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SUMMARY
Resting-state functional magnetic resonance imaging (fMRI) is widely used in cognitive and clinical neurosci-
ence, but long-duration scans are currently needed to reliably characterize individual differences in functional
connectivity (FC) and brain network topology. In this report, we demonstrate that multi-echo fMRI can
improve the reliability of FC-based measurements. In four densely sampled individual humans, just 10 min
of multi-echo data yielded better test-retest reliability than 30 min of single-echo data in independent data-
sets. This effect is pronounced in clinically important brain regions, including the subgenual cingulate, basal
ganglia, and cerebellum, and is linked to three biophysical signal mechanisms (thermal noise, regional vari-
ability in the rate of T2* decay, and S0-dependent artifacts) with spatially distinct influences. Together, these
findings establish the potential utility of multi-echo fMRI for rapid precision mapping using experimentally
and clinically tractable scan times and will facilitate longitudinal neuroimaging of clinical populations.
INTRODUCTION

The human brain is organized into functional networks that can

be mapped non-invasively using resting-state functional mag-

netic resonance imaging (rsfMRI) (Smith et al., 2013; Snyder

and Raichle, 2012), a technique that has evolved rapidly to

become one of the most commonly used tools in cognitive and

translational neuroscience. Pioneering studies have used rsfMRI

to reveal the topology of functional brain networks (Biswal et al.,

1995; Power et al., 2011; Yeo et al., 2011), and their associations

with discrete cognitive processes and behaviors (Smith et al.,

2009). Studies have also begun to define alterations within brain

networks that are associated with psychosis (Anticevic et al.,

2013; Baker et al., 2014; Karcher et al., 2019), depression

(Downar et al., 2014; Drysdale et al., 2017; Fox et al., 2012;

Oathes et al., 2015), autism (Di Martino et al., 2011, 2014; Hull

et al., 2017; Padmanabhan et al., 2017), and other neuropsychi-

atric disease states (Castellanos et al., 2013; Menon, 2011; Xia

et al., 2018). Promising clinical applications for rsfMRI (Fox and

Greicius, 2010) include pre-operative mapping (Mitchell et al.,

2013; Sair et al., 2016; Yahyavi-Firouz-Abadi et al., 2017),

providing diagnostic and prognostic information (Drysdale

et al., 2017; Dunlop et al., 2017; Fox et al., 2012), and mapping

targets for neuromodulation therapies (Lynch et al., 2019;

McMullen, 2018; Medaglia et al., 2020; Weigand et al., 2018).

However, there are several obstacles to realizing its full clinical

potential.

First, in the majority of rsfMRI studies, data acquired from

many individuals are co-registered in a common atlas space,

and functional brain networks and their relationships with clinical

or behavioral variables are analyzed at the group level. But
Ce
This is an open access article under the CC BY-N
recent evidence indicates that this approach can obscure indi-

vidual differences in the topology (size, shape, and spatial

arrangement) of functional areas and networks in cortex (Gordon

et al., 2017c; Laumann et al., 2015), in the cerebellum (Marek

et al., 2018), and in subcortex (Greene et al., 2020), variability

that could be both functionally meaningful and clinically useful

(Kong et al., 2019; Seitzman et al., 2019; Wang et al., 2020). Ef-

forts to develop neuroimaging tools for diagnosing neuropsychi-

atric disorders or predicting treatment response could benefit by

accounting for these individual differences.

Second, resting-state functional connectivity (FC) measure-

ments would ideally exhibit high reliability at the level of individual

subjects (i.e., they would be similar across repeated assess-

ments), especially in certain clinical contexts. However, obtain-

ing reliable FC-based measurements throughout the brain at

the individual subject level typically requires large amounts of

per-subject rsfMRI data (on average, 45 min in cortex [Gordon

et al., 2017c] and more than 90 min in the cerebellum and sub-

cortex [Greene et al., 2020; Marek et al., 2018]), a practice

referred to as ‘‘dense sampling’’ (Poldrack, 2017) or ‘‘precision

functional mapping’’ (Gordon et al., 2017c; Gratton et al.,

2020). It is thought that artifactual within-subject variation in FC

is due primarily to two factors: (1) random sampling error (Lau-

mann et al., 2015, 2017; Noble et al., 2017, 2019), in part

because FC reflects low-frequency fluctuations in blood-oxy-

gen-level-dependent (BOLD) signals, which may require long

duration scans to assess accurately; and (2) the confounding in-

fluence of non-neurobiological artifacts, including those related

to head motion (Power et al., 2012; Satterthwaite et al., 2012),

and participant drowsiness (Laumann et al., 2017; Tagliazucchi

and Laufs, 2014; Wang et al., 2017). Thus, long-duration scans
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may improve reliability by reducing sampling variability, but they

also require that the subject remain still, awake, and alert

throughout, which is a significant obstacle in both research

and clinical populations that may not tolerate long (or multiple)

scans. Low test-retest reliability may be less of a problem for

some study designs, including those aimed at identifying effects

at the group level in large samples. In contrast, low test-retest

reliability is a fundamental obstacle to progress in other contexts,

including intervention studies involving scans obtained before

and after a treatment, biomarker discovery efforts, analyses of

individual differences, and studying network plasticity at the indi-

vidual level. Thus, there is a pressing need for techniques that

can yield more reliable FC-based measurements from experi-

mentally and clinically tractable scan times, as explained by

recent commentaries on this topic (D’Esposito, 2019; Lynch

and Liston, 2020; Satterthwaite et al., 2018).

Here, we tested whether multi-echo (ME) fMRI could enable

more rapid and reliable mapping of functional brain networks

in individuals, ameliorating the need for long scans. ME fMRI se-

quences (Posse, 2012; Posse et al., 1999) acquire multiple im-

ages at different echo times (i.e., at repeated intervals over

tens of milliseconds) per volume, in contrast to standard sin-

gle-echo (SE) sequences, which acquire a single image in the

same period of time. Studies have previously demonstrated

that ME fMRI increases BOLD signal sensitivity (Bhavsar et al.,

2014; Posse et al., 1999) and can be used to identify and discard

fMRI signals that cannot have originated from neurobiological

activity (Kundu et al., 2012, 2014, 2015; Power et al., 2018). On

first principles, either of these capabilities could enhance the reli-

ability of FC at the individual subject level, but this possibility has

not been tested directly.

To test this hypothesis, we acquired 6 h (243 14.5-min scans)

of ME rsfMRI data from two adult participants over 9months. We

found that the reliability of FC measurements was enhanced

nearly brain-wide in ME fMRI data, even when using limited

amounts of per-subject data, compared to parallel analysis of

SE data from the same participants and 14 densely sampled in-

dividuals from three SE datasets (n = 10 from the Midnight Scan

Club [MSC] [Gordon et al., 2017c]; n = 3 from the Cast-induced

Plasticity [CAST] study [Newbold et al., 2020]; n = 1 from the My-

Connectome [MC] project [Laumann et al., 2015; Poldrack et al.,

2015]). This effect was linked to at least three biophysical signal

mechanisms with spatially distinct influences and replicated in

two other less densely sampled participants.

RESULTS

Benchmarking the Reliability of FC Estimates in Three
Independent SE Datasets
To begin, we quantified the reliability of FC at each point in the

brains of 14 individuals from three independent datasets that

were repeatedly scanned using SE sequences (MSC [Gordon

et al., 2017c]: n = 10; 103 30-min scans acquired over 2months;

CAST [Newbold et al., 2020]: n = 3; 10 to 143 30-min scans ac-

quired over consecutive days prior to casting of their upper right

extremity; MC [Laumann et al., 2015; Poldrack et al., 2015]: n = 1;

843 10-min scans acquired over 18 months). A summary of the

sequence parameters used to collect these datasets is provided
2 Cell Reports 33, 108540, December 22, 2020
in Table S1. The purpose of this first analysis was to obtain an in-

dependent benchmark against which our ME fMRI datasets

could be evaluated.

