Supplementary Information for

Hermes et al: Thioesterase-mediated Side Chain Transesterification Generates Potent Gq Signaling Inhibitor FR900359, *Nat. Comm.* **2020**

Content	Page
Characterization of <i>C. vaccinii</i> as FR Producer	3
Supplementary Figure 1: Production curve for FR (1) from C. vaccinii cultivation in LB	3
Supplementary Figure 2: EIC of FR (1) and FR-2 (3) from <i>C. vaccinii n</i> -butanol extracts	3
Supplementary Figure 3: Molecular network of 1 and its derivatives from different producers	4
Gap Closure and Bioinformatic Analysis of <i>C. vaccinii frs</i>	5
Supplementary Table 1: Primers used in this study.	6
Supplementary Figure 4: Gap closure of <i>C. vaccinii frs</i>	7
Supplementary Table 2: Annotation of <i>C. vaccinii</i> Frs proteins	7
Supplementary Table 3: Comparison of genes and encoded proteins in the frs BGCs	8
Supplementary Figure 5: Emboss Needle Alignment of frsA and frsD in C. vaccinii.	7
Supplementary Figure 6: Emboss Needle Alignment of FrsA and FrsD in C. vaccinii.	11
Establishment of Knock-out System in <i>C. vaccinii</i> and Creation of Mutant Strains	12
Supplementary Figure 7: Schematic representation of the deletion strategy used for <i>frsA</i> and <i>vioA</i>	13
Supplementary Figure 8: Verification of mutants in <i>C. vaccinii</i>	15
Structure elucidation of FR-Core (2)	16
Supplementary Figure 9: Chemical structure of FR-Core (2)	16
Supplementary Table 4: ¹ H and ¹³ C NMR spectroscopic data of 2 in acetonitrile- d_3	16
Supplementary Figure 10: ¹ H NMR spectrum of compound 2 in acetonitrile- d_3 (600 MHz)	17
Supplementary Figure 11: ¹³ C NMR spectrum of compound 2 in acetonitrile- d_3 (150 MHz)	18
Supplementary Figure 12: 1 H- 1 H COSY NMR spectrum of compound 2 in acetonitrile- d_{3} (600 MHz)	18
Supplementary Figure 13: 1 H- 13 C HSQC NMR spectrum of compound 2 in acetonitrile- d_{3} (600 MHz)	19
Supplementary Figure 14: $^{1}H^{-13}C$ HMBC NMR spectrum of compound 2 in acetonitrile- d_{3} (600 MHz)	19
Supplementary Figure 15: ¹ H- ¹ H ROESY NMR spectrum of compound 2 in acetonitrile- d_3 (600 MHz)	20
In vitro Characterization of NRPS Domains and FrsH	21
Supplementary Figure 16: SDS-PAGE gels of FrsA, FrsD and FrsH constructs	21
Supplementary Figure 17: ¹⁸ O ₄ -ATP exchange adenylation assay results for FrsA _{CAT} and FrsD.	21
Supplementary Figure 18: Absorption spectra of FrsH.	22
Supplementary Figure 19: EIC ($m/z = 202.108$) of FrsA _{CAT} incubated with D-Leu and IIe	22
Chemical synthesis of compounds 5 and 6	23
Supplementary Figure 20: Synthesis of <i>N</i> -Pp-Hle SNAC thioester 6	24
Supplementary Figure 21: 'H NMR spectrum of compound 5 in DMSO- d_6 (500 MHz)	25
Supplementary Figure 22: 13 C NMR spectrum of compound 5 in DMSO- d_6 (125 MHz)	25
Supplementary Figure 23: 'H NMR spectrum of compound 6 in DMSO- d_6 (500 MHz)	26
Supplementary Figure 24: ¹³ C NMR spectrum of compound 6 in DMSO- d_6 (125 MHz)	26
Structure Elucidation of FR-5 (7)	27
Supplementary Figure 25: MS/MS spectrum of FR-5 (7) (<i>m/z</i> : 1016.55)	27
Supplementary Figure 26: Chemical structure of FR-5 (7)	27
Supplementary Table 5: 'H and 'C NMR spectroscopic data of 7 in CDCl ₃	28
Supplementary Figure 27: 'H NMR spectrum of compound 7 in $CDCI_3$ (300 MHz).	29
Supplementary Figure 28: "C NMR spectrum of compound 7 in $CDCl_3$ (300 MHz).	29

Supplementary Figure 29: ¹ H- ¹ H COSY NMR spectrum of compound 7 in CDCl ₃ (300 MHz).	30
Supplementary Figure 30: ¹ H- ¹³ C HSQC NMR spectrum of compound 7 in CDCl ₃ (300 MHz).	30
Supplementary Figure 31: ¹ H- ¹³ C HMBC NMR spectrum of compound 7 in CDCl ₃ (300 MHz).	31
Gq Inhibition Assays	32
Supplementary Figure 32: CRISPR-Cas9 HEK293 Gaq/Ga11-null cells were unresponsive to Carbachol	32
Supplementary Figure 33: Pharmacological characterization of 2 and 7 on $G\alpha q$ -mediated signaling.	32
Supplementary Table 6: Quantification of FR, FR-Core and FR-5 inhibitory activities	32
Bioinformatic Analyses on frs BGC and FrsA domains	33
Supplementary Figure 34: Distances of 239,899 BGC relative to <i>frs</i> revealed by a BiG-SliCE analysis.	33
Supplementary Table 7: Information on C domains used for phylogenetic tree	33
Supplementary Figure 35: Phylogenetic tree of NRPS C starter domains	35
Supplementary Figure 36: Alignment of $FrsA_{TE}$ and $FrsG_{TE}$	36
Supplementary Table 8: Information on TE domains used for phylogenetic tree	36
Supplementary Figure 37: Structural models of $FrsA_{TE}$ and $FrsG_{TE}$	37
Discussion: FrsA _{TE} acceptor substrate specificity	38
Supplementary Figure 38: EICs of TE assays with the minimal substrate Hle	38
Supplementary References	39

