
OpenSim Moco: Musculoskeletal optimal control

S1 Appendix

Christopher L. Dembia1Y, Nicholas A. Bianco1Y, Antoine Falisse2, Jennifer L. Hicks3, Scott L.
Delp1,3,4

1 Department of Mechanical Engineering, Stanford University, Stanford, California, United
States of America
2 Department of Movement Sciences, KU Leuven, Leuven, Belgium
3 Department of Bioengineering, Stanford University, Stanford, California, United States of
America
4 Department of Orthopaedic Surgery, Stanford University, Stanford, California, United
States of America

YThese authors contributed equally to this work.

Moco’s optimal control problem

Moco poses the optimal control problem shown in Eq 1. We seek the time-dependent states
y(t) and controls x(t) that minimize a sum of costs J j with weights w j . The states include
generalized coordinates q(t), generalized speeds u(t), and auxiliary states z(t), such as
muscle activations. We may also seek time-invariant parameters p, the initial time of the
motion t0, or the final time of the motion t f . We place lower (L) and upper (U) bounds on
t0, t f , y(t), x(t), and p. Additionally, we place lower and upper bounds on the initial and
final values of the states and controls; this permits solving problems with prescribed initial
and final states such as standing from a squat.

1/11



minimize
∑

j

w jJ j(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sc, j) costs

Sc, j =

∫ t f

t0

sc, j(t, y, x ,λ, p) d t

subject to q̇ = u

M(q, p)u̇+ G(q, p)Tλ= fapp(t, y, x , p)− finertial(q, u, p) multibody dynamics

żex(t) = fż,ex(t, y, x ,λ, p) auxiliary dynamics, explicit

0= fż,im(t, y, żim, x ,λ, p) auxiliary dynamics, implicit

0= φ(q, p) kinematic constraints

VL,k ≤ Vk(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k boundary constraints

Sb,k =

∫ t f

t0

sb,k(t, y, x ,λ, p) d t k = 1, . . . , K

gL ≤ g(t, y, x ,λ, p)≤ gU path constraints

y0,L ≤ y0 ≤ y0,U y f ,L ≤ y f ≤ y f ,U initial and final states

x0,L ≤ x0 ≤ x0,U x f ,L ≤ x f ≤ x f ,U initial and final controls

with respect to t0 ∈ [t0,L , t0,U] initial time

t f ∈ [t f ,L , t f ,U] final time

y(t) = (q(t), u(t), z(t)) ∈ [yL , yU] states

x(t) ∈ [xL , xU] controls

λ(t) Lagrange multipliers

p ∈ [pL , pU] time-invariant parameters

(1)

The problem contains constraints for the system’s multibody dynamics (involving the
mass matrix M ; applied forces fapp from gravity, muscles, etc.; and centripetal and Coriolis
terms finertial) and any auxiliary dynamics. The auxiliary dynamics may be expressed as
explicit ( fż,ex) or implicit ( fż,im) differential equations; the auxiliary state variables z are
partitioned according to whether they are integrated using explicit differential equations (zex)
or implicit differential equations (zim). The system may contain position-level (holonomic)
kinematic constraints to, for example, weld a foot to a bicycle pedal. Each constraint is
enforced by forces exerted by tissue, bones, bodies, or other parts of the modeled system.
These generalized constraint forces are applied in the constrained directions (e.g., the six
degrees of freedom between the foot and pedal), and we introduce time-varying Lagrange
multiplier variables λ to solve for these forces. The derivatives of the kinematic constraints
φ with respect to the generalized coordinates yields the kinematic constraint Jacobian G;
the transpose of this matrix converts the Lagrange multipliers into generalized forces along
the system’s degrees of freedom. See below for details on how Moco handles kinematic
constraints.

Additionally, the problem contains K boundary constraints Vk (with bounds VL,k and
VU ,k) and algebraic path constraints g over the motion (with time-invariant bounds gL
and gU). The cost terms and boundary constraints may depend on initial and final time;
states; controls; kinematic constraint multipliers (required for joint reactions); time-invariant
parameters; and an integral, Sc, j or Sb,k, over the motion.