We generated FC reliability maps for each subject using

different amounts of data (ranging from 1 min to the full duration

of scans in each dataset). In short, these maps index (using

spatial correlation) how similar the FC of each point in the brain

is when calculated using the specified amount of data from a sin-

gle scan versus a large amount of independent data from the

same participant. Values approaching 1 indicate better reliability.

Reliability maps for example subjects from theMSC (MSC01 and

MSC06 in Figure 1A), CAST (CAST01 in Figure 1B), and MC

(MC01 in Figure 1C) datasets are shown in Figure 1. The two par-

ticipants from the MSC dataset shown in Figure 1A were

selected randomly and are ranked second (MSC06) and fourth

(MSC01) of the n = 10 with respect to their average brain-wide

reliability value. The FC reliability maps for all 14 subjects can

be viewed in Video S1.

This analysis yielded two results. First, reliability increased

with scan duration, which is consistent with findings from other

studies (Birn et al., 2013; Gordon et al., 2017c; Laumann et al.,

2015), but relatively few points in the brain exhibited highly reli-

able FC. On average, only 28% (range: 0%–59%) of cortex ex-

hibited high reliability (>0.7) in MSC and CAST subjects, even

when using the full 30-min scan. Second, the rate that FC

became reliable varied by brain region (Figure 1C). For example,

FC was fairly reliable (>0.5) in lateral prefrontal, parietal cortex,

posterior cingulate cortex, and other association areas with

only 5–10min of data. Other regions, including subcortical struc-

tures (basal ganglia, thalamus); the cerebellum; and somatomo-

tor, inferior temporal, and subgenual cingulate cortex, exhibited

relatively low reliability (<0.5) on average, even with 30 min of

data. This finding is consistent with recent reports that more

than 1 h of per-subject data may be necessary to obtain reliable

FC estimates in subcortex (basal ganglia and thalamus; Greene

et al., 2020) and in the cerebellum (Marek et al., 2018). We note

that the brain regions exhibiting relatively low reliability—

including the cerebellum (Schmahmann et al., 2009; Stoodley

et al., 2016), subgenual cingulate (Fox et al., 2012; Mayberg

et al., 2005; Pizzagalli, 2014), and basal ganglia (Dandekar

et al., 2018; Morishita et al., 2014; Perlmutter and Mink,

2006)—are implicated in psychiatry and neurology, which under-

scores the potential impact of tools for enhancing the reliability of

FC in these areas. In summary, this first analysis replicates pre-

vious reports of scan length influencing the reliability of FC, but it

also highlights how FC reliability varies significantly by brain re-

gion, which has been reported elsewhere as well (Noble et al.,

2017, 2019).

ME fMRI Improves BOLD Signal Sensitivity and Enables
the Removal of Non-BOLD Artifacts
To test if ME fMRI could be used to obtain more reliable indi-

vidual-specific FC-based measurements, we first acquired 6 h

of ME fMRI data (24 3 14.5-min scans) from two individuals

(referred to here as ME01 and ME02) over a period of

9 months.

In a SE fMRI sequence, like those used to collect the three in-

dependent datasets analyzed in Figure 1, images are acquired
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once per tissue excitation after a single fixed delay (‘‘echo time’’;

usually 30–35 ms). A ME fMRI sequence acquires multiple im-

ages at different echo times spanning dozens of milliseconds,

which affords two advantages. Below, we characterize these

two advantages (readers are encouraged to see a review by

Kundu et al. [2017] for a more complete discussion) before

demonstrating how they additively enhance the reliability of FC

and brain network topologies in the following sections.

The first advantage of ME fMRI is that images acquired at

different echo times can be combined according to the rate of

T2* decay at each voxel to create an ‘‘optimally combined’’ ME

(OC-ME) time series (Posse et al., 1999). This is useful because

BOLD contrast is optimal near the T2* of each voxel, and

combining echoes in this manner can recover signal in brain re-

gions with a short or long T2* compared to a single fixed echo.

This effect is localized to specific brain regions. Consider, as

an example, the subgenual cingulate (Figure 2A; purple), which

has a short T2* (<20 ms in both ME01 and ME02; see T2* maps

in Figure 2C) and exhibited relatively low reliability in Figure 1:

in the OC-ME image, earlier echoes are weighted more heavily

than later echoes (Figure 2B), which helps recover signal that

would have otherwise been lost. Other brain regions, including

portions of the basal ganglia and cerebellum, have a short T2*

as well (see Figure 2C). Combining echoes also dampens ther-

mal (random) noise (Caballero-Gaudes and Reynolds, 2017;

Liu, 2016; Poser and Norris, 2009), which can be a large fraction

of the recorded signal (Power, 2017). Because thermal noise is

embedded in all fMRI signals, this effect will occur throughout

the brain.

To demonstrate the effect that combining echoes has on FC,

we generated FC maps using brain regions with relatively short

(subgenual cingulate; Figure 2D) and long (lateral prefrontal cor-

tex [PFC]; Figure 2E) T2* values as seeds. For both subjects

ME01 and ME02, maps were first created using OC-ME data

from a single representative ME scan denoised using an exten-

sively validated and commonly used algorithm for cleaning SE

fMRI data (ICA-AROMA; Ciric et al., 2017; Pruim et al., 2015).

For comparison, the same maps were created using the second

echo (TE2) of the ME scan and a separate connectome-style

(faster sampling rate; TR = 800 ms versus TR = 1355 ms) SE

acquisition, both of which were preprocessed and denoised in

the same fashion as the OC-ME data. Two observations are

notable. First, the seed placed in the short T2* subgenual cingu-

late exhibited stronger FC, with default mode network brain re-

gions in OC-ME data, whereas this pattern of FC was absent in

the TE2 and fast-TR SE comparison datasets (see dashed white
Figure 1. Obtaining Reliable Resting-State Functional Connectivity (FC

Data Per Subject

The reliability of resting-state FC was evaluated brain-wide in three independent

(A) The Midnight Scan Club (MSC) dataset (Gordon et al., 2017c), which consis

subjects are shown: MSC01, MSC04, and MSC06).

(B) The CAST dataset (Newbold et al., 2020), which consists of three individua

CAST01),

(C) The MC dataset (Poldrack et al., 2015), which consists of a single individual t

(D) FC reliability maps index (using spatial correlation) how similar the FC of each

single scan versus a large amount of independent data (all other scans available fo

The average reliability value within FreeSurfer defined cortical and subcortical reg

is shown. Brain regions are ordered (in descending fashion) from most reliable to

4 Cell Reports 33, 108540, December 22, 2020
circles in Figure 2D indicating weaker FC with the posterior

cingulate). Second, as expected, differences among the OC-

ME, TE2, and SE datasets were less pronounced for the seed

in lateral PFC (Figure 2E), which has a longer T2* value and

thus is less susceptible to signal dropout, but FC maps still ap-

peared as if they were superimposed on static (thermal) noise.

Collectively, this analysis demonstrates how ME fMRI improves

BOLD signal sensitivity—particularly for short T2* brain regions—

by accounting for regional differences in the rate T2* decay (Ban-

dettini et al., 1994) and dampening thermal noise.

The second advantage of ME fMRI is that how signals decay

across echoes can be used during denoising to identify and re-

move signals that cannot have originated from neurobiological

activity, including those related to head motion, heating or insta-

bility of MRI hardware, and cerebrovascular pulsatility (Kundu

et al., 2017). Discarding these kinds of artifacts is desirable, in

part because they can produce spurious FC estimates (Power

et al., 2012, 2015), but difficult to do in SE datasets because

there is no ground truth for determining if a signal is indeed arti-

factual. ME fMRI provides this ground truth. For example,

spatially structured signals in the OC-ME time series identified

from a spatial ICA can be classified as neurobiological (and re-

tained) or non-neurobiological (and discarded) on the basis of

their signal-decay properties, an approach called ME-ICA

(Kundu et al., 2012). Here, we confirmed that ME-ICA can be

used to separate neurobiological and non-neurobiological sig-

nals using an instructed deep breathing task (see Figure S1 for

the rationale behind using the event-related approach described

in Power et al. [2020] to establish appropriate signal separation).