Characterization of C. vaccinii as FR Producer

Supplementary Figure 1: FR production in *C. vaccinii*. Production curve for FR (1) from *C. vaccinii* cultivation in LB. Area under the curve of extracted m/z: 1002.54 is plotted. Data are presented as mean values \pm SD. Experiments were performed in triplicate.

Supplementary Figure 2: FR and FR-2 comparison. Extracted ion chromatograms (EIC) of FR (1, m/z: 1002.54 ± 0.05, A) and FR-2 (3, m/z: 988.52 ± 0.05, B) from *C. vaccinii n*-butanol extracts. Cultures were grown in LB medium for 36 h.

Supplementary Figure 3: Molecular network of FR and its derivatives from different producers: *C. vaccinii* in M9 and LB medium and "*Ca.* B. crenata" in *A. crenata*. Nodes display distinct *m/z* features, representing their parent mass and their size represents the number of spectra found. The width of the edges represents the similarity of the fragmentation spectra of the two masses, while the color of the node displays the origin of production (magenta: all extracts; purple: only produced by *C. vaccinii* in M9 medium; green: only produced by *Ca.* B. crenata; red: produced by *C. vaccinii* in LB and M9 medium; blue: produced by "*Ca.* B. crenata" and *C. vaccinii* in M9 medium). Derivatives already known and published are indicated in the respective nodes.

Gap Closure and Bioinformatic Analysis of C. vaccinii frs

Gap closure of C. vaccinii frs BGC

To analyze the genome of C. vaccinii MWU205, genomic DNA was prepared from a freshly grown overnight culture with the GenElute Bacterial Genomic DNA Kit (Merck) and sent to Göttingen Genomics Laboratory (G2L, Göttingen) for Illumina sequencing. The resulting draft genome (4.998 Mb in 79 contigs) was then applied to homology guided alignments using the Geneious Pro 5.6.7 software (Biomatters Ltd.), which yielded eight contigs (42, 43, 46, 47, 50, 61, 62, 63) harboring parts of a potential FR gene cluster. When mapped to the frs gene cluster of "Ca. B. crenata",^[1] a potential position for six of them (42, 43, 46, 47, 50, 63) could be determined (Supplementary Fig. 4). For the remaining two contigs, no clear mapping was possible, as they covered reoccurring regions within the frs gene cluster (61: A domain identity, 62: MT domain identity). This contig assignment suggested the presence of five gaps. To close these, specific primers binding 130-450 bp upstream of the contig ends were designed (Supplementary Table 1) and applied for PCR-based gap closure. All PCR reactions (25 µL scale) consisted of: 1x Q5 reaction buffer, 1x Q5 GC enhancer, 200 µM dNTPs, 500 nM of forward and reverse primer, 2.25 ng of C. vaccinii gDNA and 0.01 U/µL Q5 High-Fidelity DNA polymerase (NEB). Thermal cycling was performed in a Biometra TGradient cycler with an initial denaturation step at 98 °C for 30 s, followed by 30 to 33 cycles of DNA denaturation at 98 °C for 10 s, primer annealing for 20 s and DNA amplification at 72 °C for 30 s/kb amplified, and a final extension step at 72 °C for 2 min. Optimal annealing temperature for specific primer combinations was determined experimentally using temperature gradients from 46-64 °C. PCR products of the expected size were purified and subsequently submitted to terminal-end Sanger sequencing along with the primers used for amplification. Where necessary, primer walking was applied for the sequencing of larger PCR products (see primers in Supplementary Table 1).

Supplementary Table 1: Primers used in this study. Restriction sites are bold, Gibson homology arms are underlined. All overhangs are given in lowercase, while target specific sequences are given in uppercase. Restriction sites are bold.