2/11



Kinematic constraints

Support for problems incorporating kinematic constraints is a key feature of Moco. Un-
derstanding how kinematic constraints are handled in multibody dynamics is valuable for
understanding how Moco handles such problems. Consider a two-dimensional point mass
system with coordinates qx and qy constrained to a parabola 0 = qy − q2

x . To prevent the
point mass from violating the constraint, we must apply a force perpendicular to the parabola.
Each constraint has a corresponding scalar force variable, called a Lagrange multiplier λ. We
must solve for the required magnitudes of these constraint forces, but the direction in which
we apply each of these forces is determined by the derivative of the constraint equations.
We gather the derivatives of the constraint equations in the kinematic constraint Jacobian
matrix G. Each row in this matrix contains the derivative of a single constraint equation
with respect to each degree of freedom, and the matrix has a column for each degree of
freedom. For the parabola example, the Jacobian is (−2qx , 1). The transpose of this matrix,
GT , contains columns that are vectors in the state space which are perpendicular to each
constraint. For our single constraint, the vector (−2qx , 1)T is perpendicular to the parabola.
The matrix-vector product between the Jacobian transpose and the Lagrange multipliers,
GTλ, yields the vector of generalized forces (whose length is the number of degrees of
freedom) necessary for enforcing the kinematic constraints. For our point mass example, the
generalized forces yielded by the vector-scalar product (−2qx , 1)Tλ keep the point mass on
the parabola. To apply these forces to the multibody system, we include the GTλ term in the
multibody dynamics equations of motion.

When simulating a multibody system with time-stepping forward integration, we first
ensure the initial generalized coordinates and speeds satisfy the kinematic constraints φ(q) =
0 and their first derivative φ̇(q, u) = 0 via a root-solve. During the integration, we solve
for generalized accelerations and Lagrange multipliers that obey the multibody dynamics
equations of motion and the second derivative of the kinematic constraints, φ̈(q, u, u̇) = 0.
Numerically integrating the resulting generalized accelerations yields generalized coordinates
and speeds that approximately lie on the constraint manifold defined by φ(q) = 0; to fix any
errors in the constraints caused by numerical integration error, we project the generalized
coordinates and speeds back onto the constraint manifold [1].

In direct collocation, we solve for the entire trajectory of the system—including the
generalized coordinates, generalized speeds, and Lagrange multipliers—all at once. When
expressing multibody dynamics as implicit differential equations, the generalized acceler-
ations are also unknowns. How we solve for the trajectory of the system in the presence
of kinematic constraints depends on the transcription scheme; see the remainder of this
Appendix for details.

Moco’s optimal control problem with prescribed kinematics

A common task in musculoskeletal biomechanics is to estimate the muscle and actuator
behavior that drove an observed motion. We can solve this problem by minimizing the error
between the observed motion and the simulated motion, as with Computed Muscle Control
(using the “slow target”) [2] or MocoTrack. Alternatively, we can prescribe the motion exactly,
as with Static Optimization [3], electromyography-driven simulation [4], and the Muscle
Redundancy Solver [5]. Consider a two-dimensional point mass with coordinates qx and qy
for which we prescribe a circular motion via the functions q̂x (t) = cos(t) and q̂y(t) = sin(t).
We can either add these functions to the kinematic constraints φ(q), or we can substitute
these functions into the equations of motion, thereby eliminating the variables qx and qy .
With Moco, users can choose either the former approach through OpenSim’s Coordinate, or
the latter (and usually preferable) approach using PositionMotion, a new component that
employs Simbody’s Motion class. Prescribing kinematics by eliminating variables leads to
a problem that is robust and fast—the nonlinear multibody dynamics are removed from

3/11



the optimization problem—but prevents predicting kinematic deviations from the observed
motion.

When we prescribe kinematics in Moco by eliminating variables, we replace the problem
in Eq 1 with the following:

minimize
∑

j

w jJ j(t0, t f , q̂0, q̂ f , û0, û f , z0, z f , x0, x f ,λ0,λ f , p, Sc, j) costs

Sc, j =

∫ t f

t0

sc, j(t, q̂, û, z, x ,λ, p) d t

subject to M(q̂, p)ˆ̇u+ G(q̂, p)Tλ= fapp(t, q̂, û, z, x , p)− finertial(q̂, û, p) multibody dynamics