In summary, we reasoned that ME fMRI has the potential to

improve the reliability of FC by at least two mechanisms: (1) by

enhancing BOLD signal sensitivity through the weighted combi-

nation of echoes and (2) by removing non-neurobiological arti-

facts through a signal-decay-based denoising technique called

ME-ICA.

Brain-wide Improvements in Connectivity Reliability in
ME fMRI Data
Next, we evaluated the reliability of FC derived from OC-ME

(Posse et al., 1999) data denoised using ME-ICA (Kundu et al.,

2012) in ME01 and ME02, leveraging both advantages of ME

fMRI detailed in the previous section. Reliability maps were

created in the same way as was done for Figure 1. Consistent

with our hypothesis, OC-ME data denoised using ME-ICA

(OC-ME + ME-ICA) yielded reliable FC at nearly every point in

the brain (Figure 3A; top row). Over 75% of cortex exhibited
) Estimates Can Require Large Quantities of Single-Echo (SE) fMRI

SE rsfMRI datasets:

ts of 10 individuals that underwent 10 3 30-min scans (three representative

ls that underwent 10–14 3 30-min scans (one representative subject shown:

hat underwent 84 3 10-min scans.

point in the brain is when calculated using the specified amount of data from a

r that participant concatenated). Values approaching 1 indicate better reliability.

ions of interest at each scan duration (the median value across the 14 subjects)

least reliable. m, minute.
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Figure 2. A Key Benefit of Multi-echo (ME) fMRI Is Improved BOLD Contrast and Reduced Signal Dropout after Echoes Are Combined

(A) A ME fMRI sequence acquires multiple images at different echo times (TE) spanning dozens of milliseconds.

(B) Signals decaymore rapidly in brain regions with a short T2* value, such as the subgenual anterior cingulate cortex (sgACC; purple). Echoes are combined such

that those near the estimated T2* at each voxel are weighted most heavily, yielding an ‘‘optimally combined’’ ME (OC-ME) time series with improved BOLD

contrast, less signal dropout, and dampened thermal noise.

(C)WTE represents the optimal weight for each echo. T2* values are calculated at each point in the brains of ME01 andME02. Differences in the FC of seed regions

with different T2* values help to convey the region-specific effect of theOC-ME procedure. FCmapswere created usingOC-ME and two different kinds of SE data

(the second echo of the ME scan and a separate fast-TR SE sequence with a faster sampling rate) that were collected from both ME01 and ME02.

PFC, prefrontal cortex; TE2, second echo of the ME scan.

Cell Reports 33, 108540, December 22, 2020 5

Report
ll

OPEN ACCESS



A

B

(legend on next page)

6 Cell Reports 33, 108540, December 22, 2020

Report
ll

OPEN ACCESS



Report
ll

OPEN ACCESS
high (>0.7) reliability (82% inME01 and 75% inME02), compared

to, on average, 28% (range: 0%–59%) in independent SE partic-

ipants with twice as much data. Time x reliability curves (Fig-

ure 3B) show the average reliability value (calculated separately

in cortex, subcortical structures, and cerebellum) given different

scan durations. Scan duration is calculated before removal of

high motion volumes. Curves from the three independent SE

datasets are shown as comparators. Plotting reliability values

relative to the amount of data retained after motion-censoring

yielded a set of similar curves (with the exception of MSC partic-

ipants exhibiting especially high levels of head motion; e.g., sub-

MSC08) that can be viewed in Figure S2.

One-sample t tests revealed that 10 min of OC-ME + ME-ICA

data yielded FC estimates that were more reliable than those

derived from 3 times as much independent SE data in cortex

(t(12) = 5.52, p < 0.001, Cohen’s d = 1.46), in the cerebellum

(t(12) = 4.89, p = 0.001, Cohen’s d = 1.38), and in subcortical

structures (t(13) = 5.30, p = 0.001, Cohen’s d = 1.10). These find-

ings, which were replicated in two other less densely sampled in-

dividuals (‘‘ME03’’ and ‘‘ME04’’; see Figure S3), indicate that FC

reliability can be enhanced in OC-ME data when signal-decay-

based denoising is used.

To better understand the unique contributions of the OC-ME

procedure and signal-decay-based denoising (ME-ICA) to the

enhanced reliability of FC observed in Figure 3A, we created reli-

ability maps for OC-ME and TE2 data denoised using ICA-

AROMA (Ciric et al., 2017; Pruim et al., 2015), which, unlike

ME-ICA, does not leverage any signal-decay information. Two

findings are notable. First, reliability was enhanced in OC-ME

data denoised with ME-ICA, compared to ICA-AROMA, particu-

larly in the cerebellum and basal ganglia (Figure 3A; top row

versusmiddle row). One interpretation is that either the high den-

sity of vasculature (Vigneau-Roy et al., 2014) or close proximity

to ventricles (Caballero-Gaudes and Reynolds, 2017) renders

these areasmore susceptible to certain kinds of physiological ar-

tifacts (e.g., those related to cardiac pulsation) that are dis-

carded by ME-ICA, but not ICA-AROMA. Second, the FC reli-

ability maps (bottom row in Figure 3A) and time x reliability

curves associated with TE2 + ICA-AROMA data were similar to

those in the three independent SE datasets (Figure 1). Reliability

maps for all study participants can be viewed in Video S2.

A limitation of using TE2 as a stand-in for SE data is that

contemporary SE sequences can acquire images at faster rates

than ME sequences. To help address this concern, ME01 under-

went 6 h of additional scanning (243 14.5-min scans) with a fast-

TR (800 ms) SE sequence. Direct comparison of the FC reliability

map derived from fast-TR SE + ICA-AROMA data to those
Figure 3. TheOptimal Combination andMEDenoising Procedures Impr

Sampled Individuals

The reliability of FC estimates in ME01 and ME02 after repeated imaging using a

period).

(A) Reliability maps were calculated using three different denoising strategies, leve

AROMA) benefits of ME fMRI.

(B) Time x reliability curves show the average reliability obtained in gray matter, su

from the independent SEMC andMSC datasets are provided as comparators. Tra

curve within datasets. Note that the purple lines representing the different indepe

m, minute.
shown in Figure 3A indicated better FC reliability brain-wide in

OC-ME data when ME-ICA was used (Figures 4A and 4B). The

fast-TR SE + ICA-AROMA time x reliability curve (dashed purple

line in Figure 4C) resembled those in the MC and CAST datasets

(see Figure 3B), indicating that faster sampling rates may be

beneficial.

We conducted a follow-up analysis to further understand the

biophysical signal mechanisms underlying better FC reliability

in OC-ME data. Specifically, we attempted to separate the effect

of recovering short and long T2* signals and the incidental damp-

ening of thermal noise by shuffling the ‘‘optimal’’ weights as-

signed to each voxel. The rationale behind this analysis is that

combining echoes in any manner can suppress thermal noise

because it has no temporal or spatial structure (Liu, 2016; Power,

2017), but recovering short or long T2* signals requires appro-

priate weighting of early and late echoes in particular. Surpris-

ingly, the reliability maps derived from OC-ME and ‘‘non-OC’’

data were nearly identical, with the exception of vertices with a

very short T2* (<20 ms), which exhibited better reliability in OC-

ME data than would be expected by chance after 1,000 random

rotations of the T2* map on a spherical expansion of each sub-

ject’s cortical surface (all p values = 0.001, all Z scores > 6.53).

