.62, 0.96]			
	Food record	6	45,303	1,255	0.64 [0.52, 0.7		uFFQ vs. record: 0.72 {0.59, 0.89			
Location	Asia	4	124,511	2,632	0.85 [0.74, 0.9	_	+	32.13%	0.98	0.050
	Australia	2	41,879	535	0.83 [0.66, 1.0					
	Europe	7	543,981	6,400	0.85 [0.75, 0.9	_				
	North America	5	1,257,954	16,440	0.82 [0.75, 0.9	_ -				
					г О.	5 1.0	¬ 1.5			
						Lower Risk Higher Risk				

VEGETABLES AND CORONARY HEART DISEASE MORTALITY

Figure S183. Categorical subgroup analyses of intake of vegetables and coronary heart disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.98 [0.83, 1.17]; Europe vs. Australia 0.98 [0.75, 1.28]; Europe vs. North America 0.97 [0.83, 1.14]; Asia vs. Australia 1.01 [0.77, 1.32]; Asia vs. North America 1.02 [0.87, 1.19]; Australia vs. North America 1.01 [0.78, 1.30]

							Pooled Effect Estimate	s				Adjusted
Subgroup	Level	Cohorts	N	Events	RR	95% CIsl for Fruit a	nd Vegetables and Incid	lent Stro	ke	Residual I ²	p -value	Alpha Level
					Within Subgroups			-	Between Subgroups			
Total	-	14	532,667	11,091	0.80 [0.73, 0.89]	_•			-	-	-	-
Sex	Females	2	120,372	1,046	0.71 [0.57, 0.88]	•			F vs. M: 1.09 [0.80, 1.48]	0.00%	0.03	0.007
	Males	3	76,998	1,142	0.65 [0.52, 0.82]	_ -			F vs. Mix: 0.80 [0.63, 1.01]			
	Mxed	10	335,297	8,903	0.89 [0.80, 0.99]				M vs. Mix: 0.74 [0.57, 0.94]			
Age (y)	<55	6	373,490	5,660	0.74 [0.66, 0.84]	_ - •			0.84 [0.70, 1.00]	10.79%	0.05	0.008
	≥55	8	159,177	5,431	0.89 [0.78, 1.01]		·					
Follow Up (y)	<9	7	394,374	8713	0.75 [0.65, 0.87]				0.86 [0.68, 1.07]	29.24%	0.16	0.010
≥9		7	138,293	2,378	0.88 [0.74, 1.04]	♦						
Statistical Adjustments <8	<8	3	86,841	2,193	0.71 [0.59, 0.85]	+			0.83 [0.67, 1.03]	14.30%	0.09	0.013
	≥ 8	11	445,826	8,898	0.85 [0.76, 0.96]							
NOS	<6	-	-	-	-				-	-	-	0.017
	≥6	14	532,667	11,091	0.80 [0.73, 0.89]	_						
Exposure Assessment Tool	Validated FFQ	12	528,085	10,449	0.78 [0.70, 0.87]	_ -			vFFQ vs. uFFQ: 0.79 [0.42, 1.46]	65.82%	0.06	0.025
	Unvalidated FFQ	1	3,750	545	0.61 [0.33, 1.13]	•			vFFQ vs. record: 1.36 [1.04, 1.78]			
	Food record	1	832	97	1.06 [0.83, 1.36]		•		uFFQ vs. record: 1.73 [0.90, 3.35]			
Location	Asia	2	17,912	265	1.03 [0.85, 1.24]	_			+	0.00%	0.02	0.050
	Europe	6	160,502	5,302	0.87 [0.77, 0.98]	+						
	North America	5	218,918	3,290	0.70 [0.62, 0.79]							
	Global	1	135,335	2,234	0.89 [0.62, 1.26]							
					C).5	1.0	1.5				
						Lower Risk	Higher Risk					

TOTAL FRUIT AND VEGETABLES AND STROKE INCIDENCE

Figure S184. Categorical subgroup analyses of total fruit and vegetable intake and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs Asia 1.17 [0.94, 1.47]; Europe vs Global 1.02 [0.70, 1.48]; Europe vs NA 0.81 [0.68, 0.96]; Asia vs Global 1.16 [0.77, 1.72]; Asia vs NA 1.46 [1.16, 1.84]; Global vs NA 1.27 [0.87, 1.84]