żex(t) = fż,ex(t, q̂, û, z, x ,λ, p) auxiliary dynamics, explicit

0= fż,im(t, q̂, û, z, żim, x ,λ, p) auxiliary dynamics, implicit

VL,k ≤ Vk(t0, t f , q̂0, q̂ f , û0, û f , z0, z f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k boundary constraints

Sb,k =

∫ t f

t0

sb,k(t, q̂, û, z, x ,λ, p) d t k = 1, . . . , K

gL ≤ g(t, q̂, û, z, x ,λ, p)≤ gU path constraints

z0,L ≤ z0 ≤ z0,U z f ,L ≤ z f ≤ z f ,U initial and final states

x0,L ≤ x0 ≤ x0,U x f ,L ≤ x f ≤ x f ,U initial and final controls

with respect to t0 ∈ [t0,L , t0,U] initial time

t f ∈ [t f ,L , t f ,U] final time

z(t) ∈ [zL , zU] auxiliary states

x(t) ∈ [xL , xU] controls

λ(t) Lagrange multipliers

p ∈ [pL , pU]. time-invariant parameters

(2)

We replace the kinematic variables q and u with known quantities q̂ and û. The system
still depends on auxiliary state variables z and control variables x , and includes auxiliary
dynamics. If none of the parameter variables affect the multibody system, then the multibody
dynamics are reduced to a force balance: muscles and other force elements must generate
the net generalized forces determined by the kinematics and external loads data.

Whether the motion is prescribed by adding constraints or eliminating variables, OpenSim
supplements the modeled force elements with Lagrange multipliers to ensure the prescribed
motion is achieved. When using PositionMotion with Moco, we require that the prescribed
motion’s Lagrange multipliers are zero, thereby ensuring the motion is fully generated by
the modeled force elements. The easiest way to prescribe kinematics in Moco is to use the
MocoInverse tool, which uses PositionMotion internally.

Transcription schemes

Trapezoidal transcription

The trapezoidal scheme transcribes the optimal control problem into a nonlinear program by
approximating integrals using the trapezoidal rule. As a second-order scheme, trapezoidal
transcription exhibits accuracy that improves four-fold when halving the mesh interval (i.e.,
time step).

We discretize the continuous variables t, y , x , and λ on a mesh of time points t i defined

4/11



by dimensionless time τi , yielding n mesh intervals with durations hi:

0= τ0 < τ1 < τ2 < . . .< τi < . . .< τn−1 < τn = 1,

t i = (t f − t0)τi + t0,

hi = (t f − t0)(τi −τi−1).

(3)

For conciseness, we define the following function:

trapi(F(η, p)) =
1
2

hi(F(ηi−1, p) + F(ηi , p)), (4)

where trapi(F(η, p))) is a trapezoidal rule approximation of the area under the function F
for mesh interval i, and η represents any subset of continuous variables.

We define the kinematic and dynamic explicit differential equations as:

fq̇(u) = u (5)

fu̇(t, y, x ,λ, p) = M(q, p)−1
�

( fapp(t, y, x , p)− finertial(q, u, p)− G(q, p)Tλ
�

. (6)

The mass matrix M , the centripetal and Coriolis forces finertial, and kinematic constraint
Jacobian G are computed by Simbody (OpenSim’s multibody dynamics engine) using order-N
recursive algorithms1 [1]. The applied forces fapp can include any force elements supported
by Simbody, and are often defined by OpenSim components that provide access to existing
Simbody force elements (e.g., SmoothSphereHalfSpaceForce) or that define custom Simbody
force elements (e.g., DeGrooteFregly2016Muscle). Simbody computes the constraint Jacobian
G based on any Simbody kinematic constraints that the OpenSim model adds to the system.
In Moco, the Lagrange multipliers λ are explicit optimization variables; this approach differs
from that in time-stepping forward integrations, in which Simbody solves for generalized
accelerations and Lagrange multipliers simultaneously.

The result of the trapezoidal transcription, with multibody dynamics expressed as explicit

1In contrast to software based on hand-written or symbolically-derived equations of motion, Simbody does not
compute the complete mass matrix explicitly.