This finding indicates that combining echoes according to the

T2* at each voxel improves the reliability of FC primarily via the

incidental dampening of thermal noise (a brain-wide effect), but

also by enhancing BOLD sensitivity in brain regions with a very

short T2* (another region-specific effect).

More Reliable Mapping of Individual-Specific Functional
Topology in ME Data
The analyses performed to this point in our report have focused

on the reliability of correlations in BOLD fMRI signals, which are

the basis for most rsfMRI studies. However, there is increasing

interest in higher-level descriptions of an individual’s functional

brain organization, including the topology (size, shape, and

spatial arrangement) of functional areas and brain networks,

the latter of which is typically calculated using only the strongest

of these correlations (Gordon et al., 2016, 2017c; Laumann et al.,

2015; Power et al., 2011). Thus, we next tested whether ME fMRI

could be used to obtain more reliable individual-specific network

parcellations. We identified networks brain-wide in each individ-

ual using a widely used community detection algorithm, termed

InfoMap (Rosvall and Bergstrom, 2008), and the precision map-

ping procedures developed collectively by Gordon et al.,

(2017c), Greene et al. (2020), and Marek et al. (2018). To aid in

the interpretation of themaps produced by this routine, Figure 5A

shows the networks identified in ME01 when using all 6 h of OC-
ove theReliability of Resting-State FCMeasurements in TwoDensely

ME fMRI sequence (6 h total; 24 3 14.5-min scans acquired over a 9-month

raging both (OC-ME +ME-ICA), one (OC-ME + ICA-AROMA), or no (TE2 + ICA-

bcortical structures, and the cerebellum given different scan durations. Curves

nsparent curves represent individual subjects. Solid lines represent themedian

ndent SE datasets can be distinguished by their unique dash spacing patterns.
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Figure 4. The Level of Reliability Obtained Using a ME Sequence Is Greater Than a SE Sequence with a Fast Sampling Rate

FC reliability maps derived from ME and fast-TR (800 ms) SE data acquired from the same individual (sub-ME01).

(A) Insets highlight regions of cortex where differences between the two sets of reliability maps were most pronounced.

(B) Reliability values in the cerebellum and in subcortex.

(C) Time x reliability curves show the average reliability value (calculated separately in cortex, subcortical structures, and cerebellum) given different amounts and

kinds of data acquired from sub-ME01.
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Figure 5. Functional Brain Network Topology Is More Reliable in Individuals Scanned Using a ME Sequence

(A) Functional brain networks identified brain-wide inME01 using a precisionmapping routine and all 6 h of OC-ME +ME-ICA data. A seed (gray sphere) placed in

a patch of fronto-parietal control network (yellow) in the left lateral PFC of ME01 highlights how FC is largely constrained within-network. The effect of the OC-ME

andME-ICA procedures on the reliability of individual-specific functional brain network topology was evaluated using amixed-effects ANOVAmodel. TheOC-ME

procedure and ME-ICA denoising algorithm additively enhanced the reliability (indexed using the adjusted Rand coefficient comparing the similarity of network

partitions defined using single-scan data and all other scans concatenated) of functional topology in the four densely sampled individuals.

(B and C) Comparison of adjusted Rand coefficients from OC-ME + ME-ICA data to those derived from fast-TR SE data (B) collected from the same study

participant (ME01) and the three independent SE datasets (C).

(legend continued on next page)
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ME + ME-ICA scans (concatenated). A seed (the gray sphere

highlighted by a black arrow) placed in a fronto-parietal network

patch highlights how seed FC is strongest within network. Brain

networks were mapped in this manner in each of the 18 densely

sampled individuals (the 4 individuals scanned using ME se-

quences + 14 individuals from independent SE datasets) using

data from single scans and all other available scans concate-

nated (the latter of which serves as a kind of ground truth). Reli-

ability was quantified using the adjusted Rand coefficient, which

represents the fraction of points in the brain identified as

belonging to the same network in single-scan and ground truth

data (with values approaching 1 indicating better agreement af-

ter adjusting for chance).

There was a significant main effect of the OC-ME and ME-ICA

procedures (Figure 5B; F(2,187) = 161.65, p < 0.001), such that

networks defined using OC-ME + ME-ICA data (red dots in Fig-

ure 5B) were more reliable than those defined in OC-ME (green

dots in Figure 5B; t(142) = 5.42, p < 0.001, Cohen’s d = 0.82)

and TE2 (purple dots in Figure 5B; t(142) = 15.4, p < 0.001, Co-

hen’s d = 1.57) data denoised using ICA-AROMA. Next, we

compared the OC-ME and fast-TR SE data acquired from

ME01 (the only participant scanned using both ME and fast-TR

SE sequences). OC-ME + ME-ICA data yielded network maps

that were more reliable than those defined using the SE acquisi-

tion with a faster sampling rate (Figure 5C; t(46) = 6.44, p < 0.001,

Cohen’s d = 1.36). Independent SE datasets are shown for com-

parison in Figure 5D. Brain network topologies defined usingOC-

ME + ME-ICA data were significantly more reliable than those in

the MSC (Figure 5C; t(170) = 9.21, p < 0.001, Cohen’s d = 1.16)

and CAST (Figure 5C; t(170) = 3.35, p = 0.001, Cohen’s d =

0.65) participants, despite the 2-times difference in scan length.

An example of functional brain networks defined using data

from a single 14.5 OC-ME +ME-ICA scan and data from all other

scans (5.75hworthof scanning) is shown inFigure 5E.A seed (the

gray sphere highlighted by a black arrow) placed in the posterior

cingulate reveals that the FC (calculated using data from the sin-

gle scan) of the seed is strongest within borders of the default

mode network (borders defined using the large amount of inde-

pendent data). Similar visualizations were created using a variety

of cortical and subcortical seeds from subsets (5 to 14.5 min; in

5-min steps) of data from three randomly selected OC-ME,

fast-TR SE, and TE2 scans (see Figures S5–S9). Collectively,

these findings indicate that more reliable descriptions of individ-

ual-specific functional brain networks can be obtained from rela-

tively small quantities of OC-ME data when signal-decay denois-

ing is used.

DISCUSSION

In this report, we found enhanced reliability of FC and functional

brain network topology in four densely sampled individuals after

echoes were combined (OC-ME) and non-neurobiological arti-

facts were removed using a signal-decay-based denoising
(D) Functional brain networks mapped using data from a single OC-ME +ME-ICA

ME01. The resting-state FC (calculated using the single-scan data) of a seed (gray

constrained within the borders of this network defined using held-out data, indic

p denotes p value.
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approach (ME-ICA). FC reliability increased rapidly with scan

duration, such that less OC-ME data was necessary to achieve

the same level of reliability in three independent SE datasets

(n = 14) or in fast-TR SE data collected from the same individual

(see time x reliability curves in Figures 3B and 4C). Several

clinically important brain regions that exhibited relatively low

FC reliability in SE data were more reliable in OC-ME data, espe-

cially when ME-ICA was used. The increased reliability of FC in

OC-ME data was associated with more reliable descriptions of

individual-specific functional brain networks (see Figure 5).

Collectively, these findings indicate that ME fMRI is well suited

for rapid precision mapping of functional networks at the individ-

ual level and for tracking changes within individuals over time.

These enhancements, in turn, could help facilitate clinical neuro-

imaging research, particularly longitudinal studies of episodic

forms of psychiatric illness, and for elucidating the neurobiolog-

ical basis of individual differences in cognition and behavior.

The benefits of ME sequences have been studied for over two

decades (Posse, 2012), beginning with seminal work by Posse

et al. (1999) showing that combining echoes according to the

T2* at each voxel increases BOLD sensitivity. For the most part,

however, ME fMRI is not widely used—fewer than 1% of the

more than 12,000 rsfMRI studies published in the last 10 years

used a ME sequence. There are likely multiple reasons for this.