FRUIT AND STROKE INCIDENCE

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit and Incident Stroke		Residual I ²	p -value	Alpha Level
Total	-	17		43,702	Within Subgrou 0.83 [0.78, 0.8	- • -	Between Subgroups -	-	-	-
Sex	Females Males	3 6	93,234 77,551	309 3,877	0.86 [0.68, 1.1 0.81 [0.70, 0.9		F vs. M: 1.06 [0.80, 1.41] F vs. Mix: 1.04 [0.80, 1.34]	39.25%	0.89	0.007
Age (y)	Mxed	10 9	817,208 779,138	39,516 35,462	0.83 [0.77, 0.9 0.82 [0.75, 0.8	_ _	M vs. Mix: 0.97 [0.83, 1.15] 0.96 [0.84, 1.10]	33.59%	0.53	0.008
-ge (y)	≥56	8	208,855	8,240	0.85 [0.77, 0.9	_	0.90 [0.84, 1.10]	33.33%	0.55	0.008
Follow Up (y)	<14 ≥14	8 9	827,457 160,536	41206 2,496	0.82 [0.76, 0.8 0.86 [0.75, 0.9	→ →	0.95 [0.82, 1.09]	33.91%	0.44	0.010
Statistical Adjustments	<8 ≥8	3 14	3,233 984,760	306 43,396	0.79 [0.58, 1.0 0.83 [0.78, 0.8	→	0.95 [0.69, 1.31]	36.97%	0.74	0.013
NOS	<6	-	-	-	-	- - -	-	-	-	0.017
	≥6	17	987,993	43,702	0.83 [0.78, 0.8	_				0.005
Exposure Assessment Tool	Validated FFQ Unvalidated FFQ Food record	10 2 5	490,356 453,786 43,851	11,941 29,352 2,409	0.85 [0.79, 0.9 0.78 [0.70, 0.8 0.87 [0.74, 1.0	_ _	vFFQ vs. uFFQ: 0.91 [0.79, 1.04] vFFQ vs. record: 1.02 [0.85, 1.23] uFFQ vs. record: 1.13 [0.93, 1.37]	26.76%	0.28	0.025
Location	Asia	3	470,284	29,549	0.79 [0.72, 0.8	- -	+	17.05%	0.25	0.050
	Europe North America	10 3	267,263 115,111	11,252 667	0.86 [0.79, 0.9 0.69 {0.51, 0.9					
	Global	1	135335	2234	0.93 [0.72, 1.2 0.5	1.0 1.5				
						Lower Risk Higher Risk				

Figure S185. Categorical subgroup analyses of fruit intake and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.92 [0.81, 1.05]; Europe vs. Global 1.09 [0.82, 1.42]; Europe vs. North America 0.80 [0.59, 1.09]; Asia vs. Global 0.85 [0.65, 1.12]; Asia vs. North America 1.15 [0.85, 1.57]; Global vs. North America 1.36 [0.92, 2.01]

