
Supplementary material

S1 Converting log-odds ratios to proportion differences

The goal of our statistical analysis is to estimate the effect on performance of changing a given
condition, and testing whether the effect is significantly different from 0. All the conditions we
analyze can be taken to vary in a binary way, being present or absent (e.g. discontinuity, surround
presence, HOS dissimilarity, etc), and thus we frame the analysis as estimating the effect of having
that condition present. Also, it is expected that the effect of a given condition can vary across people
and across textures. We are therefore interested in estimating the mean effect of that condition across
the population of textures and participants, and taking the variability into account when estimating
whether it is significantly different from 0.

For this goal we fit a generalized linear mixed model (GLMM) of the binomial family (equivalent
to logistic regression) (Gelman & Hill, 2006). This procedure estimates the mean effect of the presence
of a given condition A on the probability of success, and also estimates the variability of this effect
across the population from which textures and participants were sampled. Taking condition A (e.g.
discontinuity) to be a variable with two possible values, A = 1 (A present) and A = 0 (A absent),
the model relating A to task performance (probability of success, P) for a given participant s with a
given texture t is the following:

P (Success|A = a, Texture = t, Participant = s) =
1

1 + e−l(a,t,s)
(S1)

l(A = a, Texture = t, Participant = s) = aβt,s
A + βt,s

0 (S2)

where βt,s
A is the effect of A and βt,s

0 is the offset for participant s and texture t. Here βt,s
A is a sample

from a stochastic variable given by βt,s
A = βA + Zt

A + Zs
A. Here βA is the mean effect of condition

A (or fixed effect), and Zt
A ∼ N (0, σ2

A:t) and Zs
A ∼ N (0, σ2

A:s) are samples from random variables
corresponding to the variability of the effect across textures and participants respectively (the random
effects). The random effects are characterized by their standard deviations σA:t and σA:s. Similarly,
βt,s
0 = β0 +Zt

0 +Zs
0 , with Zt

0 ∼ N (0, σ2
0:t) and Zs

0 ∼ N (0, σ2
0:s). We note that all participants under a

given texture share the same value of Zt
A and Zt

0, meaning that each texture has its own characteristic
effect of A and offset. Fitting a GLMM model to an experiment in which condition A is varied
estimates all of the above parameters. The discussions in the text are based on the estimates of the
fixed effects for the experimental manipulations, which is the estimated mean effect across textures
and subjects.

As mentioned, the effects estimated by the model are the βA coefficients in the linear equation l
inside the logistic function. These effects do not directly express the difference in success probabilities
between the conditions, they express the log-odds-ratio (LOR) between the conditions, which is a
measure related to the difference in probability of success. The odds of success for a given condition
can be defined as odds = psuccess

pfail
, and it can be converted to probability of success. The odds-ratio

is, as the name suggests, the ratio of the odds of two conditions, and it is a measure of the difference
in their success probabilities. For example, a way of expressing the effect of condition A on task
performance is as the odds-ratio between the condition with A present (A=1) and with A absent
(A=0), or ORA = oddsA=1

oddsA=0
. If the presence of A improves performance, ORA will be larger than 1,

and if it hinders performance, ORA will be between 1 and 0. The log-odds-ratio (LOR) is simply the
logarithm of the odds-ratio, and so the parameters estimated by the model can also be understood as
βA = logORA. The LOR has different advantages as a measure of changes in probability of succes.
For one, it is unbounded (can go from −∞ to +∞) and symmetric around 0 (the LOR of a change
in probability from p1 to p2 is the opposite of the LOR of a change from p2 to p1). But also, the

1



0.25

0.50

0.75

−2.0−1.5−1.0−0.50.0
βA

S
uc

ce
ss

 w
ith

 A

Success without A

0.9

0.85

0.8

0.75

0.7

0.65

0.6

Figure S1: Reference plot for converting LOR (βA) into proportions of correct answers. Each
line indicates a different initial probability of success without condition A (e.g. discontinuity, naturalness,
etc). The lines then show the probability of success with condition A for the different values of βA.

