Supplementary information

## A unified framework for herbivore-to-producer biomass ratio reveals the relative influence of four ecological factors

Takehiro Kazama, Jotaro Urabe<sup>\*</sup>, Masato Yamamichi, Kotaro Tokita, Xuwang Yin, Izumi Katano, Hideyuki Doi, Takehito Yoshida and Nelson G. Hairston Jr.

\* author for correspondence: <u>urabe@tohoku.ac.jp</u>

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3 Supplementary Figure 4 Supplementary Figure 5 Supplementary Figure 6 Supplementary Figure 7 Supplementary Figure 8 Supplementary Figure 9 Supplementary Table 1 Supplementary Table 2 Supplementary Table 3



**Supplementary Figure 1.** Temporal changes in mean water temperature (a), pH (b), and dissolved oxygen (c) in the water column, and extinction coefficient (m<sup>-1</sup>) (d) in the no-shade (blue), low-shade (orange), mid-shade (red), and high-shade sections (gray) of pond 217 (circle and sold line) and pond 218 (square and dashed line).



**Supplementary Figure 2.** Vertical profiles of water temperature in the no-shade (upper), low-shade (mid-upper), mid-shade (mid-lower), and high-shade sections (lower) of pond 217 (left) and pond 218 (right).



**Supplementary Figure 3.** Temporal changes in chlorophyll *a* (a), phytoplankton biomass (b), and fraction of edible phytoplankton (c) in the water column of no-shade (blue), low-shade (orange), mid-shade (red), and high-shade sections (gray) of pond 217 (circle and sold line) and pond 218 (square and dashed line).



**Supplementary Figure 4.** Temporal changes in zooplankton biomass (a), *H/P* biomass ratio (b) daily production rate (c), and fish abundance (d) in the water column of no-shade (blue), low-shade (orange), mid-shade (red), and high-shade sections (gray) of pond 217 (circle and sold line) and pond 218 (square and dashed line).



**Supplementary Figure 5.** Mean biomasses of zooplankton taxa during the experimental run in the no-shade, low-shade, mid-shade, and high-shade sections of pond 217 and pond 218.



**Supplementary Figure 6.** Mean biomasses of phytoplankton taxa during the experimental run in the no-shade, low-shade, mid-shade, and high-shade sections of pond 217 and pond 218.



**Supplementary Figure 7.** Temporal changes in total phosphorus concentration (a), seston carbon (b) seston C:P ratio (c) and seston N:P ratio (d) in the water column of no-shade (blue), low-shade (orange), mid-shade (red), and high-shade sections (gray) of pond 217 (circle and sold line) and pond 218 (square and dashed line).



**Supplementary Figure 8.** Chlorophyll-*a* specific photosynthetic rates plotted against the mean PAR in June 14 (blue), July 11 (red), and August 22 (gray) in the no-shade, low-shade, mid-shade, and high-shade sections of pond 217 (upper) and 218 (lower). Each response curve was obtained by fitting data to non-rectangular hyperbola models.



**Supplementary Figure 9.** Mean abundance of fish taxa during the experimental run in the no-shade, low-shade, mid-shade, and high-shade sections of pond 217 and pond 218. Vertical bars denote SE on the mean (n = 7 sampling dates).