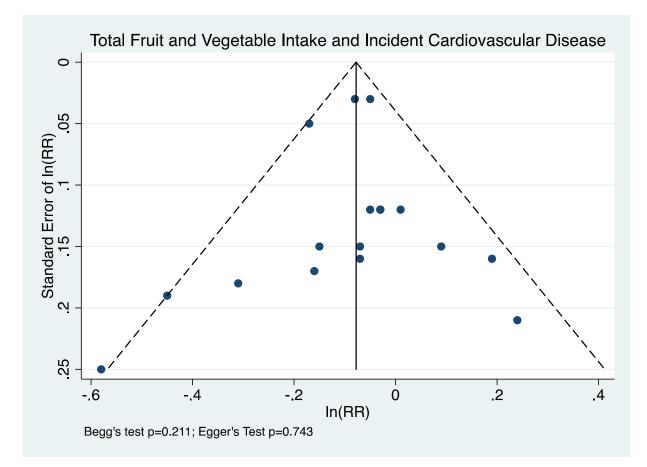
VEGETABLES AND STROKE INCIDENCE

								Pooled	Effect E	stimates					Adjusted
Subgroup	Level	Cohorts	N	Events		R	R [95% Cls]	for Fruit a	and CVD	Mortality			Residual I ²	p-value	Alpha Level
			0.0241		Within Subgroups			1				Between Subgroups			
Total	-	16	564,531	13,607	0.89 [0.81, 0.97]			-				•	-	-	-
Sex	Females	3	93,234	309	0.82 [0.61, 1.09]		-	•	-			F vs. M: 1.00 [0.72, 1.38]	41.34%	0.18	0.007
	Males	9	134,595	4,472	0.82 [0.70, 0.95]			←				F vs. Mix: 0.84 [0.62, 1.16]			
	Mxed	8	336,702	8,826	0.97 [0.85, 1.10]			-+	-			M vs. Mix: 0.85 [0.69, 1.03]			
Age (y)	<58	8	437,979	9,019	0.88 [0.78, 1.00]			-				0.99 [0.78, 1.22]	50.42%	0.89	0.008
	≥58	9	126,552	4,588	0.90 [0.75, 1.06]										
Follow Up (y)	<14	8	432,836	12,645	0.88 [0.78, 1.00]]							0.97 [0.80, 1.20]	49.72%	0.80	0.010
	≥14	8	131,695	962	0.90 [0.76, 1.07]			-							
Statistical Adjustments	<8	3	3,233	306	0.82 [0.58, 1.15]							0.92 [0.64, 1.31]	52.43%	0.62	0.013
	≥8	13	561,298	13,301	0.89 [0.81, 0.99]		-	→	_						
NOS	<6			-									-	-	0.017
	≥6	16	564,531	13,607	0.87 [0.80, 0.94]			-							
Exposure Assessment Tool	Validated FFQ	10	512,840	11,401	0.91 [0.81, 1.01]							vFFQ vs. uFFQ: 0.47 [0.21, 1.05]	49.62%	0.17	0.025
	Unvalidated FFQ	1	2,121	196	0.43 [0.19, 0.95]			•				vFFQ vs. record: 0.95 [0.76, 1.20]			
	Food record	5	49,570	2,010	0.86 [0.70, 1.06]		•	-+				uFFQ vs. record: 2.02 [0.89, 4.58]			
ocation	Asia	3	28,270	619	1.03 [0.82, 1.30]			_				+	41.17%	0.23	0.050
	Europe	9	285,815	10,117	0.85 [0.77, 0.95]			_ _							
	North America	3	115,111	637	0.82 [0.60, 1.12]		_	•	_						
	Global	1	135,335	2,234	1.09 [0.79, 1.52]				•	_					
	0.000	-	200,000	2,204	2.05 [0.75, 2.52]				-						
						0.0	0.5	1.0		1.5	2.0				
							Lower Risk		н	igher Risk					

Figure S186. Categorical subgroup analyses of intake of vegetables and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 1.21 [0.94, 1.56]; Europe vs. Global 1.28 [0.91, 1.81]; Europe vs. NA 0.96 [0.69, 1.33]; Asia vs. Global 0.94 [0.63, 1.40]; Asia vs. NA 1.26 [0.86, 1.86]; Global vs. NA 1.34 [0.85, 2.10]