LOR has the advantage that it reflects an intuitive aspect of the relevance in a change in probability.
Intuitively, the relevance of a change in probability depends on the specific probability values, and
this is readily reflected in the LOR, but not in the raw probability changes. For example, a change
in p from 0.9 to 0.99 is intuitively more important than a change from 0.5 to 0.59. While the change
in probability is the same in both cases, the LOR between the conditions are around 2.40 and 0.36
respectively.

But the above mentioned advantage of the LOR means that a given LOR does not uniquely deter-
mine a change in probability, since the change in probability will depend on the specific probability
values. Therefore we express in the article the estimated effects as the LOR (the βs). To help get
intuition of the magnitude of those effects in terms of probability, Figure S1 shows how to convert LOR
to changes in probability. To see how a given LOR translates to a difference in success probability for
an experimental manipulation, select an initial probability (a given line) and see what the probability
is at the selected LOR. Those would be the probabilities of success without and with condition A
present, respectively. Note that a given LOR gives different changes in probability for different initial
probabilities.

S2 Experiment 1

In experiment 1 we expected the width of the gap to be an important factor in determining
the effect of discontinuity because of two opposing factors. For one, since the gap is produced by
shrinking the target, a larger gap implies a smaller target for the discontinuous condition. This
could lead to a reduction in performance for the discontinuous condition, and potentially mask the
effect of segmentation. On the other hand, a smaller gap can be less visible (particularly with the
transparency gradients at the borders of the textures), leading to weaker segmentation and thus also
leading to a reduced performance for the discontinuous condition. Therefore, we expected the effect of
discontinuity to be maximal at some intermediate gap width. We chose to run the experiment using
two different gap widths, 0.3° and 0.6°, which seemed to be sufficiently visible but not too large. In
experiment 1 we report the result of discontinuity for the gap with 0.3° width. The gap with 0.6°
width that showed an effect in the same direction, albeit smaller and non significant (βDiscont = 0.27,
ci =

[
−8× 10−3, 0.54

]
, p = 0.06, Figure S2c). Thus, although the points in the discussion remain

unchanged, we note that the experimental effect depends on this relevant parameter.

Also, in experiment 1 we found that texture surrounds impair task performance and that target-
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Figure S2: The effect of discontinuity depends on the size of the gap. (a) Stimulus configurations
used in the experiment (only scrambled targets shown). Left: Continuous stimulus (larger target size),
Right: Discontinuous stimulus (smaller target size) with a gap of 0.6°. (b) Task performance for the two
conditions. (c) LOR for discontinuity (βDiscont), estimated from the performance data in (b). Participants
(n=8) performed 70 trials in each condition. The plots in the figure use the same conventions as Figure 3.

surround segmentation can reduce this impairment. Thus, we tested whether segmentation completely
recovered task performance. For this we compared task performance for the unsurrounded target, and
for stimuli with surround texture but separated from the targets by a gap (Figure S3a). For the
discontinuous condition we pooled the data from the two gap sizes (0.3° and 0.6°). We note that the
discontinuous and unsurrounded stimuli had the same target size, only differing in the presence of
the discontinuous surround. We found that the discontinuous surrounds still impaired performance
(βSurr = −0.40, ci = [−0.68,−0.15], p = 5× 10−3), showing that segmentation did not completely
remove contextual modulation.

We note that all the conditions mentioned in the section corresponding to experiment 1 (the ones
for testing the effect of flanker and the effect of discontinuity), as well as those presented here, were
presented in the same experimental session. That is, participants shown in Figures 3 and 4 and in
this section are the same individuals (except for a missing participant in Figure 3, which was not
presented the unsurrounded due to an error).
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Figure S3: Discontinuous surrounds generate contextual modulation. (a) Stimulus configurations
used in the experiment (only scrambled targets shown). Left: Target without surround, Right: Target with
discontinuous surround. (b) Task performance for the two conditions. (c) LOR for the presence of the
discontinuous surround (βSurr), estimated from the performance data in (b). 8 participants performed 70
trials in the unsurrounded condition, and 140 in the surrounded condition. The plots in the figure use the
same conventions as Figure 3.
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S3 Experiment 2

In experiment 2 we induced continuity by changing target shape from disk-target to split-target
(as described in the main text). Although the total area of target texture is roughly the same for the
two shapes, it is possible that part of the observed effect could be due to target shape rather than
discontinuity. To test for this we included control stimuli for texture T1, consisting of the targets
without surrounds, and the targets with surrounds but without a gap, for both target shapes.