| Variable              | Unit                         | Definition                                      | Convert<br>equation                             |  |
|-----------------------|------------------------------|-------------------------------------------------|-------------------------------------------------|--|
|                       | - O?                         | Des have a bis second                           |                                                 |  |
| P                     | gC m <sup>2</sup>            |                                                 |                                                 |  |
| H                     | gC m <sup>-2</sup>           | Herbivore biomass                               | 2                                               |  |
| g or f(P)             | $gC gC^{-1} d^{-1}$          | Biomass-specific production rate                | $q_3 \times \mu^{\varepsilon_3}$                |  |
| x                     | $gC gC^{-1} d^{-1}$          | Biomass-specific loss rate of producers         |                                                 |  |
|                       |                              | other than grazing loss                         |                                                 |  |
| k                     | 0 ~ 1                        | Efficiency of ingested producer biomass         | $q_1 \times \alpha_{nut} \epsilon^{\epsilon 1}$ |  |
|                       |                              | converted into herbivore biomass                |                                                 |  |
| f or f(P)             | $m^2 gC^{-1} d^{-1}$         | Per capita grazing rate of herbivores           |                                                 |  |
| т                     | $gC gC^{-1} d^{-1}$          | Per capita mortality rate of herbivores         | $q_4	imes	heta$ * $	heta$ *4                    |  |
| β                     | 0~1                          | Fraction of primary production that             | $q_2 	imes lpha_{edi} {}^{\epsilon 2}$          |  |
|                       |                              | herbivores consumed                             |                                                 |  |
| μ                     | $gC mg chl-a^{-1} d^{-1}$    | Chl-a specific growth rate of producers         |                                                 |  |
| $\alpha_{nut}$        | dimension less               | Carbon to phosphorus ratio of producers         |                                                 |  |
| $lpha_{edi}$          | 0 ~ 1                        | A trait value of primary producers              |                                                 |  |
|                       |                              | determining edibility                           |                                                 |  |
| $\theta$              | CPUE                         | Abundance of carnivores                         |                                                 |  |
| $q_1$                 | dimension less               | Conversion factor for adjusting to              |                                                 |  |
|                       |                              | biomass unit.                                   |                                                 |  |
| $q_2$                 | 0 ~ 1                        | A factor for converting the trait to            |                                                 |  |
|                       |                              | edible efficiency                               |                                                 |  |
| <i>q</i> <sub>3</sub> | mg chl- $a$ gC <sup>-1</sup> | Conversion factor for adjusting to              |                                                 |  |
|                       |                              | biomass unit.                                   |                                                 |  |
| $q_4$                 | gC CPUE <sup>-1</sup>        | Specific predation rate                         |                                                 |  |
| εl                    |                              | Effectiveness of the carbon to phosphorus       |                                                 |  |
|                       |                              | ratio                                           |                                                 |  |
| ε2                    |                              | Effectiveness of the edibility                  |                                                 |  |
| ε3                    |                              | Effectiveness of the specific growth rate       |                                                 |  |
| ε4                    |                              | Effectiveness of the carnivore abundance        |                                                 |  |
| γ                     |                              | $\log(q_1) + \log(q_2) + \log(q_3) - \log(q_4)$ |                                                 |  |

Supplementary Table 1. Model variables.

**Supplementary Table 2.** Temporal means and standard errors (parenthesis) of plankton biomass, primary production rate, fish abundance, and seston elemental ratios in each treatment of pond 217 and 218 during the experiment.

| Pond | Treatment  | H/P mass ratio           | Zooplankton Biomass    | Algal Biovolume                                  | Algal Biomass        |
|------|------------|--------------------------|------------------------|--------------------------------------------------|----------------------|
|      |            | gC gC <sup>−1</sup>      | ug C L <sup>-1</sup> x | 10 <sup>6</sup> µm <sup>3</sup> mL <sup>−1</sup> | mg C L <sup>−1</sup> |
| 217  | No shade   | 0.126 (0.049)            | 148.9(34.1)            | 14.146(2.676)                                    | 1.713 (0.320)        |
| 217  | Low shade  | 0.112 (0.019)            | 91.3 (23.8)            | 6.819 (1.549)                                    | 0.873 (0.200)        |
| 217  | Mid shade  | 0.781 (0.155)            | 248.9 (43.5)           | 3.361 (0.728)                                    | 0.407 (0.097)        |
| 217  | High shade | 0.296 (0.122)            | 149.1 (39.5)           | 6.510 (1.961)                                    | 0.873 (0.267)        |
| 218  | No shade   | 1.617 (0.639)            | 130.8 (23.8)           | 1.543 (0.382)                                    | 0.132 (0.024)        |
| 218  | Low shade  | 1.009 (0.296)            | 100.3 (22.8)           | 0.891 (0.255)                                    | 0.164 (0.057)        |
| 218  | Mid shade  | 1.927(0.716)             | 118.3 (24.2)           | 0.716 (0.168)                                    | 0.094 (0.023)        |
| 218  | High shade | 1.804(0.475)             | 149.3(36.6)            | 0.884 (0.383)                                    | 0.127 (0.047)        |
|      |            |                          |                        |                                                  |                      |
|      |            |                          | Fraction of edible alg | ae                                               |                      |
| Pond | Treatment  | Chlorophyll-a            |                        | Specific Daily<br>Production                     | Daily Production     |
|      |            | mg chl−a m <sup>-2</sup> |                        | mgC mg chl−a <sup>−1</sup> d <sup>−1</sup>       | $gC m^{-2} d^{-1}$   |