FRUIT AND STROKE MORTALITY

						Pooled Effect Estimates		_		Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit and Stroke Mortality		Residual I ²	p -value	Alpha Level
Total	-	14	1,282,756	10,899	Within Subgroups 0.79 [0.71, 0.89]	_ —	Between Subgroups -		-	-
Sex	Females	4	155,963	2,022	0.76 [0.59, 0.99]		F vs. M: 0.90 [0.64, 1.29}	75.38%	0.8	0.007
	Males	4	107,467	2,302	0.85 [0.67, 1.07]		F vs. Mix: 0.98 [0.72, 1.32]			
	Mxed	9	1,126,793	8,877	0.78 [0.67, 0.91]		M vs. Mix: 1.08 [0.81, 1.44]			
ge (y)	<55	8	972,126	5,691	0.80 [0.69, 0.93]		1.02 [0.81, 1.28]	71.67%	0.85	0.008
	≥55	6	310,630	5,208	0.78 [0.66, 0.93]					
Follow Up (y) <10	<10	3	655,633	3905	0.76 [0.61, 0.95]	-	0.95 [0.73, 1.22]	69.52%	0.65	0.010
	≥ 10	14	627,123	6,994	0.81 [0.71, 0.92]					
Statistical Adjustments <8	<8	5	193,091	1,791	0.88 [0.673, 1.06]		1.15 [0.92, 1.44]	58.65%	0.19	0.013
	≥ 8	9	1,089,665	9,108	0.76 [0.67, 0.86]					
IOS	<6	3	187,214	1,668	0.92 [0.76, 1.12]		1.23 [0.99, 1.54]	54.86%	0.07	0.017
	≥ 6	11	1,095,542	9,231	0.75 [0.67, 0.85]					
xposure Assessment Tool	Validated FFQ	7	772,822	5,387	0.80 [0.68, 0.96]		vFFQ vs. uFFQ: 1.01 [0.80, 1.29]	74.29%	0.49	0.025
	Unvalidated FFQ	5	494,945	5,004	0.82 [0.69, 0.97]		vFFQ vs. record: 0.81 [0.54, 1.21]			
	Food record	2	14,989	508	0.65 [0.45, 0.94]		uFFQ vs. record: 0.79 [0.53, 1.19]			
ocation	Asia	6	581,472	6,978	0.74 [0.65, 0.85]		Europe vs. NA: 1.12 [0.75, 1.68]	77.24%	0.25	0.050
	Europe	7	527,256	3,061	0.86 [0.71, 1.03]		Europe vs. Asia: 0.87 [0.69, 1.10]			
	North America	1	174,028	860	0.96 [0.67, 1.37]		Asia vs. NA: 0.77 [0.53, 1.13]			
						0.5 1.0 1	י 5			
						Lower Risk Higher Risk				


Figure S187. Categorical subgroup analyses of fruit intake and stroke mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup. FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals.

VEGETABLES AND STROKE MORTALITY

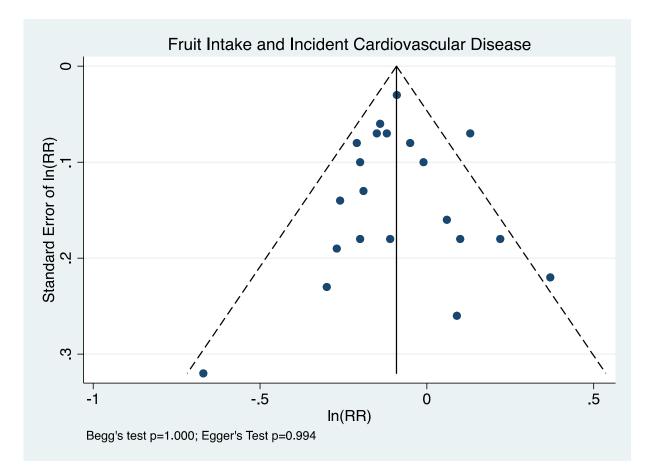
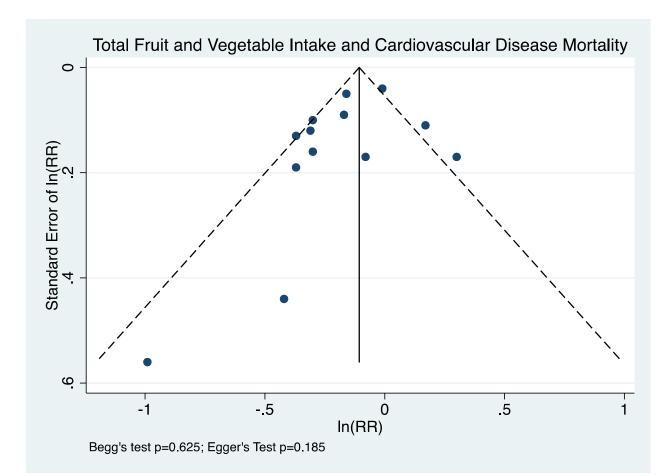
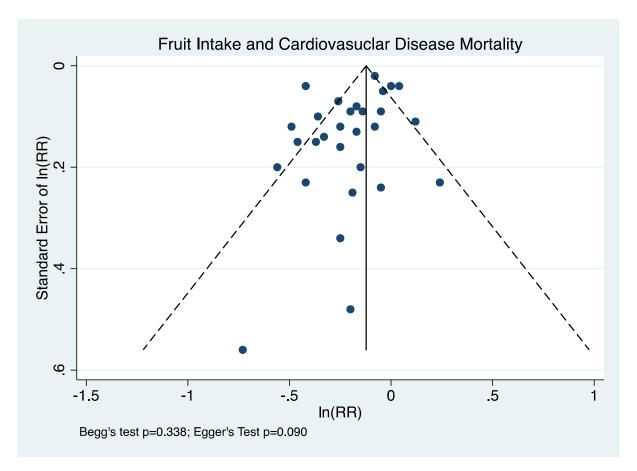