First we estimated the effect of target shape by comparing performances for the two targets without
surrounds (Figure S4a). The performance for the split-target was slighly worse than for the disk target
(Figure S4b), although the effect was small and non-significant (βSplit = −0.16, ci = [−0.42, 0.11], p
= 0.22, Figure S4c).
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Figure S4: Target shape does not affect performance for targets without surrounds. (a)
Stimulus configurations used in the experiment. Left: Non-split target (Disk-target) without surround,
Right: Split-target without surround. (b) Task performance for the two conditions. (c) LOR for the
splitting of the target (βSplit), estimated from the data in (b). Participants (n=12) performed 80 trials per
condition. The plots in the figure use the same conventions as Figure 3.

Then we estimated the effect of target shape and whether it explains the effect of discontinuity.
For this we fitted a model with terms for target shape (βSplit), the presence of the gap (βGap),
and discontinuity (βDiscont) to the stimuli shown in S5a, which include targets of both shapes with
surrounds, and in presence and absence of a gap around the target. This analysis also allows to
estimate the effect of having a gap around the target after accounting for the discontinuity effect (e.g.
effects arising from the low level properties of the gap, or for spatial cueing to the target location
within the stimulus). Interestingly, both the effect of target shape (βSplit = −0.09, ci = [−0.31, 0.14],
p = 0.43, Figure S5c) and of the presence of the gap (βGap = 0.04, ci = [−0.15, 0.22], p = 0.71, Figure
S5d) were close to 0 and non significant, while the effect of discontinuity had a similar magnitude as
to that estimated in the main text (βDiscont = 0.43, ci = [0.14, 0.73], p = 5× 10−3, Figure S5e). This
can be seen in the raw performances (Figure S5b), where in the absence of a gap both target shapes
have similar performances (thus showing a small effect of target-shape), but in the presence of a gap
there is a difference in performance (since one shape is discontinuous with the surround while the
other is not). The small effect of the gap can be seen in the little difference between the conditions
with and without a gap for the split target, suggesting that the gap does not have a strong effect
if it does not induce segmentation. This shows that the improvement in performance described for
experiment 2 in the main text comes mainly from discontinuity, rather than target shape or other low
level factors that accompany the presence of the gap.
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Figure S5: Target shape does not affect performance for targets with surrounds. (a) Stimulus
configurations used in the experiment. Left: Disk-target shape, Right: Split-target shape. Top: Stimuli with
a gap. Bottom: Stimuli without a gap. (b) Task performance for the four conditions, with the conditions
without a gap in the left panel and the conditions with a gap around the target in the right panel. (c)-(e)
LOR for, respectively, the splitting of the target (βSplit), the presence of the gap (βGap), and discontinuity
(βDiscont), estimated from the data in (b). Participants (n=12) participants performed 80 trials per
condition. The plots in the figure use the same conventions as Figure 3.

S4 Experiment 3

In experiment 3, when estimating the effect of target-surround dissimilarity for the discontinuous
and continuous conditions separately, there appears to be a considerable change in the effect of FAS
dissimilarity. To verify that this change is significant we fitted a GLMM to all the data shown in Figure
6, with parameters for FAS dissimilarity (βFAS), HOS dissimilarity (βHOS), discontinuity (βDiscont),
and the interactions between discontinuity and dissimilarity (βFAS:Discont and βHOS:Discont). In
this model, βFAS and βHOS are the effect of dissimilarity for the continuous condition, βDiscont is
the effect of discontinuity for the condition with no target-surround dissimilarity, and the interaction
terms represent how the effect of dissimilarity changes for the discontinuous condition (or equivalently,
how the effect of discontinuity changes for the dissimilar surrounds). We note that due to convergence
issues in computing the confidence intervals of the parameters, we excluded the random effects for
βFAS:Discont from the model, although these were estimated by the model to be close to 0 when fitting
the full model, and both the point estimates of the parameters and their corresponding p-values were
practically unchanged when including these random effects.