5/11



differential equations, is the following nonlinear program:

minimize
∑

j

w jJ j(t0, t f , y0, yn, x0, xn,λ0,λn, p, Sc, j) +wλ

n
∑

i=1

trapi(‖λ‖
2
2)

Sc, j =
n
∑

i=1

trapi(sc, j(t, y, x ,λ, p))

subject to qi = qi−1 + trapi( fq̇(u)) i = 1, . . . , n

ui = ui−1 + trapi( fu̇(t, y, x ,λ, p)) i = 1, . . . , n

zex,i = zex,i−1 + trapi( fż,ex(t, y, x ,λ, p)) i = 1, . . . , n

zim,i = zim,i−1 + trapi(ζ) i = 1, . . . , n

0= fż,im(t i , yi ,ζi , x i ,λi , p) i = 0, . . . , n

0= φ(qi , p) i = 0, . . . , n

VL,k ≤ Vk(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k

Sb,k =
n
∑

i=1

trapi(sb,k(t, y, x ,λ, p)) k = 1, . . . , K

gL ≤ g(t i , yi , x i ,λi , p)≤ gU i = 0, . . . , n

with respect to t0 ∈ [t0,L , t0,U] tn ∈ [t f ,L , t f ,U]

y0 ∈ [y0,L , y0,U] yn ∈ [y f ,L , y f ,U]

x0 ∈ [x0,L , x0,U] xn ∈ [x f ,L , x f ,U]

yi ∈ [yL , yU] i = 1, . . . , n− 1

x i ∈ [xL , xU] i = 1, . . . , n− 1

ζi ∈ [ζL ,ζU] i = 0, . . . , n

λi ∈ [λL ,λU] i = 0, . . . , n

p ∈ [pL , pU].

(7)

In this form, the problem can be solved directly by a nonlinear program solver. We introduce
the algebraic (control) variable ζ as the derivative of auxiliary state variables whose dynamics
are expressed with an implicit differential equation.

When expressing the multibody dynamics implicitly, we remove the constraint involving
fu̇, introduce generalized accelerations as an algebraic variable υ and enforce multibody
dynamics in “inverse dynamics” form:

subject to ui = ui−1 + trapi(υ) i = 1, . . . , n

M(qi , p)υi + G(qi , p)Tλi = fapp,i − finertial,i i = 0, . . . , n

with respect to υi ∈ [−υB,υB] i = 0, . . . , n.

(8)

The constant υB is a large positive number (1000 by default).
The dynamic, kinematic, and path constraints are enforced at a set of discrete time points,

so the quadratic spline approximation to the continuous variables may violate the original
continuous-time constraints between the discrete time points. For this reason, a mesh with
more points leads to a more accurate solution.

Our implementation of trapezoidal transcription handles kinematic constraints, but not in
the most robust fashion. We enforce φ but not its time derivatives; enforcing the constraints
at only the position level yields an index-3 system of differential-algebraic equations, which
are challenging to solve [6–8] (the differential-algebraic equations are “index-3” because
the algebraic constraints φ must be differentiated three times to convert the system of
differential-algebraic equations into ordinary differential equations). To improve numerical

6/11



conditioning, we minimize the Lagrange multipliers associated with the constraints (with
weight wλ; see Eq 7).

When kinematics are prescribed (see “Moco’s optimal control problem with prescribed
kinematics”), multibody dynamics must be expressed implicitly and kinematic constraints
are not enforced; we expect the prescribed kinematics to already obey the constraints.

Hermite-Simpson transcription

The Hermite-Simpson scheme transcribes the optimal control problem into a nonlinear
program by approximating integrals using a Hermite interpolant and Simpson integration
rule. As a third-order scheme, Hermite-Simpson transcription exhibits accuracy that improves
eight-fold when halving the mesh interval.

We use a similar dimensionless time mesh as for the trapezoidal scheme, with n mesh
intervals with durations hi . We also introduce collocation points at the midpoints of the
mesh intervals, leading to a total of 2n+ 1 time points at which we discretize the continuous
variables:

0= τ0 < τ1 < τ2 < . . .< τi < . . .< τn−1 < τn = 1,

τ̄i = 0.5(τi−1 +τi),
t i = (t f − t0)τi + t0,

t̄ i = (t f − t0)τ̄i + t0,

hi = (t f − t0)(τi −τi−1),

(9)

where τ̄i denote mesh interval midpoints.
For conciseness, we define the following functions:

hermitei(η, F(η, p)) =
1
2
(ηi−1 +ηi) +

hi

8

�

F(ηi−1, p)− F(ηi , p)
�

, (10)

simpsoni(F(η, p)) =
hi

6

�

F(ηi−1, p) + 4F(η̄i , p) + F(ηi , p)
�

, (11)

where hermitei() represents the Hermite interpolant, which yields the value of the midpoint
of a segment in a Hermite spline, and simpsoni() represents the Simpson integration rule.
Again, F is a function for mesh interval i, and η represents any subset of continuous variables.
The symbols η̄i represent continuous variables evaluated at the mesh interval midpoints.