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and Stroke Mortality		Residual I ²	p -value	Alpha Level
					Within Subgroups	_	Between Subgroups			-
Total	-	12	780,441	7,551	0.86 [0.78, 0.96]	_ -	-	-	-	-
Sex	Females	3	120,315	1,752	0.80 [0.63, 1.02]		F vs. M: 0.90 [0.64, 1.27]	59.38%	0.76	0.007
	Males	4	103,142	2,160	0.89 [0.70, 1.13]	_	F vs. Mix: 0.91 [0.68, 1.22]			
	Mxed	7	556,984	3,639	0.88 [0.75, 1.03]	_	M vs. Mix: 1.01 [0.76, 1.35]			
Age (y)	<58	7	497,499	258	0.84 [0.71, 1.00]	•	0.95 [0.75, 1.19]	62.43%	0.63	0.008
	≥58	5	282,942	7,293	0.88 [0.76, 1.03]	_				
Follow Up (y)	<10	1	193,291	969	0.85 [0.61, 1.18]	_	0.98 [0.69, 1.38]	64.65%	0.9	0.010
	≥10	9	587,150	6,582	0.87 [0.77, 0.98]	_				
Statistical Adjustments	<8	3	182,350	1,425	0.92 [0.75, 1.13]		1.08 [0.85, 1.38]	49.01%	0.51	0.013
	≥ 8	7	598,091	6,126	0.85 [0.75, 0.97]	•				
NOS	<6	1	174,028	860	0.97 [0.79, 1.19]		1.16 [0.91, 1.47]	44.20%	0.21	0.017
	≥6	11	606,413	6,691	0.84 [0.74, 0.94]	_ _	. , .			
Exposure Assessment Tool	Validated FFQ	5	742,364	5,239	0.83 [0.72, 0.96]	_	vFF vs. uFFQ: 1.15 {0.92, 1.43]	45.92%	0.26	0.025
	Unvalidated FFQ	4	23,088	1,804	0.95 [0.81, 1.12]		vFFQ vs. record: 0.90 [0.62, 1.29]			
	Food record	3	14,989	508	0.75 [0.53, 1.04]	_	uFFQ vs. record: 0.78 [0.54, 1.13]			
Location	Asia	5	116,685	3,590	0.92 [0.79, 1.07]	_	+	57.00%	0.50	0.050
	Australia	1	1,226	92	0.80 [0.53, 1.21]					
	Europe	5	486,057	2,557	0.76 [0.61, 0.96]	_				
	North America	1	174,028	860	0.90 [0.62, 1.29]					
	north, include	-	17 1,020	000	0.00 [0.02, 1.20]	· · · · · · · · · · · · · · · · · · ·				
						0.5 1.0 1.5				
						Lower Risk Higher Risk				

Figure S188. Categorical subgroup analyses of intake of vegetables and stroke mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup. FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals.