As expected, the full model fit shows a strong and negative effect for the FAS-discontinuity inter-
action (βFAS:Discont = −0.78, ci = [−0.95,−0.61], p = 0., Figure S6c) indicating that the effect of
FAS dissimilarity is reduced (and practically canceled) when the stimulus is discontinuous. The inter-
action term between the HOS and discontinuity on the other hand was close to 0 and non significant
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(βHOS:Discont = 0.07, ci = [−0.35, 0.49], p = 0.66, Figure S6e) and showed considerable variability
across textures.

We also estimated the interaction effects for the simulated observers. In line with the similarity
between the effects for continuous and discontinuous conditions in Figure 6, the interaction between
FAS dissimilarity and discontinuity was close to 0 and non significant (βFAS:Discont = 0.02, ci =
[−0.02, 0.06], p = 0.38, Figure S6h). Thus, this confirms the failure of the model to capture the
experimental results. Interestingly, the model showed a small but significant interaction between HOS
and discontinuity (βHOS:Discont = 0.11, ci = [0.07, 0.15], p = 8× 10−4, Figure S6j). This interaction
may result from the change in the amount of texture around the target for the discontinuous condition,
since the surround texture in the gap is removed, and the magnitude effect will depend on whether
HOS are matched or not.

Also, we note that for texture T1 experiment 3 was done using two different widths which, were
0.5° and 1°. Due to the small difference observed between gap sizes in this experiment and preliminary
data, we resolved to continue with only the smaller gap for the rest of the experiments. To verify
whether the effect of gap width was negligible, we fitted a GLMM to the data with terms for gap
width and found them all to be small and non-significant (data not shown). Thus, for the analysis we
pooled these two gap sizes together.
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Figure S6: FAS dissimlarity strongly interacts with discontinuity in participants but not in
model observers. Parameters estimated by fitting a full model to the data from both continuous and
discontinuous conditions in experiment 3. (a)-(e) LOR for, respectively, discontinuity (βDiscont), FAS
dissimilarity (βFAS), discontinuity-FAS interaction (βFAS:Discont), HOS dissimilarity (βHOS) and
discontinuity-HOS interaction (βHOS:Discont) estimated from the experimental data. (f)-(j) Same as (a)-(e)
but for the model observers. The data used for fitting the model is the same as that shown in Figure 6. The
plots in the figure use the same conventions as Figure 6.

S5 Experiment 4

In the experiment comparing naturalistic and phase scrambled surrounds, we included the discon-
tinuous target-surround conditions for the textures T1 and T2, to determine how segmentation and
naturalness interact. We fitted a model to the data with terms for naturalness (βNat), discontinuity
(βDiscont) and their interaction (βNat:Discont). In this model βNat is the effect of naturalness for the
continuous condition, βDiscont is the effect of discontinuity for the phase-scrambled surround, and
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Figure S7: Surround naturalness interacts with segmentation in participants but not in model
observers. (a) Task performance for the naturalistic and phase-scrambled surrounds in both the continuous
(left) and discontinuous (right) conditions. Task performances for textures T1 (top) and texture T2
(bottom) are shown. (b)-(d) LOR for, respectively, surround naturalness (βNat), discontinuity (βDiscont),
and their interaction (βNat:Discont), estimated from the performance data in (a). (e) Same as (a) but for
the model observers. (f)-(h) Same as (b)-(d) but for the model observers. Participants (n=28) completed
28 experimental sessions that were included in the analysis, and performed 90 trials per condition.

βNat:Discont represents how the effect of surround naturalness changes for the discontinuous condition
(or conversely, how the effect of discontinuity changes when adding surround naturalness). As reported
in the main text, there was a strong and significant effect of naturalness for the continuous condition
(βNat = −0.90, ci = [−1.57,−0.24], p = 0.03, Figure S7b). We also observed an effect of discontinuity
for the phase-scrambled surround, that did not reach statistical significance for the hierarchical model
(βDiscont = 0.61, ci = [−0.06, 1.30], p = 0.06, Figure S7c), but did reach significance individually for
each texture. Finally, we also observed a moderate and significant interaction between the two terms
(βNat:Discont = 0.43, ci = [0.06, 0.83], p = 0.04, Figure S7d).