Name	Sequence $(5' \rightarrow 3')$ Description		
BamHI-ERT for	tga ggatcc AGCTTCAAAAGCGCTCTGA	Sequential cloning of FRT into pUC19	
Sall-FRT rev		Sequential cloning of FRT into pUC19	
SphI-frsA-up for	agt gcatgc	Sequential cloning of the <i>frsA</i> -up region into	
' '=	GGAAAGTACGTCTGGTCTTG	pUC19::FRT	
Sall-frsA-up rev	tct gtcgac	Sequential cloning of the frsA-up region into	
	TACATCCAGCTGTGCTGAAG	pUC19::FRT	
BamHI-frsA-dn_for	ttc ggatcc ATTGGTCCTGTTCTCGAGTC	Sequential cloning of the frsA-dn region into	
		pUC19::frsA-up-FRT	
SacI-frsA-dn_rev	tga gagctc	Sequential cloning of the frsA-dn region into	
	AGTCCCGCATATGATCGATG	pUC19:: <i>trsA</i> -up-FRT	
FRI_for		One step cloning of FRT into pEX181c	
FRI_rev	CGAATIGGGGATCTIGAAGTICCT	One step cloning of FRT into pEX181c	
GID-VIOA-up_for		One step cloning of VIOA-up into pEX181c	
		One step clearing of view up into pEV18Te	
FRI-vioA-up_iev		One step cioning of WOA-up into pEX1810	
ERT-vioA-dp_for		One step cloping of vioA-dp into pEX18Tc	
	CGTCCATGTGCACAAGTAC	one step doning of viox an into pextore	
Gib-vioA-dn_rev		One step cloning of <i>vioA</i> -dn into pEX18Tc	
	GCTCGCCATTGATCGAAAC		
PCR-frsA-KO for	GTAATGTCAAAGGCTTGG	Mutant verification of C. vaccinii ΔfrsA by	
_		PCR / Sequencing	
PCR-frsA-KO_rev	ATTGAATTGCTGACACCG	Mutant verification of <i>C. vaccinii</i> ΔfrsA by	
_		PCR / Sequencing	
PCR-vioA-KO_for	AGCTCTACCTGTGGCAG	Mutant verification of C. vaccinii AvioA by	
		PCR / Sequencing	
PCR-vioA-KO_rev	TCCCAGGAGAAATGGTTG	Mutant verification of <i>C. vaccinii</i> Δ <i>vioA</i> by	
		PCR / Sequencing	
Gap1_for	TCGAGATGATGAAGGCTG	PCR-based closure of gap 1/ Sequencing	
Gap1_rev	GGCATCAACACTTGATAAG	PCR-based closure of gap 1/ Sequencing	
Gap2_for	TCCACCTCGATTTGTACG	PCR-based closure of gap 2 / Sequencing	
Gap2_rev		PCR-based closure of gap 2 / Sequencing	
Gap3_for	AICIGGAACACCCCGAAIC	PCR-based closure of gap 3 / Sequencing	
Gap3_rev		PCR-based closure of gap 3 / Sequencing	
Gap4_for		PCR-based closure of gap 4 / Sequencing	
Gap4_rev		PCR-based closure of gap 4 / Sequencing	
		PCR-based closure of gap 5 / Sequencing	
Gap1_rov2		Sequencing / Primer walking	
Gap1_rev3		Sequencing / Primer walking	
Gap2 for2		Sequencing / Primer walking	
Gap3 for2	TGCTGGAAATCGGCGTC	Sequencing / Primer walking	
Gap4_for2	GGGTGACGCTGAATACG	Sequencing / Primer walking	
Gap4 for3	AATACCCAGACCTACGTG	Sequencing / Primer walking	
Gap4 rev2	CGAAGAAGCTGTCGTCC	Sequencing / Primer walking	
Gap4 rev3	CCAGCAGCAGTTCCTTC	Sequencing / Primer walking	
Cv frsA-His6-N for BamHI	gatggatccATGAAAAACAGTGAATCGC	In vitro studies	
Cv frsA-His6-N rev HindIII		In vitro studies	
Cv_frsA_PCP_His6_N_rev_HindIII		In vitro studios	
CV-ITSA-TE-HISO-IN_TOT_BAMHI			
Cv_frsB_for_Ndel	gcgcatAIGAGCAAICCCIIIGAIGAT	In vitro studies	
Cv_frsB_rev_Pacl_pCDF	gcgttaattaattaTTTATCATCGCACTCCAT	In vitro studies	
Cv_frsD-His6-N_for_HindIII	cacaagctttgATGGAAATATGGCTGGCG	In vitro studies	
Cv_frsD-His6-N_rev_Xhol	tatctcgagTCAACTCCTGACAGCGTG	In vitro studies	
Cv_frsH-His6-N_for_BamHI	gatggatccATGACCGTATCCGATAAC	In vitro studies	
Cv frsH-His6-N rev Xhol	gatactcgagtTACAGCAGCATGGTTTG	In vitro studies	

Supplementary Figure 4: Gap closure of the C. vaccinii frs BGC. a) PCR-based approach for closing the five potential gaps (1-5) within the gene cluster. Organization of the six contigs with frs identity shown here is based on the frs gene cluster from "Ca. B. crenata". Two additional contigs with frs identity (not shown) couldn't be assigned to a specific position. Binding sites of the respective forward (for) and reverse (rev) primers for each gap are indicated (red triangles). b) Q5-PCRs with the five primer pairs designed for gap closure (Gap1_for/rev to Gap5_for/rev). These experiments were independently repeated at least two times with similar results.

Supplementary Table 2: Annotation of C. vaccinii Frs proteins and closest homologues in the NCBI database (apart from "Ca. B. crenata" Frs proteins), revealed by BLAST searches.