| 217 | No shade   | 25.51 (5.00) | 0.525 (0.198) | 108.1 (37.3) | 1.989 (0.465) |
|-----|------------|--------------|---------------|--------------|---------------|
| 217 | Low shade  | 21.15 (3.32) | 0.637 (0.241) | 50.3 (6.4)   | 1.092 (0.242) |
| 217 | Mid shade  | 18.57(4.53)  | 0.406 (0.153) | 59.3 (16.2)  | 0.796 (0.153) |
| 217 | High shade | 22.41 (4.43) | 0.676 (0.255) | 34.5 (9.8)   | 0.858 (0.316) |
| 218 | No shade   | 4.02 (0.54)  | 0.460 (0.174) | 81.7 (23.5)  | 0.334 (0.108) |
| 218 | Low shade  | 3.62 (0.99)  | 0.263 (0.099) | 84.2 (14.4)  | 0.267 (0.052) |
| 218 | Mid shade  | 2.93 (0.31)  | 0.669 (0.253) | 72.9 (15.1)  | 0.202 (0.038) |
| 218 | High shade | 3.93 (0.77)  | 0.444 (0.168) | 56.1 (17.5)  | 0.280 (0.128) |
|     |            |              |               |              |               |

| Pond | Treatment  | Fish abundance       | Seston C         |      | Seston C:P ratio      | Seston N:P ratio      |
|------|------------|----------------------|------------------|------|-----------------------|-----------------------|
|      |            | $CPUE(gWWtrap^{-1})$ | $\mu mol L^{-1}$ |      | mol mol <sup>-1</sup> | mol mol <sup>−1</sup> |
| 217  | No shade   | 14.03 (4.00)         | 250              | (22) | 217.14 (22.78)        | 29.7 (2.45)           |
| 217  | Low shade  | 6.93 (1.80)          | 192              | (17) | 188.44 (19.21)        | 26.7 (0.97)           |
| 217  | Mid shade  | 7.27 (2.24)          | 171              | (18) | 150.29 (5.40)         | 25.2 (0.34)           |
| 217  | High shade | 5.39 (1.49)          | 178              | (29) | 159.16 (12.89)        | 24.7 (1.55)           |
| 218  | No shade   | 0.68 (0.68)          | 85               | (10) | 163.11 (17.37)        | 28.2 (2.00)           |
| 218  | Low shade  | 0.28 (0.28)          | 104              | (21) | 174.79 (19.27)        | 29.3 (2.59)           |
| 218  | Mid shade  | 0.52 (0.52)          | 75               | (7)  | 181.01 (26.44)        | 30.8 (4.26)           |
| 218  | High shade | 0.00 (0.00)          | 99               | (13) | 180.53 (16.98)        | 28.9 (1.84)           |

**Supplementary Table 3.** Results of generalized linear models with the five lowest Akaike's Information Criterion values. Parameter meanings are shown in Table. S1.

| Model                                                                               | AIC   |
|-------------------------------------------------------------------------------------|-------|
| $\log(H/P) \sim \log(\alpha_{nut}) + \log(\alpha_{edi}) + \log(\mu) + \log(\theta)$ | 12.20 |
| $\log(H/P) \sim \log(\alpha_{nut}) + \log(\mu) + \log(\theta)$                      | 16.07 |
| $\log(H/P) \sim \log(\alpha_{nut}) + \log(\alpha_{edi}) + \log(\theta)$             | 20.55 |
| $\log(H/P) \sim \log(\alpha_{edi}) + \log(\mu) + \log(\theta)$                      | 24.58 |
| $\log(H/P) \sim \log(\alpha_{nut}) + \log(\alpha_{edi}) + \log(\mu)$                | 29.10 |