While the observer model again captured the effect of naturalness (βNat = −0.74, ci = [−0.83,−0.65],
p = 6× 10−4, Figure S7f), it failed to capture its interaction with discontinuity, with an interaction
close to 0 and non-significant (βNat:Discont = 0.05, ci = [−0.03, 0.12], p = 0.15, Figure S7h), thus
showing that the effect of naturalness is not fully captured by the feedforward version of the SS
model.

Furthermore, for these stimuli we also included the condition with unsurruounded targets in order
to determine whether phase-scrambled surrounds produce contextual modulation or not. Performance
for the condition with continuous phase-scrambled surrounds was significantly lower than for the
unsurrounded targets (βSurr = 0.60, ci = [0.18, 1.05], p = 0.02), showing that naturalistic surrounds
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are not a necessary condition for contextual modulation.

S6 Texture sampling variability in the model

As described in the methods section, we synthesized large textures with the PS algorithm and then,
during the task, patches of these textures were randomly sampled on a trial by trial basis to build the
stimuli. This procedure introduces some trial by trial variability in the SS of the displayed patches, and
thus this constituted a source of stimulus noise in the task. It is not certain what effect this variability
could have on the participants performance, since that would likely depend on how they process the
stimuli, and on the strategy they use to solve the task. Nonetheless, we propose there are different
reasons to think that this noise does not have an important effect on participants. First, participants
quickly learned from one or two examples how to perform the task, and they could generalize this
to the different texture samples. Second, participant errors could not be predicted from this image
variability (analysis not shown). Furthermore, it is very easy to solve the task with foveal inspection,
while the task is difficult with limited exposure and peripheral vision. This suggests that the effect
of SS variability is probably small as compared to other limitations imposed on the participants by
the task design. Lastly, even if the different samples of texture stimuli were always perfectly matched
in the PS statistics, it is likely that this will not be the case for the internal representation of SS
in participants. This is because different factors such as eye movements, cortical magnification and
the use by participants of SS that are not included in the PS model, could still make these different
samples unmatched in their internal SS.

On the other hand, given that the implementation of the SS model both lacks the robustness of
biological visual systems, and also has few other sources of noise to compete with stimulus variability,
the simulated observers may be affected by the sampling variability. Furthermore, understanding the
effect of sampling variability on the model can be informative about the behavior of the model, and
about possible effects of stimulus noise. Therefore, we performed new simulations removing sampling
variability from the task.

In order to remove the sampling variability from the task, we first synthesized for each simulated
participant one small PS texture of 128x128 pixels, and its corresponding phase-scrambled texture
to be used as targets. Then, to be used for the surrounds, we synthesized one 448x448 texture for
each kind of surround texture needed in the experiment to be simulated. All these textures were
synthesized as described in the methods, with the exception of their size. Next we used these images
to generate one sample of each kind of stimulus (the combination of a kind of surround with a kind of
target) using the centermost region of the synthesized textures. This way the crop was not random,
and was the same for each stimulus. For example, the naturalistic target was always the exact same
patch of texture for the different surrounds, and a given surround was exactly the same for the two
kinds of target.

After generating one stimulus of each kind for each simulated subject, we proceeded as in the
main simulations to compute the SS and generate pairs of stimuli to discriminate. This results in one
kind of stimulus pair for each observer. Finally, we copied the resulting pairs of stimuli to get the
needed number of trials to train and test the model (thus there was no variability among samples),
and proceeded as described for the main simulations. This way, there was no variability in the stimuli
SS in the task (although there was still between trial variability in the noise added to the model).

We note that we used noise with a larger SD than that used in the main simulations. Instead of
adding noise with SD equal to that of the SS across the stimuli, we used noise with 10 times that
SD. Also, to be able to fit into the synthesized texture for the target, target size was reduced for the
first two experiments, using a target size of 100 pixels for experiment 1 and 90 pixels for experiment
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