[†] Europe vs. Asia 1.20 [0.92, 1.57]; Europe vs. Australia 1.05 [0.66, 1.67]; Europe vs. North America 1.17 [0.76, 1.80]; Asia vs. Australia 1.44 [0.74, 1.77]; Asia vs. North America 1.03 [0.69, 1.53]; Australia vs. North America 0.90 [0.52, 1.55]


Figure S189. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).


Figure S190. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease incidence comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

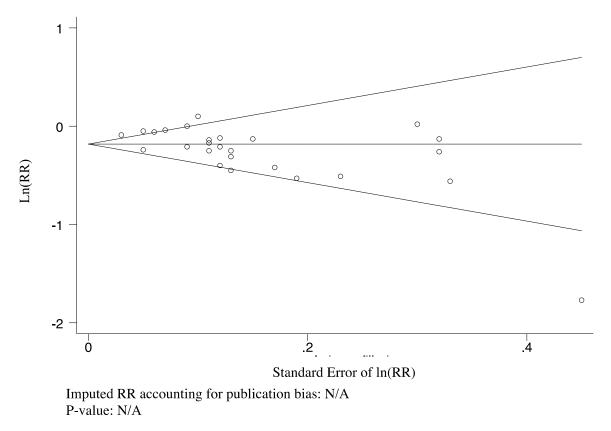

Figure S191. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Figure S192. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease mortality comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

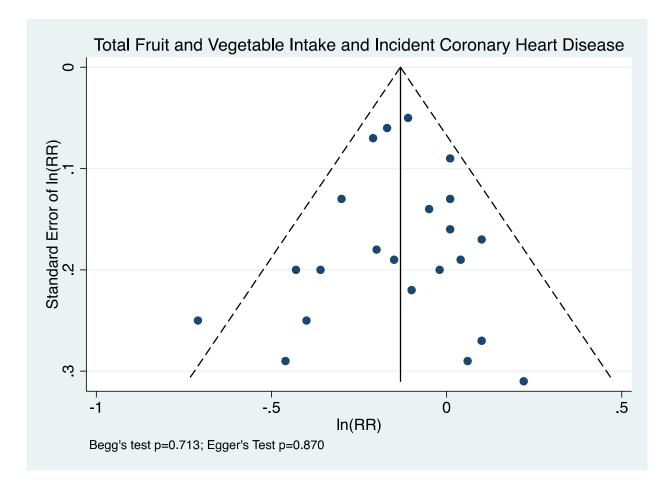
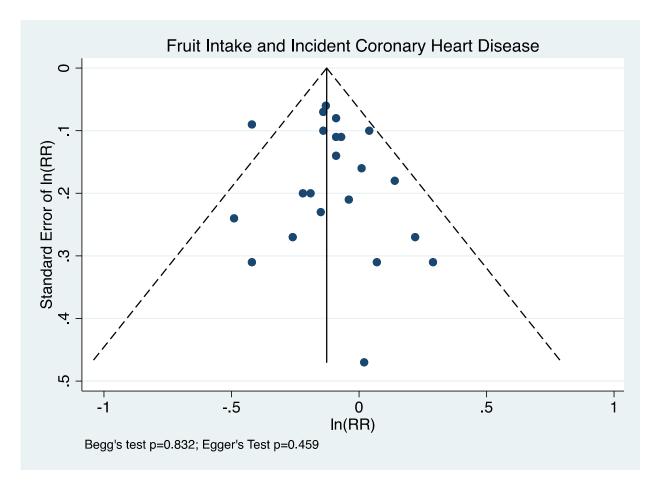
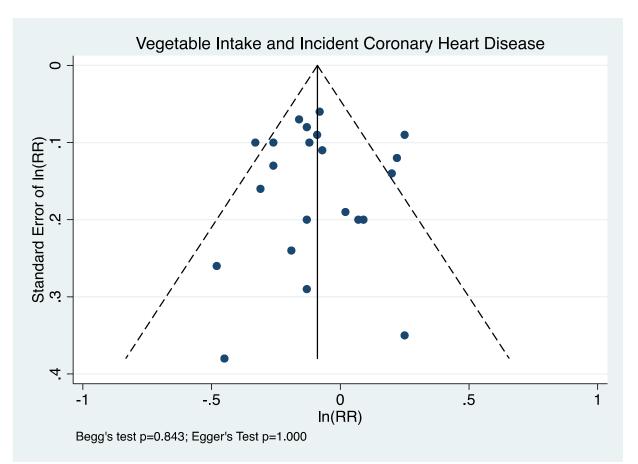
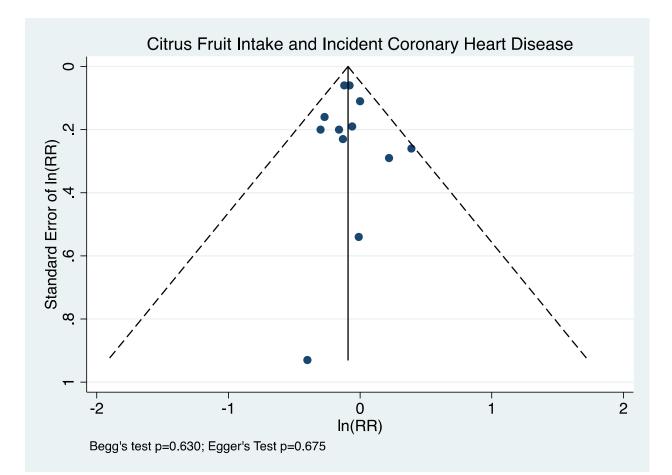