For example, there may be the perception that the benefits of

ME fMRI are relatively modest or that it is more important to opti-

mize spatiotemporal resolution (i.e., smaller voxels and faster

sampling rates). ME fMRI has historically entailed a compromise

in either full-brain coverage or spatiotemporal resolution, but

recent technological advances (high-density head coils, parallel

imaging [Schmiedeskamp et al., 2010], andmulti-band accelera-

tion [Xu et al., 2013]) have made this trade-off less significant.

Recent studies have leveraged these advances and found that

how fMRI signals decay across echoes can be used to infer if

they originate from neurobiological activity or not (Kundu et al.,

2012, 2017), an approach that has been used to remove head-

motion-related artifacts in rsfMRI scans (Power et al., 2018) and

enhance statistical power by as much as 149% in task-based

fMRI experiments (Lombardo et al., 2016). By comparing FC reli-

ability maps derived from three versions of our ME fMRI datasets

with key preprocessing and denoising procedures omitted or

included (see Figure 3), our investigation found that ME fMRI

can also be used to enhance FC reliability. It links this effect to

three biophysical signal mechanisms with spatially distinct influ-

ences: BOLDsignal sensitivity, which can bebroken down further

into thermal noise (a brain-wide effect) and regional differences in

the rate of T2* decay (a region-specific effect); and S0-dependent

artifacts (another region-specific effect). The extent to which ME-

ICA improves FC reliability more than other denoising strategies

that do not leverage signal-decay information may depend in

part on howcontaminated the data arebyS0-dependent artifacts.

The significance of our investigation is 2-fold. First, our data

indicate that ME fMRI could be used to obtain more stable
scan and all other OC-ME +ME-ICA scans (concatenated; 5.75 h total) for sub-

sphere; highlighted using an arrow) placed in a default mode network patch is

ating high reliability.
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individual-specific FC-based measurements with less data,

which has implications for studies of individual differences in

functional brain organization in both health and disease (Braga

and Buckner, 2017; Braga et al., 2019; Finn et al., 2015; Gordon

et al., 2017a, 2017b, 2017c; Kong et al., 2019; Laumann et al.,

2015; Marek et al., 2018; Seitzman et al., 2019). Second, ME

fMRI could be especially useful in clinical contexts, where the

amount of per-subject data needed to obtain accurate assess-

ments of FC and functional brain network topology is a signifi-

cant bottleneck (O’Connor and Zeffiro, 2019). Importantly,

some brain regions (e.g., lateral prefrontal, posterior parietal,

and a subset of midline cortical areas) yielded generally reliable

FC measurements (reliability values ranging from 0.5 to 0.8).

However, other regions, including those implicated in neurologic

and psychiatric illness (subgenual cingulate [Fox et al., 2012;

Mayberg et al., 2005; Pizzagalli, 2014)] and cerebellum [Shakiba,

2014]) exhibited relatively low reliability in both our SE datasets

and in three independent datasets (Figure 1). This was due in

part to the fact that these brain regions are susceptible to rapid

signal dropout and certain kinds of S0-dependent artifacts.

The improved test-retest reliability afforded by ME fMRI is not

only statistically significant, but also scientifically useful. Low

test-retest reliability of FC at the individual level is a fundamental

obstacle to numerous within-subject study designs, especially in

clinical neuroimaging. Consider, for example, that if an investi-

gator wanted to understand the effect of an intervention on FC

in individual patients, it is desirable to minimize artifactual varia-

tion in FC within subject over time (which can be driven by

various kinds of S0-dependent artifacts, such as headmovement

levels or instabilities of MRI hardware, and removed by ME

denoising), so that neurobiologically meaningful changes in FC

associated with the intervention can bemodeled. In other words,

the enhanced reliability afforded by ME fMRI is a reduction in

measurement error, which in turn should improve the power to

detect brain-behavior effects in both within-subject and cross-

sectional studies. ME fMRI could, therefore, help facilitate ther-

apeutic intervention studies, biomarker discovery efforts, and

longitudinal studies of functional network plasticity at the individ-

ual level.

Several aspects of this investigation warrant careful consider-

ation. First, our conclusions are based on data acquired from

four densely sampled individuals. Performing analyses sepa-

rately in each individual enabled a 4-fold replication of all our

major findings. However, smaller samples can have limited gen-

erality. Mitigating this concern to some degree, we found that the

reliability maps and time x reliability curves derived from the sec-

ond echo in all four ME subjects were comparable to those from

14 individuals from three independent SE datasets. It is also

worth noting that head motion was relatively low for some of

our study participants (see Figure S4), suggesting that they

represent a best-case scenario with respect to their ability to

remain still and awake during scanning. Second, there is no

empirically tested best set of parameters for a ME fMRI scan,

and systematically testing different combinations of parameters

was outside of the scope of the present study. ME denoising it-

self is an active area of research and development (Caballero-

Gaudes et al., 2019; Kundu et al., 2012), and the algorithms

used here will likely be improved upon in the near future by other
investigators. Third, we are not advocating for ME fMRI scans as

a panacea for the challenges inherent to obtaining accurate de-

scriptions of an individual’s functional brain organization. If time

and funds permit, collecting more data will improve the reliability

of FC measurements, regardless of the sequence or denoising

strategy employed. However, an important caveat is that sub-

jects are prone to drowsiness during long rsfMRI scans (Taglia-

zucchi and Laufs, 2014), and fluctuations in arousal or sleep

state can reduce the stability of BOLD fMRI correlations (Lau-

mann et al., 2017; Wang et al., 2017), which further underscores

the attractiveness of obtaining reliable measurements from

shorter scans, if possible.

Finally, it is plain that the rate FC estimates become reliable dif-

fers across the 14 individuals in the three independent SE data-

sets (see transparent purple lines representing individual partici-

pants in Figure 3B) and in our 4-participant ME dataset. What

factors, other than baseline levels of head motion and other S0-

dependent artifacts, could account for this variability?Our central

hypothesis is that other factors including but not limited to certain

kinds of breathing patterns (Lynch et al., 2020) (the effects of

which cannot be removed using ME-ICA alone; see Figure S1),

participant drowsiness (Laumann et al., 2017), and brain volume

(which should affect signal-to-noise by virtue of the physical dis-

tance between the brain and the receive coil) all contribute to in-

dividual differences in FC reliability. A larger sample of densely

sampled individuals is necessary to fully address this issue.

Obtaining reliable FC-basedmeasurements of individuals has,

to date, required collecting large quantities of per-subject data

(D’Esposito, 2019; Poldrack, 2017; Satterthwaite et al., 2018),

which may not always be feasible for the clinical applications

that have been proposed for rsfMRI, including pre-operative

mapping (Mitchell et al., 2013), gathering diagnostic and prog-

nostic information (Drysdale et al., 2017; Dunlop et al., 2017;

Fox et al., 2012), andmapping personalized targets for neuromo-

dulation (McMullen, 2018; Medaglia et al., 2020; Weigand et al.,

2018). Here, we demonstrate that ME fMRI enables more rapid

and reliable FC-based measurements in individual subjects by

increasing BOLD sensitivity and discarding fMRI signals that

do not originate from neurobiological activity. By enabling

more reliable measurements from shorter scan times, ME fMRI

data may be especially useful for precision functional mapping

of individual brains in clinical populations.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Charles J. Lynch

(cjl2007@med.cornell.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
There are restrictions to the availability of neuroimaging data because the study participants did not consent to data sharing.