Protein	Functional annotation	Closest homologue (NCBI Accession number)	Similarity/Identity (%/%)
FrsA	Nonribosomal Peptide Synthetase (C-A-T-TE)	WP_048411362. Non-ribosomal peptide synthase [Chromobacterium sp. LK1]	57/41
FrsB	MbtH-like protein	MBC7269998.1 MbtH family protein [Streptomyces sp.]	88/69
FrsC	Phenylpyruvate reductase	NCT40463. malate dehydrogenase [Alpha-proteobacteria bacterium]	65/53
FrsD	Nonribosomal Peptide Synthetase (C-A-T)	WP_184971800.1 amino acid adenylation domain- containing protein [Streptomyces echinatus]	59/46
FrsE	Nonribosomal Peptide Synthetase (C-A-T-E-C-A-MT-T)	WP_162791553.1 non-ribosomal peptide synthase/polyketide synthase [Dyella sp. L4-6]	63/52
FrsF	Nonribosomal Peptide Synthetase (C-A-T-C-A-MT-T)	WP_073766514.1 non-ribosomal peptide synthetase [Streptomyces sp. CB02923]	63/50
FrsG	Nonribosomal Peptide Synthetase (C-A-T-C-A-MT-MT-T-TE)	WP_162791553.1 non-ribosomal peptide synthase/polyketide synthase [Dyella sp. L4-6]	68/55
FrsH	Leucine-ß-hydroxylase	WP_168647361.1 MBL fold metallo-hydrolase [Dyella sp. SG609]	76/65

Supplementary Table 3: Comparison of genes and encoded proteins in the *frs* BGCs. Identities were calculated by using the EMBOSS needle alignment tool (EMBL-EBI).^[2]

gene	<i>C. vaccinii</i> (nt)	" <i>Ca.</i> B crenata" (nt)	Identity nt (%)	C. vaccinii (aa)	<i>"Ca.</i> B crenata" (aa)	ldentity aa (%)
frsA	3819	3768	70	1272	1255	71
frsB	219	219	72	72	72	75
frsC	987	987	68	328	328	72
frsD	3081	3078	70	1026	1025	70
frsE	9051	9048	70	3016	3015	71
frsF	7557	7560	73	2518	2519	75
frsG	9408	9411	72	3135	3136	73
frsH	1596	1599	77	531	532	85

frsA	1	<mark>atga<mark>aaa</mark>acagtga<mark>atcg</mark>ccaatccatcatttt<mark>c</mark>aggc</mark> atcttca <mark>gc</mark> -a <mark>c</mark>	49
frsD	1	atgg <mark>aaa</mark> t <mark>at</mark> g <mark>g</mark> ctggcgcaac	22
frsA	50	<mark>aget</mark> g <mark>gatg</mark> tatggatttet <mark>e</mark> a <mark>gga</mark> agt <mark>tte</mark> a <mark>eegaat</mark> etgeeeaae <mark>aatattgeegagtatetg</mark> a <mark>atet</mark> eg <mark>eegg</mark> et <mark>egttggat</mark> ge <mark>tgga</mark> ttgtttet	149
frsD	23	agct-gatgccggattcgccgaataatattgccgagtatctgcatctttccggtccgttggatccgagtatttttt	98
frsA	150	gc <mark>a</mark> gg <mark>ottt</mark> aa <mark>gccaggtcgo</mark> c <mark>agtgaga</mark> g <mark>cgcggagctgca</mark> ata <mark>caactto</mark> cg <mark>t</mark> cacgatggt <mark>c</mark> -tccag <mark>ttgacc</mark> aagtttcgtcgagatgat	243
frsD	99	ca <mark>a</mark> aa <mark>ccttgcggcaggtcgcgagcgaga-cgccg-gc</mark> at <mark>tgca</mark> ggt <mark>caattt</mark> ttc <mark>c</mark> attgaggatggacggccttgcccggttagccgcgtccat	192
frsA	244	gaagg <mark>et</mark> gggag-ceggac <mark>tteategatgtategaegeaegeggageeggaaeaegeageetgegegeeatgegggagegggtggagaaaeeettegat</mark>	342
frsD	193	gagga <mark>ct-ggagtco</mark> tgat <mark>ttcatcgatgtatcgacgcacggcgagccggaacacgcagccctgcgcgccatgcgggagcgggtggagaaacccttcgat</mark>	291
frsA	343	<pre>ctggcgcgggacgcgttgtttcgctggaccttgatccgcctggccgacgacgccacatcttctgccatgtgtatcaccacatcgcgatggatg</pre>	442
frsD	292	${\tt ctggcgcgggacgcgttgtttcgctggaccttgatccgcctggccgacgacgccacatcttctgccatgtgtatcaccacatcgcgatggatg$	391
frsA	443	$\verb gctatgtgatgctgctgcagcgcatagccgaggtttacggcgcgctgcgggaaggccagccggcaccggcctgcggtttcgccgatgcggatgccatcgt $	542
frsD	392	${\tt gctatgtgatgctgctgcagcgcatagccgaggtttacggcgcgctgcgggaaggccagccggcaccggcctgcggtttcgccgatgcggatgccatcgt$	491
frsA	543	ccgcgaggaagagcgctaccgccagtcggagcagttcgcggtcgaccgggcattctggcaagcgcgctcggccgagctggcgacggcggagccgccgctg	642
frsD	492	ccgcgaggaagagcgctaccgccagtcggagcagttcgcggtcgaccgggcattctggcaagcgcgctcggccgagctggcgacggcggagccgccgctg	591
frsA	643	ccggcggccgatggcccgttcctggcgttcgcccagacggcggtgattccggaagacgcctgcggcgggctgcggatgacggccgagcgggctggggtg	742
frsD	592	ccggcggccgatggcccgttcctggcgttcgcccagacggcggtgattccggaagacgcctgcgggctgcggatgacggccgagcgggctgcggctgggcgtct	691
frsA	743	cccagtcccgtttgctgacagcagccatcgtcgcttatttccatcgctggggcggccagcaagagatcttgttccggctggcggtatcggcggcagcga	842
frsD	692	${\tt cccagtcccgtttgctgacagc} {\tt gg} {\tt ccatcgtcgcttatttccatcgctggggcggccagcaagagatcttgttccggctggcggtatcggcgcgcagcga$	791
frsA	843	tgcgacgcgacacgcgccccggccacctggcgcatgcgttgccgctgctggccagcctgccgcgcgccagtctggccgacatcgcgcgacagctggac	942
frsD	792	tgcgacgcgacacgcgcccggccacctggcgcatgcgttgccgctgctggccagcctgccgccgcgccagtctggccgacatcgcgcgacagctggac	891
frsA	943	ggcgaggtggagcggatgcgtccgcatacccgctatcgggctgaggacatcgtgcgcgaccaggccggtgccggtttggggcgcgggggcgcaggggcctg	1042
frsD	892	ggcgaggtggagcggatgcgtccgcatacccgctatcgggctgaggacatcgtgcgcgaccaggccggtgccggtttggggcgcgggggcgcaggggcctg	991
frsA	1043	${\tt tgatcaacctcatgccttttgcttaccgcttcgagtttggcgcctgtcgcgtggagtccgcccatcagctgaccgtcggcgtgctggacacgctggaagt}$	1142
frsD	992	tgatcaacctcatgccttttgcttaccgcttcgagtttggcgcctgtcgcgtggagtccgcccatcagctgaccgtcggcgtgctggacacgctggaagt	1091
frsA	1143	ggcggtgcacgaccgcaagaacggtgacggcctccacctcgatttgtacgcatccgagcgggtgcccgccc	1242
frsD	1092		1191