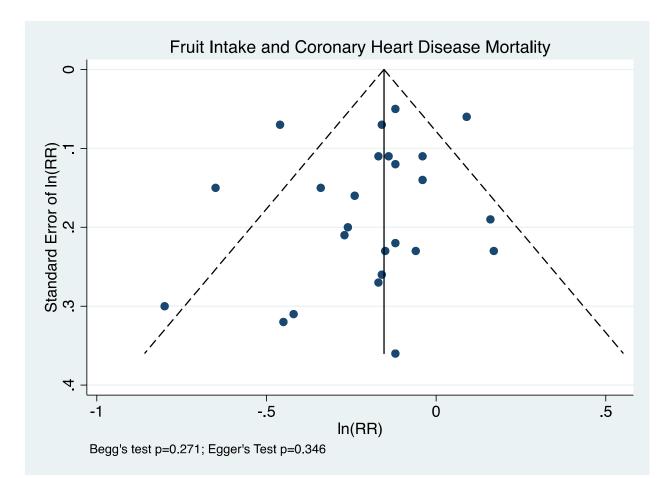
Figure S193. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).



Vegetable Intake and Cardiovascular Disease Mortality


Figure S194. Funnel plot for trim-and-fill analysis for coronary heart disease mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [ln(RR)]. The diagonal lines represent the pseudo-95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.


Figure S195. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).


Figure S196. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

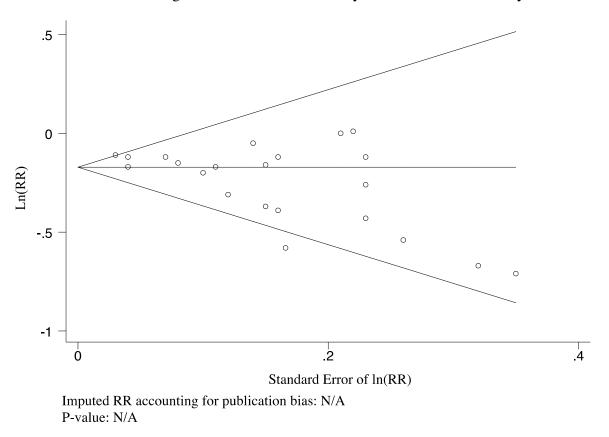

Figure S197. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Figure S198. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease incidence comparing the highest and lowest quantiles of citrus fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