Using the explicit multibody dynamics function fu̇ defined previously, Hermite-Simpson

7/11



transcription results in the following nonlinear program:

minimize
∑

j

w jJ j(t0, t f , y0, yn, x0, xn,λ0,λn, p, Sc, j) +wλ

n
∑

i=1

simpsoni(‖λ‖
2
2)

Sc, j =
n
∑

i=1

simpsoni(sc, j(t, y, x ,λ, p))

subject to q̄i = hermitei(q, fq̇(q, u,γ, p)) i = 1, . . . , n

qi = qi−1 + simpsoni( fq̇(q, u,γ, p)) i = 1, . . . , n

ūi = hermitei(u, fu̇(t, y, x ,λ, p)) i = 1, . . . , n

ui = ui−1 + simpsoni( fu̇(t, y, x ,λ, p)) i = 1, . . . , n

z̄ex,i = hermitei(zex, fż,ex(t, y, x ,λ, p)) i = 1, . . . , n

zex,i = zex,i−1 + simpsoni( fż,ex(t, y, x ,λ, p)) i = 1, . . . , n

z̄im,i = hermitei(zim,ζ) i = 1, . . . , n

zim,i = zim,i−1 + simpsoni(ζ) i = 1, . . . , n

0= fż,im(t i , yi ,ζi , x i ,λi , p) i = 0, . . . , n

x̄ i = (x i−1 + x i)/2 i = 1, . . . , n

0= φ(qi , p) = φ̇(qi , ui , p) = φ̈(t i , yi , x i ,λi , p) i = 0, . . . , n

VL,k ≤ Vk(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k

Sb,k =
n
∑

i=1

simpsoni(sb,k(t, y, x ,λ, p)) k = 1, . . . , K

gL ≤ g(t i , yi , x i ,λi , p)≤ gU i = 0, . . . , n

with respect to t0 ∈ [t0,L , t0,U] tn ∈ [t f ,L , t f ,U]

y0 ∈ [y0,L , y0,U] yn ∈ [y f ,L , y f ,U]

x0 ∈ [x0,L , x0,U] xn ∈ [x f ,L , x f ,U]

yi ∈ [yL , yU] i = 1, . . . , n− 1

ȳi ∈ [yL , yU] i = 1, . . . , n

x i ∈ [xL , xU] i = 1, . . . , n− 1

x̄ i ∈ [xL , xU] i = 1, . . . , n

ζi ∈ [ζL ,ζU] i = 0, . . . , n

ζ̄i ∈ [ζL ,ζU] i = 1, . . . , n

λi ∈ [λL ,λU] i = 0, . . . , n

λ̄i ∈ [λL ,λU] i = 1, . . . , n

γ̄i ∈ [γ̄L , γ̄U] i = 1, . . . , n

p ∈ [pL , pU].

(12)

The variables ȳi (including q̄i , ūi , z̄ex,i , z̄im,i), x̄ i , ζ̄i , λ̄i , and γ̄i are associated with the
midpoint of mesh interval i. The midpoint states are included as explicit optimization
variables ȳi since we are using the separated form of Hermite-Simpson transcription [8]

Eq 12 includes the first and second time derivatives of the kinematic constraints:

0= φ̇(q, u, p) = G(q, p)u, (13)

0= φ̈(t, y, x ,λ, p) = G(q, p)u̇+ Ġ(q, p)u= G(q, p) fu̇(t, y, x ,λ, p) + Ġ(q, p)u. (14)

Including these constraints reduces the index of the differential-algebraic equations from 3
to 1, which provides numerical benefits [6–8]. However, simply appending the kinematic