		A domain start	
frsA	1243	ctggcccggttcatcgtcgaggcggcggcggagccgtcgcagccggtgtccgacatcgagctgctggacgaggccgagcgccggcaactgctggtcgact 1	1342
frsD	1192	ctggcccggttcatcgtcgaggcggcggcggagccgtcgcagccggtgtccgacatcgagctgctggacgaggccgagcgccggcaactgctggtcgact	1291
frsG	1270	${\tt gcggcggagccgtcgcagccgtgtccgacatcgagctgctggacgaggccgagcgccggcaactgctggtcgact$	1345
frsA	1343	ggaaccgcaccggaccggaccacggccaggccaccttcccgcaactgttcgaaacccaggcggccctcaccccgcacgccgtcgcgctggaaagcccgga	1442
frsD	1292	ggaaccgcaccggaccggaccacggccaggccaccttcccgcaactgttcgaaacccaggcggccctcaccccgcacgccgtcgcgctggaaagcccgga	1391
frsG	1346	ggaaccgcaccggaccggaccacgccaggccaccttcccgcaactgttcgaaacccaggcggccctcaccccgcacgccgtcgcgctggaaagcccgga	1445
frsA	1443	${\tt cgcccggctcagctatgccgaactggacgcccgcgccaaccggctggcgcgccatctgcaaagcctgggcgtcggcgccgacgtgctggtcggcatctgc$	1542
frsD	1392	cgcccggctcagctatgccgaactggacgcccgcgccaaccggctggcgcgccatctgcaaagcctgggcgtcggcgccgacgtggtcggctggct	1491
frsG	1446	cgcccggctcagctatgccgaactggacgcccgcgccaaccggctggcgcgccatctgcaaagcctgggcgtcggcgccgacgtgctggtcggcatctgc	1545
frsA	1543	etggagegetegategaeatggtggtegeggtg <mark>etgggeg</mark> egetgaagteeggeegeetatetgeegetgtegeeggagtaeeeggaaeggaaeggetgg	1642
frsD	1492	ctggagcgctcgatcgacatggtggtcgcggtactgggcgtggcggcgccgcctatctgccgctgtcgccgagtacccgacggaacggctgg	1591
frsG	1546	llllllllllllllllllllllllllllllllllllll	1645
frsA	1643	<pre>cctacatgctgggcgactcgatggcccccgtgctgctgaccgactcggcacaagtcgagcggctgccgtcgtattggggccgggtagtcgaactggaccg</pre>	1742
frsD	1592		1691
frsG	1646	cctacatgctgggcgactcgatggcccccgtgctgctgaccgactcggcacaagtcgagcggctgccgtattggggccgggtagtcgaactggaccg	1745
frsA	1743	getegacetggaegetetgeeggaeagegeeggaaegggegetgegegeegageaeetggeetatgtgatetaeaeeteeggeteeaeeggeeaaeeg	1842
frsD	1692		1791
frsG	1746		1845
frsA	1843		1942
frsD	1792		1891
freG	1846		1945
freð	1040		2042
freD	1902		1001
115D	1040		1991
frað	2042		2045
fraD	1002		2001
frac	2046		2091
115G	2040		2140
IISA	2143		2242
ITSD	2092	gtggtggggggaageetgeeegggegegaeggtggeggeetggteggeeggaeggeggatggtgaegeetaeggteegaeega	2191
frsG	2146	gtggtgggcggggaageetgeeegggegegegeggggggeetggteggegggaeggeggatggtgaaegeetaeggteegaeega	2245
irsA	2243	tgacgatgagegageegetgteeggegaeggegegeegaagetgggeegteegaegaeaaaegegeggetgtaegtgetggatggegegetgeaaetgge	2342
trsD	2192	tgacgatgagcgagccgctgtccggcgacggcgcgccgaagctgggccgtccgacgcacaacgcgcggctgtacgtgctggatggcgcgctgcaactggc	2291
trsG	2246	tgacgatgagcgagccgctgtccggcgacggcgcgcgcagagctgggccgtccgacgcacaacgcgcggctgtacgtgctggatggcgcgctgcaactggc	2345
frsA	2343	gccggtgggggtggcgggcgagctgtacatcgcgggggccgggctggcgcggctatctgaaccggccgg	2442
frsD	2292	gccggtgggggtggcgggcgagctgtacatcgcgggggccgggctggcgcgggctatctgaaccggccgg	2391
frsG	2346	gccggtgggggggggggggggggggggggggggggggg	2445
frsA	2443	<pre>ccgtacggagagggtgagcggctgtaccgcagcggcgacctggcgggtggacggaagaaggcgagctggaatacctgggggcgcagcgaccagcaggtga</pre>	2542
frsD	2392	ccgtacggagagggtgagcggctgtaccgcagcggcgacctggcgggtggacggaagaaggcgagctggaatacctggggcgcagcgaccagcaggtga	2491
frsG	2446	ccgtacggagagggtgagcggctgtaccgcagcggcgacctggcgcggtggacggaagaaggcgagctggaatacctggggcgcagcgaccagcaggtga	2545
frsA	2543	aggtgcggggtttccgtatcgagccgggcgagatcgaagcggtgctgaaccggcatccgcaagtgagccagtcggtggtggtggtggcgcggcagagccaggg	2642
frsD	2492	aggtgcggggtttccgtatcgagccgggcgagatcgaagcggtgctgaaccggcatccgcaagtgagccagtcggtggtggtggcggcagagccaggg	2591
frsG	2546	aggtgcggggtttccgtatcgagccgggcgagatcgaagcggtgctgaaccggcatccgcaagtgagccagtcggtggtggtggcgcggcagagccaggg	2645
frsA	2643	cggcgacagccagttggtggcgtacgtggcggccgtcggcggggtggaggggtcggagctgcggcgcctggcgggggcagctgccggagcacatggtg	2742
frsD	2592	cggcgacagccagttggtggcgtacgtggcggcgtcggcgggggggg	2691
frsG	2646	cggcgacagccagttggtggcgtacgtggcggcggcggcgggggggg	2745