Code for preprocessing multi-echo fMRI data is maintained in an online repository (https://github.com/cjl2007/Liston-

Laboratory-MultiEchofMRI-Pipeline).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants and study design
The study sample consisted of four healthy adult participants. The first two participants (‘‘ME01’’; 29 year old male, ‘‘ME02’’; 38 year

old male) in this investigation underwent 243 14.5 min multi-echo fMRI scans. Both underwent additional scanning using a separate

fast-TR single-echo sequence (SE01: 243 14.5 min scans, SE02: 23 14.5 min scans). Two other participants (‘‘ME03’’; 24 year old

male and ‘‘ME04’’; 31 year old male) underwent 12 3 14.5 min multi-echo fMRI scans. Participants ME01, ME02, and ME04 were

study authors C.J.L, J.D.P, and M.A.S., respectively.

Three independent single-echo datasets were included in this investigation. Each of these datasets were analyzed ‘‘as is’’ (no

additional preprocessing or denoising was performed). A brief summary of the sequence parameters used to collect each dataset

is provided in the Supplementary Information (Table S1).

1. The Midnight Scan Club dataset (Gordon et al., 2017c) was obtained from OpenNeuro.org (https://openneuro.org/datasets/

ds000224/versions/1.0.1). This dataset includes 5 h of (preprocessed, denoised, and surface registered) single-echo

resting-state fMRI data (10 3 30 min scans acquired over two months) collected from ten participants aged 24-34 years

(mean age = 29.1 ± 3.3 years, 5F/5M).

2. The Cast-induced Plasticity dataset (Newbold et al., 2020) was obtained fromOpenfMRI.org (https://openneuro.org/datasets/

ds002766/versions/3.0.0). The portion of this dataset used here included 5 to 7 h of (preprocessed, denoised, and surface

registered) single-echo resting-state fMRI data (10 to 14 3 30 min scans acquired over consecutive days prior to the casting

of their dominant upper extremity) collected from three healthy participants (mean age = 29 ± 5.29 years, 1F/2M). Two of these

participants also participated in the Midnight Scan Club experiment (CAST01 is MSC02 and CAST02 is MSC06).

3. TheMyConnectome dataset was obtained from the project’s website (http://myconnectome.org/wp/data-sharing/). This data-

set included 14 h of (preprocessed, denoised, and surface registered) single-echo resting-state fMRI data (843 10 min scans

acquired over 18 months) collected from a 45 year-old male participant.
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MRI image acquisition
Data were acquired on a Siemens Magnetom Prisma 3T scanner at the Citigroup Biomedical Imaging Center of Weill Cornell’s med-

ical campus using a Siemens 32-channel head coil. Multi-echo, multi-band resting-state fMRI scans were collected using a T2*-

weighted echo-planar sequence covering the full brain (TR: 1355 ms; TE1: 13.40 ms, TE2: 31.11 ms, TE3: 48.82 ms, TE4: 66.53

ms, and TE5: 84.24 ms; FOV: 216 mm; flip angle: 68�; 2.4mm isotropic; 72 slices; AP phase encoding direction; in-plane acceleration

factor: 2; and multi-band acceleration factor: 6) with 640 volumes acquired per scan for a total acquisition time of 14 min and 27 s.

This sequence was generously provided by the Center for Magnetic Resonance Research (CMRR) at the University of Minnesota.

Single-echo, multi-band resting-state fMRI scans (referred to in the text as the ‘‘fast-TR’’ single-echo sequence) were collected

from participants ME01 and ME02 using T2*-weighted echo-planar sequences covering the full brain (TR: 800 ms; TE: 30 ms;

FOV: 216 mm; flip angle: 49�; 2.4mm isotropic; 72 slices; AP phase encoding direction; and multi-band acceleration factor: 6)

with 1084 volumes acquired per scan for a total acquisition time of 14 min and 27 s. A pair of spin echo EPI images with opposite

phase encoding directions (AP and PA) but identical geometrical parameters and echo spacing were acquired to correct spatial dis-

tortions. High-resolution (MPRAGE) T1-weighted image (TR: 2400 ms; TE: 2.28 ms; FOV: 256; flip angle: 90�, and 208 sagittal slices

with a 0.8 mm thickness) and T2-weighted anatomical images (TR: 3200 ms; TE: 563 ms; FOV: 256; flip angle: 8�, and 208 sagittal

slices with a 0.8 mm thickness) were acquired. Custom headcases were obtained from Caseforge (https://caseforge.co) for each

subject to improve comfort and minimize head motion during scanning (Power et al., 2019b).

Cortical surface generation
The average T1- and T2-weighted images were cropped to a smaller field of view (170mm in z plane), co-registered using FSL’s epi_-

reg tool (via a boundary-based cost function with 6 DOF), and corrected for intensity inhomogeneities (Glasser and Van Essen, 2011).

The T1- and T2-weighted images were co-registered to an MNI atlas (hereafter referred to as ‘‘ACPC’’ alignment) using a rigid 6 DOF

FLIRT transformation. Cortical surfaces were generated using Freesurfer’s ‘‘recon-all.v6.hires’’ pipeline. Pial surface placement was

refined using the co-registered T2-weighted image by specifying the ‘‘-T2pial’’ option. Midthickness surfaces were obtained by aver-

aging the pial and white surfaces. Fsaverage-registered left and right hemisphere surfaces (pial, white, and midthickness) were

brought into register with each other in fs_LR space (Van Essen et al., 2012) and resampled to the computationally tractable reso-

lution of 32k vertices using Connectome Workbench command line utilities.

Multi-echo fMRI preprocessing
Preprocessing of multi-echo data minimized spatial interpolation and volumetric smoothing while preserving the alignment of

echoes. The single-band reference (SBR) images (five total; one per echo) for each scan were averaged. The resultant average

SBR images were aligned, averaged, co-registered to the ACPC aligned T1-weighted anatomical image, and simultaneously cor-

rected for spatial distortions using FSL’s topup and epi_reg programs. Freesurfer’s bbregister algorithm (Greve and Fischl, 2009)

was used to refine this co-registration. For each scan, echoes were combined at each time point and a unique 6 DOF registration

(one per volume) to the average SBR image was estimated using FSL’s MCFLIRT tool (Jenkinson et al., 2002), using a 4-stage

(sinc) optimization. All of these steps (co-registration to the average SBR image, ACPC alignment, and correcting for spatial distor-

tions) were concatenated using FSL’s convertwarp tool and applied as a single spline warp to individual volumes of each echo after

correcting for slice time differences using FSL’s slicetimer program. All denoising was performed on these preprocessed, ACPC-

aligned images.

Multi-echo fMRI denoising
Multi-echo ICA (ME-ICA; Dupre et al., 2020; Kundu et al., 2012, 2013) denoising designed to isolate spatially structured T2*- (neuro-

biological; ‘‘BOLD-like’’) and S0-dependent (non-neurobiological; ‘‘not BOLD-like’’) signals was performed using a modified version

of the ‘‘tedana.py’’ workflow (https://tedana.readthedocs.io/en/latest/). In short, the preprocessed, ACPC-aligned echoes were first

combined according to the average rate of T2* decay at each voxel across all time points by fitting the monoexponential decay, S(t) =

S0e
-t / T2*, using the ‘‘nlinfit.m’’ function in MATLAB with least-squares optimization and the initial coefficient values obtained from a

linear model fit to the log of the data. From these T2* values, an optimally combined multi-echo (OC-ME) time-series was obtained by

combining echoes using a weighted average (WTE = TE * e -TE/ T2*), as in Posse et al. (1999). The covariance structure of all voxel time-

courses was used to identify major signals in the resultant OC-ME time-series using principal component and independent compo-

nent analysis. Components were classified as either T2*-dependent (and retained) or S0-dependent (and discarded), primarily ac-

cording to their decay properties across echoes following the decision tree described in Kundu et al. (2012). We found that a global

influence of respiration (a T2*-dependent signal that is not of interest per se; see Figure S1) was retained after removing S0-dependent

components. Mean gray matter time-series regression was subsequently performed to remove this spatially diffuse noise. Two other

denoising strategies were performed. Specifically, the OC-ME and TE2 time-series were also submitted to ICA-AROMA (Pruim et al.,

2015), a top performing algorithm for denoising single-echo fMRI data (Ciric et al., 2017), followed by mean gray matter time-series

regression. Finally, temporal masks were generated for censoring highmotion time-points using a frame-wise displacement (FD; Po-

wer et al., 2012) threshold of 0.3 mm and a backward difference of two TRs (2 * 1.355 = 2.77 s), for an effective sampling rate com-
e2 Cell Reports 33, 108540, December 22, 2020
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parable to historical FD measurements (approximately 2 to 4 s; Power et al., 2019a). Prior to the FD calculation, head realignment

parameters were filtered using a stopband Butterworth filter (0.2 - 0.35 Hz) to attenuate the influence of respiration (Power et al.,

2019a). Concatenated filtered FD traces for each subject can be viewed in the Supplemental Information (Figure S4).