8/11



constraints to the unconstrained optimal control problem would overconstrain the resulting
non-linear program, so we use the method for handling kinematic constraints that was
introduced by Posa and colleagues [9]. In addition to the Lagrange multiplier variables we
introduced for trapezoidal transcription, we introduce velocity correction variables, γ, whose
multiplication with the transpose of the kinematic constraint Jacobian, G(q, p)Tγ, yields a
correction to the generalized speeds that is perpendicular to the constraint manifold φ = 0.
We update the function fq̇ used in Eq 12 accordingly:

fq̇(q, u,γ, p) = u+ G(q, p)Tγ (15)

Without this correction, the Hermite splines cannot simultaneously satisfy both the differential
equations at the mesh interval midpoints and the kinematic constraints at the mesh points.
Since velocity-level kinematic constraints (Eq 13) are already enforced at the mesh points,
this correction term only appears at the mesh interval midpoints (i.e., G(q̄i , p)T γ̄i); therefore,
velocity corrections at the mesh points are zero and do not appear in Eq 12. Although
Simbody supports non-holonomic and acceleration-level constraints, Moco only supports
holonomic (position-level) constraints.

For implicit multibody dynamics, we remove the constraints involving fu̇ and introduce
generalized accelerations as algebraic variables υ to enforce multibody dynamics in “inverse
dynamics” form:

subject to ūi = hermitei(u,υ) i = 1, . . . , n

ui = ui−1 + simpsoni(υ) i = 1, . . . , n

M(qi , p)υi + G(qi , p)Tλi = fapp,i − finertial,i i = 0, . . . , n

M(q̄i , p)ῡi + G(q̄i , p)T λ̄i = f̄app,i − f̄inertial,i i = 1, . . . , n

with respect to υi ∈ [−υB,υB] i = 0, . . . , n

ῡi ∈ [−υB,υB] i = 1, . . . , n.

(16)

Automated test suite

Moco contains an automated test suite with over 80 test cases. The test suite contains four
major types of tests: analytical tests, interface tests, algorithmic tests, and regression tests.

In analytical tests, we ensure Moco produces the correct solutions for problems with
known analytical solutions. These tests are commonly used to verify optimal control software
and for performance benchmarking [15]. We solve two such problems: the “linear tangent
steering” problem described in the main article and a boundary value problem involving a
set of linear first-order differential equations presented by Kirk et al. [10] (Example 5.1-1,
pg. 198). In addition, we include analytical tests using the SmoothSphereHalfSpaceForce
contact model to ensure that the smooth model produces correct forces. For example, we
test that a point mass containing a contact element with dissipation comes to rest with a
normal force that matches the weight of the system after being dropped from a height.

Interface tests ensure that a change made by a user though the Moco interface is reflected
within the software. Any values set by the user (using a “set” method) should be returned by
Moco when queried (using a “get” method). Interface tests are implemented for user-facing
classes in Moco, including MocoStudy, MocoProblem, MocoSolver, MocoGoal, MocoTrajectory,
MocoInverse, MocoTrack, and the smooth model components DeGrooteFregly2016Muscle and
SmoothSphereHalfSpaceForce. For example, the MocoGoal class contains a setting for disabling
a goal without removing it from the MocoProblem; we include simple tests to ensure that
MocoGoals are indeed disabled by this setting.

Algorithmic tests check that Moco solves direct collocation problems correctly. These
tests check that problems using explicit and implicit dynamics produce the same trajectory,
minimizing a cost term produces the expected behavior (e.g., minimum time problems hit

9/11



the lower bound on final time), and that kinematic constraints are obeyed. For example, we
check that adding a coordinate coupler constraint to a double pendulum problem produces
coordinate trajectories that obey a linear relationship defined by the constraint. Algorithmic
tests also encompass “self-consistency” tests. For example, using a model of a point mass
hanging from a muscle, we check that tracking a reference trajectory obtained by a minimum
time predictive problem produces the same controls as the original problem.

For complex problems for which there is no known exact solution, we use regression
tests, which check that solutions to direct collocation problems do not regress from reference
trajectories. These checks ensure that changes to the codebase do not produce any unintended
effects. For example, we test that MocoInverse and MocoTrack always produce the same
muscle activity given the same model and solver settings.

Moco’s direct collocation solvers

Moco provides two solvers as subclasses of MocoSolver: MocoCasADiSolver uses the third-party
CasADi library [11], and MocoTropterSolver uses a direct collocation solver we developed
named Tropter. CasADi is an open-source package for algorithmic differentiation and is a
bridge to nonlinear program solvers IPOPT [12], SNOPT [13], and others.