frsA	2743	<pre>ccggcggcggtggtggtggtggtggtggtggtggtgcgcggagttgccgaacgggaagetggaccgcaagtcgctgccggcgccggagtttggcggetcgcattatc</pre>	2842
frsD	2692	$\verb ccggcggcggtggtggtggtggtggtagtggatcgctgccgcagttgccgaacgggaagctggaccgcaagtcgctgccggcggcggagtttggcggctcgcattatc $	2791
frsG	2746	ccggcggtggtggtggtggtggtggtggtggtggtggcgccgc	2845
frsA	2843	ageggeegegeaacgegeaggaaggaaatgetgtgegggetgttegeggaagtgetgga <mark>ea<mark>tgg</mark>agaaggtt<mark>gg</mark>gaggaggaggaeagettettegatetggg</mark>	2942
frsD	2792	agcggccgcgcaacgcgcaggaggaaatgctgtgcgggctgttcgcggaagtgctgga <mark>agtggggga</mark> gc <mark>gt</mark> c <mark>gg</mark> ggatagacggtttcgatctggg	2891
frsG	2846	agcggccgcgcaacgcgcaggaaggaaatgctgtgcgggctgttcgcggaagtgctgga <mark>agtggggga</mark> gc <mark>gt</mark> cgggaatagacgacggt <mark>tcttcgatctggg</mark>	2945
		A domain end	
frsA	2943	<mark>cgggcactcgttgctggcgacgcggctgatc</mark> c <mark>gccgcatccg</mark> c <mark>g</mark> aaa <mark>ccttg</mark> g <mark>atgtggagctgtcgatccgc</mark> g <mark>a</mark> t <mark>ctgttcga</mark> gg <mark>ct-ccctgcgtc</mark> ac	3041
frsD	2892	<mark>cgggcactcgttgctggcgacgcggctgatc</mark> a <mark>gccgcatccg</mark> ggcgg <mark>ccttg</mark> aatgtggagctgc <mark>cgatccgc</mark> cag <mark>ctgttcga</mark> -c <mark>ctgccct</mark> ccgtcgc	2990
frsG	2946	<mark>cgggcactcgttgctggcgacgcggctgatc</mark> a <mark>gccgcatccg</mark> ggcgg <mark>ccttg</mark> a <mark>atgtggagctg</mark> t <mark>cgatccg</mark> gg <mark>a</mark> g <mark>ctgttcga</mark> -ca <mark>tgcc</mark>	3035
frsA	3042	g <mark>ga</mark> a <mark>ctg</mark> <mark>tccc</mark> ggc <mark>ata</mark> t <mark>c</mark> <mark>gccg</mark> aa <mark>ggcggcgacagcaa</mark> g <mark>a-gc</mark> cct <mark>t</mark> atcaagtgttgatgcct	3105
frsD	2991	a <mark>gagetg</mark> ettgaggtte <mark>tece</mark> cca <mark>atace</mark> aaggegetgeeeggeeggeeetgea <mark>geeg</mark> ee <mark>geegeegeeaaca</mark> eg <mark>eegeetgeeeaecaegeageeggeeggeeggeeggeetgeeegeegeeggeeg</mark>	3081
frsA	3106	attcgggccactggcggccgccatcccttgttctgcattcatcccgagggcgggttgggttggagctatatcgggctggct	3205
frsD	3082		3081
frsA	3206	aaccgatctacaccctgcaagcccggggcctggacggcatgtcggagttggctccgtcgattccggatatggctgccgactatatcgagcaaatccgcag	3305
frsD	3082		3081
frsA	3306	cattcagccgaatggcccctatcacttgctgggctggtcgctgggggggg	3405
frsD	3082		3081
frsA	3406	gcgttgctggcaattctggatacgtttccgattgaaatcctgcatgaggcgatgtttggcaagcaa	3505
frsD	3082		3081
frsA	3506	aggaaatgtatttgatgccgatcgaggaggcccgattgaagagcatgtatctgatcggtctcaaccatatgaagatcactgcggccttttcctcctctca	3605
frsD	3082		3081
frsA	3606	$\tt ttatggtggcgatttgctgctatttcgctccttgattccatatgccgaagacgcgctgatgccagaggcggatacatggcagccttatttgtctggccaa$	3705
frsD	3082		3081
frsA	3706	ttggaagttcatgacatcgagtgcacacatatggacatgatgcaaagagatgttttgaaaataattggtcctgttctcgagtcgaagttgtctgtc	3805
frsD	3082		3081
frsA	3806	ctgtcaagcaataa 3819	
frsD	3082	3081	