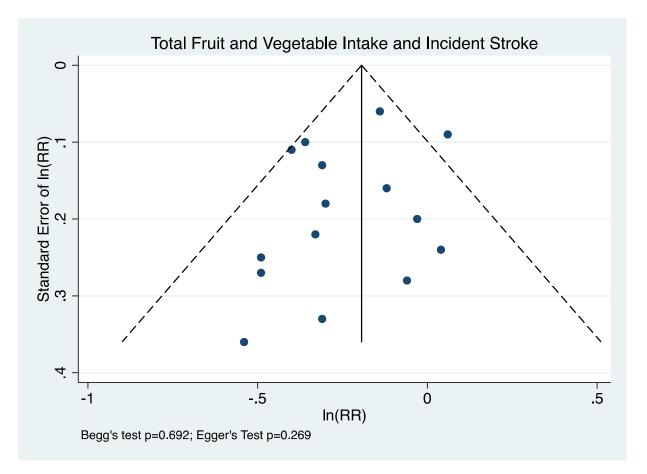
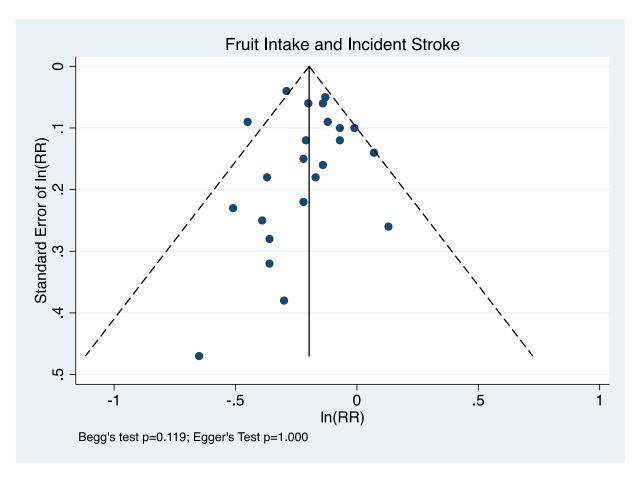


Figure S199. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).



Vegetable Intake and Coronary Heart Disease Mortality

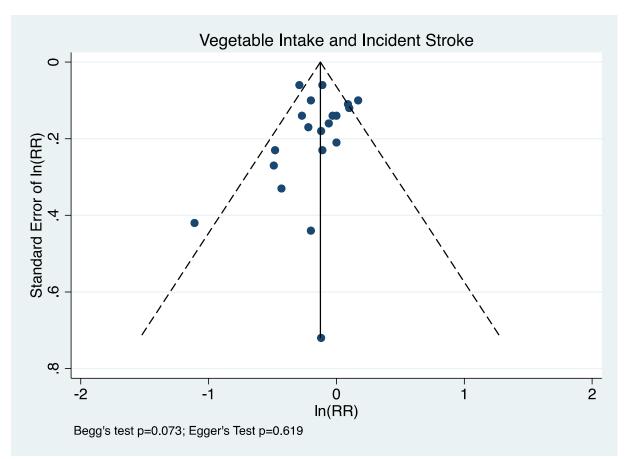
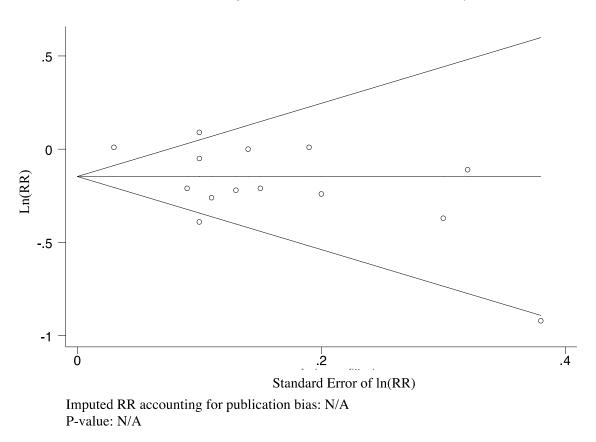

Figure S200. Funnel plot for trim-and-fill analysis for coronary heart disease mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [ln(RR)]. The diagonal lines represent the pseudo-95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.

Figure S201. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Figure S202. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke incidence comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).


Figure S203. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Fruit Intake and Stroke Mortality

Figure S204. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Vegetable Intake and Stroke Mortality

Figure S205. Funnel plot for trim-and-fill analysis for stroke mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [ln(RR)]. The diagonal lines represent the pseudo-95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.