Gradient-based nonlinear program solvers require the gradient of the objective, the
Jacobian of the constraints, and sometimes the Hessian of the Lagrangian [8]. To maximize
computational efficiency, these derivatives are ideally computed exactly through either
analytic expressions or algorithmic differentiation [11, 14]. OpenSim’s main distribution
does not provide exact derivatives, so we use finite differences. CasADi is an ideal library for
employing direct collocation, but two limitations led us to create Tropter: CasADi did not
initially support finite differences, and CasADi’s open-source license is more restrictive than
OpenSim’s. More recent versions of CasADi support finite differences and CasADi understands
the structure of the nonlinear program objective and constraint functions, allowing for
potentially more efficient finite difference calculations than with Tropter, which treats the
nonlinear program objective and constraints as black-box functions [15]. If OpenSim provides
exact derivatives in the future, we can exploit the algorithmic differentiation modes in Tropter
and CasADi [16]. Those distributing Moco as a dependency of closed-source software may
prefer distributing Moco without CasADi, as CasADi’s “weak copyleft” GNU Lesser General
Public License 3.0 places requirements on how CasADi is redistributed.

References

1. Sherman MA, Seth A, Delp SL. Simbody: multibody dynamics for biomedical research.
Procedia IUTAM. 2011;2:241–261. doi:10.1016/j.piutam.2011.04.023.

2. Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of move-
ment using computed muscle control. Journal of Biomechanics. 2003;36:321–328.
doi:10.1016/s0021-9290(02)00432-3.

3. Crowninshield RD, Brand RA. A physiologically based criterion of muscle force
prediction in locomotion. Journal of Biomechanics. 1981;14(11):793 – 801.
doi:https://doi.org/10.1016/0021-9290(81)90035-X.

4. Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle
forces and knee joint moments in vivo. Journal of Biomechanics. 2003;36:765–776.
doi:10.1016/s0021-9290(03)00010-1.

5. De Groote F, Kinney AL, Rao AV, Fregly BJ. Evaluation of Direct Collocation Optimal
Control Problem Formulations for Solving the Muscle Redundancy Problem. Annals
of Biomedical Engineering. 2016;44:2922–2936. doi:10.1007/s10439-016-1591-9.

10/11



6. Hairer E, Wanner G. Solving Ordinary Differential Equations II, Stiff and Differential-
Algebraic Problems. Springer; 1996.

7. Campbell S, Kunkel P. Solving higher index DAE optimal control problems. Numerical
Algebra, Control and Optimization. 2016;6:447–472. doi:10.3934/naco.2016020.

8. Betts JT. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming. SIAM; 2010.

9. Posa M, Tedrake R, Kuindersma S. Optimization and Stabilization of Trajectories for
Constrained Dynamical Systems. 2016 IEEE International Conference on Robotics
and Automation. 2016; p. 1366–1373. doi:10.1109/icra.2016.7487270.

10. Kirk DE. Optimal control theory: an introduction. Courier Corporation; 2004.

11. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi: a software frame-
work for nonlinear optimization and optimal control. Mathematical Programming
Computation. 2019;11:1–36. doi:10.1007/s12532-018-0139-4.

12. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming.
2006;106:25–57. doi:10.1007/s10107-004-0559-y.

13. Gill PE, Murray W, Saunders MA. SNOPT: An SQP Algorithm for
Large-Scale Constrained Optimization. SIAM Review. 2005;47:99–131.
doi:10.1137/s0036144504446096.

14. Walther A, Griewank A, Vogel O. ADOL-C: Automatic Differentiation Using Operator
Overloading in C++. PAMM. 2003;2:41–44. doi:10.1002/pamm.200310011.

15. Patterson MA, Rao A. Exploiting Sparsity in Direct Collocation Pseudospectral Meth-
ods for Solving Optimal Control Problems. Journal of Spacecraft and Rockets.
2013;doi:10.2514/1.a32071.

16. Falisse A, Serrancolí G, Dembia CL, Gillis J, De Groote F. Algorithmic differentiation
improves the computational efficiency of OpenSim-based trajectory optimization of hu-
man movement. PLoS ONE. 2019;14:e0217730. doi:10.1371/journal.pone.0217730.

11/11