Surface processing and CIFTI generation of fMRI data
The denoised fMRI time-series was mapped to the midthickness surfaces (using the ‘‘-ribbon-constrained’’ method), combined into

the Connectivity Informatics Technology Initiative (CIFTI) format, and spatially smoothed with geodesic (for surface data) and

Euclidean (for volumetric data) Gaussian kernels (s = 2.55 mm) using Connectome Workbench command line utilities (Glasser et

al., 2013). Signals were normalized (z-scored). This yielded time courses representative of the entire cortical surface, subcortex (ac-

cumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus), and cerebellum, but excluding non-gray matter

tissue.

Functional connectivity reliability maps
Functional connectivity (FC) reliability maps were created using the following procedure. For each scan, FCmapswere created using

each point in the brain as a seed. This involved calculating the correlation between seed time-courses and the time-courses of all

cortical vertices. FC maps were calculated using quantities of data corresponding to a range of scan durations (duration calculated

before motion censoring), from 1 min to the full duration of individual scans in each dataset, in 1 min steps. Next, the same FC maps

were created using all other scans (concatenated) available for that subject. This second set of FCmaps served as a putative ground

truth. Reliability was calculated at each seed point as the average spatial correlation (R2) between individual scan and ground truth FC

maps. Thus, high and low reliability values indicate that the FC of a given vertex or voxel calculated using the specified amount of data

from a single scan was similar or dissimilar to FC of that same vertex or voxel when calculated using a large amount of independent

data. Correlations between pairs of vertices less than 10 mm apart in geodesic space were omitted from this calculation to avoid

considering correlations due to spatial smoothing. Time x reliability curves were obtained by averaging reliability values within

different anatomical compartments (cortex, subcortical structures, cerebellum) at each scan duration. Points in the time x reliability

curves associatedwith single-echo andmulti-echo datasets were compared statistically using the ‘‘ttest.m’’ function inMATLAB (null

hypothesis being that the distribution of reliability values observed in independent single-echo data has a mean equivalent to the

average value observed in multi-echo data). We note that this analysis differs from previous investigations of FC reliability in densely

sampled individuals (Gordon et al., 2017c; Laumann et al., 2015) in two ways. First, the reliability values here are reported as R2 and

not Pearson correlation r. Second, we evaluated the reliability of vertex-to-vertex (and voxel-to-vertex) FC, not parcel-to-parcel FC.

Vertex-wise mapping of functional brain networks
Functional brain networks were mapped brain-wide in individual subjects by following procedures developed collectively in Gordon

et al. (2017c), Greene et al. (2020), and Marek et al. (2018). In short, a 594123 59412 functional connectivity matrix summarizing the

temporal correlation between the time-courses of all cortical vertices was generated. Correlations between vertices with centroids

less than 30 mm apart in geodesic space were set to zero. Community assignments were obtained over a range of graph densities

(5% to 0.001%) using the InfoMap algorithm (Rosvall and Bergstrom, 2008). A template-matching procedure described in Gordon et

al. (2017c) was used to assign 1 of 15 known brain network identities to the InfoMap communities identified at each graph density.

Subcortical and cerebellar voxels were then assigned to a consensus brain network in cortex using the winner-take-all procedure

described in Greene et al. (2020) and Marek et al. (2018). We identified ‘‘integrative’’ vertices and voxels (those exhibiting strong

FC more than one network) brain-wide by testing if functional connectivity any other network was greater than 66.7% of the corre-

lation with the consensus network assignment. Integrative regions were visualized on the surface and in the volume using stripes

(with stripe colors representing the networks present at that point).

Assessing the reliability of functional brain networks
Functional brain networks were mapped in the manner described above using data from individual scans and concatenated data

from all other scans available for each subject (the latter serving as a ground truth). Reliability was defined using the adjusted

Rand index (calculated using the ‘‘zrand.m’’ function from the Network Community Toolbox; http://commdetect.weebly.com), which

represents the fraction of points in the brain identified as belonging to the same network in single scan data and ground truth data

after adjusting for chance. The effect of the OC-ME and ME-ICA procedures on the reliability of consensus brain network assign-

ments within individuals was assessed using a mixed effects ANOVA model (via the ‘‘anovan.m’’ function in MATLAB), with data

type treated as a fixed effect and subject identity treated as a random effect. Comparisons to the three independent single-echo da-

tasets were performed using an independent sample t test (using the ‘‘ttest2.m’’ function in MATLAB). The reliability of functional

brain networks derived from fast-TR single-echo andmulti-echo data collected from participant ME01 was performed using a paired