Supplementary Figure 5: Emboss Needle Alignment of *frsA* and *frsD* and the A domain encoding sequence of *frsG* (bp 1270-3035) in *C. vaccinii*. Identical base pairs are highlighted in yellow.

FrsA	1	MKNSESPIHHFQASSAQLDV <mark>N</mark> IS <mark>Q</mark> EVS <mark>P</mark> NL <mark>PNNIAEYL</mark> NLAGSLDAGLFLQALS <u>QVASE</u> SAELQYNFRHDGLQLTKFRRDDEGWEPDFIDVSTHGEPEHA	100
FrsD	1	MEIWLAQQLMPDSPNNIAEYLHLSGPLDPDLFFKTLRQVASETPALQVNFSIEDGRPCPVSRVHEDWSPDFIDVSTHGEPEHA	83
FrsA	101	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	200
FrsD	84	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	183
FrsA	201	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	300
FrsD	184	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	283
FrsA	301	$\label{eq:prasladiar_out} PPRASLADIAR_OLDGEVERMRPHTRYRAEDIVRDQAGAGLGRGAQGPVINLMPFAYRFEFGACRVESAH_OLTVGVLDTLEVAVHDRKNGDGLHLDLYASE$	400
FrsD	284	PPRASLADIARQLDGEVERMRPHTRYRAEDIVRDQAGAGLGRGAQGPVINLMPFAYRFEFGACRVESAHQLTVGVLDTLEVAVHDRKNGDGLHLDLYASE	383
FrsA	401	$\label{eq:response} RGCPPEPLRRHALRLARFIVEAAAEPSQPVSDIELLDEAERRQLLVDWNRTGPDHGQATFPQLFETQAALTPHAVALESPDARLSYAELDARANRLARHL$	500
FrsD	384	$\label{eq:result} RGCPPEPLRRHALRLARFIVEAAAEPSQPVSDIELLDEAERRQLLVDWNRTGPDHGQATFPQLFETQAALTPHAVALESPDARLSYAELDARANRLARHL$	483
FrsA	501	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	600
FrsD	484	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	583
FrsA	601	${\tt LAYVIYTSGSTGQPKGVAVSHAGLAGLAGSQTERFALQGPTRVLQFASLSFDAAVMEMLMAFCSGGRLVLPAAGPLLGEQLLDTLNRHEISHALISPSAL$	700
FrsD	584	LAYVIYTSGSTGQPKGVAVSHAGLAGLAGSQTERFALQGPTRVLQFASLSFDAAVMEMLMAFCSGGRLVLPAAGPLLGEQLLDTLNRHEISHALISPSALGEACTION CONTRACTOR CONT	683
FrsA	701	${\tt STADAALAPVLRTLVVGGEACPGATVAAWSAGRRMVNAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIAGAGLARGY}$	800
FrsD	684	${\tt STADAALAPVLRTLVVGGEACPGATVAAWSAGRRMVNAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIAGAGLARGY}$	783
FrsA	801	$\label{eq:linear} LNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGFRIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGGVEGSE$	900
FrsD	784	$\label{eq:linear} LNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGFRIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGGVEGSE$	883
FrsA	901	LRRLAAGQLPEHMVPAAVVVLESLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEMLCGLFAEVLDMEK <mark>VG</mark> RG <mark>DSFFDLGGHSLLATRLI</mark> RRIRETLD <mark>V</mark>	1000
FrsD	884	LRRLAAGQLPEHMVPAAVVVLESLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEMLCGLFAEVLEVGS <mark>VG</mark> ID <mark>DSFFDLGGHSLLATRLI</mark> S <mark>RIR</mark> AA <mark>L</mark> N <mark>V</mark>	983
FrsA	1001	ELSIRDLFEAPCVTELSRHIAEGGDSKSPYQVLMPIRATGGRHPLFCIHPEGGLGWSYIGLALHLDHEQPIYTLQARGLDGMSELAPSIPDMA	1093
FrsD	984	ELPIRQLFDLPSVAELLEVLPQYQGAARPALQPRRRQQHAVRS*	1027
FrsA	1094	ADYIEQIRSIQPNGPYHLLGWSLGGVIAQEVAVQLERVGEKTALLAILDTFPIEILHEAMFGKQACAYDLFARVVQEMYLMPIEEARLKSMYLIGLNHMK	1193
FrsD	1028		1027
FrsA	1194	ITAAFSSSHYGGDLLLFRSLIPYAEDALMPEADTWQPYLSGQLEVHDIECTHMDMMQRDVLKIIGPVLESKLSVTAVKQ* 1273	
FrsD	1028	1027	