t test (using the ‘‘ttest.m’’ function in MATLAB).
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Figure S1. Related to Figure 3. An event-related approach for establishing appropriate separation 2 
of neurobiological (T2*-dependent; “BOLD-like”) and non-neurobiological (S0-dependent; not 3 
“BOLD-like”) fMRI signals. During each instructed deep breathing scan, sub-ME01 was prompted 4 
every 70 seconds (via a visual cue) to take a deep breath. There are prominent T2*- and S0-5 
dependent signals with predictable spatiotemporal characteristics (each described in turn below) 6 
associated with deep breaths that are visually evident when these scans are viewed as “gray 7 
plots” (Power, 2017) paired with head motion and respiration belt traces. Respiration (measured 8 
using an abdominal belt sampling at 50 Hz; z = z-score) and head motion (frame-wise 9 
displacement; filtered realignment parameters and calculated over two TRs instead of one; as 10 
done in (Power, 2019)) are shown at the top of Fig. S1 as a blue and red traces, respectively. The 11 
time-courses of all points in the brain before and after each denoising step are shown below these 12 
traces as gray plots (Power, 2017), with white and black representing high and low signal values, 13 
respectively. Four isolated deep breaths, each accompanied by a transient spike in head motion 14 
and followed by pauses in ventilation, are visually apparent in an otherwise eupneic trace. For 15 
each of these respiratory events, there is an increase in head motion, which manifests visually in 16 
the gray plot as a vertical “salt-and-pepper” band time-locked to the deep breath.  Because head 17 
movement primarily influences S0 and not T2*, these signals are discarded by ME-ICA (second 18 
gray plot; red box), as expected. Deep breaths also alter the concentration of carbon dioxide in 19 
blood, however, which in turn influences cerebral blood flow (Hall and Guyton, 2011), and 20 
therefore T2* and not S0. Vertical black bands (represented most strongly in gray matter) lasting 21 
tens of seconds after each deep breath, consistent with the expected cortex-wide decrease in 22 
blood flow after a transient increase in ventilation, are retained by ME-ICA (third gray plot; blue 23 
box). While this observation indicates the desired retention of T2*-dependent signals, it also 24 
highlights a limitation that is inherent to ME-ICA. Specifically, that although cortex-wide 25 
fluctuations in signal due to changes in respiration are not a signal of interest per se, they are 26 
retained in the ME-ICA denoised time-series nonetheless because they are T2*-dependent (in 27 
addition, ICA techniques cannot easily separate spatially diffuse signals from focal signals; see 28 
(Power et al., 2019; Power et al., 2018)). Thus, additional denoising procedures (e.g., mean grey 29 
matter time-series regression; MGTR) are required to remove them. ME-ICA paired with MGTR 30 
yields an fMRI time-series free of the confounding influence of head motion (as well as other S0-31 
dependent artifacts) and respiration (fifth gray plot). These gray plots indicate appropriate 32 
separation of S0- and T2*-dependent signals of interest using ME-ICA and MGTR. To better 33 
understand the spatiotemporal profile of the signals that were discarded and retained by ME-ICA, 34 
we extracted the average 40 second (-10 seconds to 30 seconds) epoch surrounding deep 35 
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breaths. These data are displayed on the subject’s inflated cortical surface at the bottom of Fig. 36 
S1. The motion-related artifact at t=0 (this is the S0-dependent “salt-and-pepper” band bounded 37 
by the red box in the OC-ME – ME-ICA gray plot; red box) is present in the OC-ME time-series 38 
but not the ME-ICA denoised time-series. The spatially diffuse decrease in signal begins 39 
approximately 14 seconds after the deep breath cue (this is the T2*-dependent vertical black band 40 
bounded by the blue box in the ME-ICA gray plot), and is retained in the ME-ICA time-series and 41 
only removed by MGTR. 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
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 50 
Figure S2. Related to Figure 3. FC reliability values calculated using data from the first ten 51 
minutes of scanning (the minimum scan duration across all four datasets) plotted relative to the 52 
percentage of data retained after motion-censoring in Fig. S2A. Error bars indicate standard 53 
deviation. A subset of MSC participants (purple circles) exhibiting high levels of head movement 54 
(and less data retained after motion-censoring) exhibited the worst FC reliability. OC-ME + ME-55 
ICA data (the red circles in Fig. S2A) yielded better FC reliability values than MyConnectome and 56 
CAST single-echo data with an equivalent level of motion-censoring. An alternative set of time x 57 
reliability curves (where the x-axis represents the amount data retained after motion-censoring 58 
and not the scan duration prior to motion-censoring) is presented in Fig. S2B . This analysis 59 
yielded a very similar set of curves as in Fig. 3B (with the exception of participants exhibiting 60 
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especially high levels of head motion; e.g., sub-MSC08). Collectively, these two analyses indicate 61 
that the enhanced reliability of FC measurements in the N=4 multi-echo dataset cannot be 62 
explained by head movement levels. 63 
 64 
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Figure S3. Related to Figure 3. Reliability of functional connectivity estimates in sub-ME03 and 90 
sub-ME04. The purpose of this analysis was to test whether the enhanced FC reliability observed 91 
in sub-ME01 and sub-ME02 could be replicated in other individuals. Each participant underwent 92 
3 hours of scanning using a multi-echo fMRI sequence (12 x 14.5 minute scans) over a period of 93 
six months. Reliability maps were calculated using the three different denoising strategies, 94 
leveraging both (OC-ME + ME-ICA), one (OC-ME + ICA-AROMA), or no (TE2 + ICA-AROMA) 95 
advantages of a multi-echo fMRI sequence. Time x reliability curves (Fig. S3B) show the average 96 
reliability value obtained in cortex, subcortical structures (accumbens, amygdala, caudate, 97 
hippocampus, pallidum, putamen, and thalamus), and cerebellum given different scan durations. 98 
Curves from the three independent single-echo datasets were again provided as comparators). 99 
This analysis yielded results consistent with those observed in sub-ME01 and sub-ME02 – the 100 
OC-ME and ME-ICA procedures enhanced the reliability of FC. When using the full scan duration, 101 
32% and 72% of cortex exhibited reliable (> 0.7) FC in sub-ME03 and sub-ME04, respectively. 102 
One sample t-tests revealed that 10 minutes of OC-ME + ME-ICA data yielded FC estimates that 103 
were more reliable than those derived from 3x as much single-echo Midnight Scan Club and Cast-104 
induced Plasticity data in cortex [ t(12) = 3.49, p=0.004, Cohen’s d = 0.97 ] and cerebellum [ t(12) 105 
= 3.67, p=0.003, Cohen’s d = 1.03 ]. In subcortex, 10 minutes of OC-ME + ME-ICA data yielded 106 
rsFC estimates more reliable than those derived from an equivalent amount of single-echo data [ 107 
t(12) = 6.20, p<0.001, Cohen’s d = 0.81 ]. These findings are consistent with those from our 108 
analysis of sub-ME01 and sub-ME02 (Fig. 3).  109 
 110 
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Figure S4. Related to Figure 3. Head movement for all four study participants summarized 128 
using concatenated frame-wise displacement (FD) traces. Multiple formulations of FD are 129 
shown to convey the effect of the stopband filter (“Filtered FD 1-TR” vs. “Not Filtered FD-1TR”) 130 
and over 2-TRs (“Filtered FD 2-TRs” versus “Filtered FD 1-TR”). Note that sub-SE01 is 131 
participant sub-ME01, but scanned using a separate fast-TR single-echo sequence. 132 
 133 
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Figures S5. Related to Figure 4. FC of seed region in left caudate in participant ME01 when using 135 
different amounts of multi-echo (OC-ME + ME-ICA) and single-echo data (TE2 + ICA-AROMA, 136 
Fast-TR SE + ICA-AROMA) from 3 example scans. S = scan.  137 
 138 
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Figures S6. Related to Figure 4. FC of seed region in left dorsal somatomotor cortex in participant 140 
ME01 when using different amounts of multi-echo (OC-ME + ME-ICA) and single-echo data (TE2 141 
+ ICA-AROMA, Fast-TR SE + ICA-AROMA) from 3 example scans. S = scan.  142 
 143 
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Figures S7. Related to Figure 4. FC of seed region in ventral somatomotor cortex in participant 145 
ME01 when using different amounts of multi-echo (OC-ME + ME-ICA) and single-echo data (TE2 146 
+ ICA-AROMA, Fast-TR SE + ICA-AROMA) from 3 example scans. S = scan.  147 
 148 
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Figures S8. Related to Figure 4.  FC of seed region in lateral prefrontal cortex in participant ME01 150 
when using different amounts of multi-echo (OC-ME + ME-ICA) and single-echo data (TE2 + ICA-151 
AROMA, Fast-TR SE + ICA-AROMA) from 3 example scans. S = scan.  152 
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Table 1. Related to Star Methods. Summary of the sequence parameters associated with each 183 
of the datasets used in this investigation.  184 
 185 

Dataset 
 

Scanner 
Model 

Spatial 
Resolution 

Repetition 
Time (TR) 

 

Echo Time 
(TE) 

 

Multi-
band 

Factor 

Number of 
volumes 

 
Midnight Scan 
Club 

Siemens 
TRIO 3T  
 

4 x 4 x 4 
mm 

2200 ms TE1: 27 ms None 818 

Cast-induced 
Plasticity  

Siemens 
Prisma 3T 

2.6 x 2.6 x 
2.6 mm 

1100 ms TE1: 33 ms 4 1636 

MyConnectome Siemens 
Skyra 3T 

2.4 x 2.4 x 
2.4 mm 

1160 ms TE1: 30 ms 4 518 

Multi-Echo Siemens 
Magnetom 
Prisma 3T 

2.4 x 2.4 x 
2.4 mm 

1355 ms TE1: 13.40 ms 
TE2: 31.11 ms 
TE3: 48.82 ms 
TE4: 66.53 ms 
TE5: 84.24 ms 

6 640 
 

“Fast-TR” 
Singe-Echo  

Siemens 
Magnetom 
Prisma 3T 

2.4 x 2.4 x 
2.4 mm 

800 ms TE1: 30 ms 6 1084 
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