Supplementary Figure 6: Emboss Needle Alignment of FrsA and FrsD in *C. vaccinii*. Identical amino acids are highlighted in yellow.

Establishment of Knock-out System in *C. vaccinii* and Creation of Mutant Strains

Construction of the frsA and vioA knock-out vectors

At first, a classical multiple cloning procedure (sequential cloning) was used to generate the C. vaccinii MWU205 $\Delta frsA$ mutant. Later, a more elaborate method, based on Gibson assembly (one step cloning) was employed to delete vioA (Supplementary Fig. 7). For both approaches, the upstream (up) and downstream (dn) DNA sequences of the respective genes (ca. 1.1 kb for frsA and ca. 0.4 kb for vioA) were amplified by Q5 PCR with suitable primers (Supplementary Table 1). In addition the 1.8 kb FRT cassette (Gem^R Gfp⁺) (FRT) from pPS858^[3] was amplified by Q5 PCR. All PCR reactions were prepared in a 25 µL scale as described above with either 2-22 ng C. vaccinii MWU205 gDNA (frsA and vioA up- and downstream) or 0.5-4.5 ng pPS858 (FRT) as template. The fragments for sequential cloning were then cloned into pUC19^[4] in a directional manner in the following order: FRT > frsA-up > frsA-dn. For this, standard restriction/ligation based cloning techniques were used. The insert of the resulting plasmid pUC19:: \Delta frsA, consisting of all three fragments, was then subcloned into pEX18Tc by using the flanking restriction sites for Sacl and Sphl. This yielded the final knock-out vector pEX18TC::Δ*frsA*. In contrast, the one step cloning approach followed the protocol of Gibson et al.^[5] For this, a reaction mixture (20 µL scale) containing 4.5 nM of the PCR amplified inserts (FRT, vioA-up, vioA-dn), 1.375 nM BamHI linearized pEX18Tc, 0.0054 U/µL T5 exonuclease (NEB), 0.034 U/µL Phusion polymerase (NEB), 5.4 U/µL Tag DNA ligase (NEB) and 1x ISO buffer (10 mM MgCl₂, 200 µM deoxynucleotide triphosphates, 10 mM DTT, 5% (w/v) PEG-8000, 1 mM NAD, 100 mM Tris-HCl pH 7.5) was set up. This mixture was then incubated at 50 °C for 1 h. 5 µL of this reaction mixture were then transformed into chemically competent E. coli NEB Turbo cells (NEB). Positive clones were initially identified by colony PCR. For this, screening reactions were performed in a 25 µL scale with 1x GoTaq reaction buffer with 1.5 mM MgCl₂, 4% DMSO, 200 µM dNTP, 100 nM of forward and reverse primer, DNA template (bacterial suspension in water) and GoTaq G2 DNA polymerase (0.025 U/µL, Promega). Plasmids from positive clones were then verified by restriction digest analysis as well as terminal-end Sanger sequencing. This yielded the final knock-out vector pEX18Tc:: $\Delta vioA$.

Supplementary Figure 7: Schematic representation of the deletion strategy used for *frsA* and *vioA*. This involves the construction of the knock-out vectors pEX18Tc::*frsA*-KO (sequential cloning) and pEX18Tc::*vioA*-KO (Gibson assembly) (upper half) and their use for generation of the *C. vaccinii* Δ *frsA* and Δ *vioA* deletion mutants (lower half). This involves 1. Transfer of the knock-out vectors by triparental conjugation, 2. Exchange of the targeted gene with the *FRT* cassette (*aacC1* and *gfp* flanked by two *frt* sites) by homologous recombination, 3. Selection for an exchange by double homologous recombination as well as loss of the knock-out vector and 4. Removal of the *FRT* cassette by Flp-mediated site-specific recombination between the two *frt* sites. Restriction enzyme cutting sites used for cloning as well as overhangs necessary for Gibson assembly (Gib) are indicated. For further details see respective sections in manuscript and Materials and Methods. (Δ *xxxY*::FRT = deleted gene with integrated FRT cassette; Δ *xxxY* = deleted gene with scar; Amp^R = Ampicillin resistant; Gem^R / Gem^S = Gentamicin resistant / sensitive; Suc⁺ / Suc⁻ = Sucrose unsusceptible / susceptible).

Preparation of knockout mutants

Transfer of pEX18Tc::ΔfrsA or pEX18Tc::ΔvioA into C. vaccinii MWU205 occurred by triparental conjugation employing E. coli NEBTurbo harboring one of the knockout vectors and the conjugational helper strain E. coli ET12567 pUB307. All three strains were grown in 15 mL LB at 30 °C, 220 rpm to an OD600 of 0.4 - 0.6. Cells were then washed two times with 10 mL LB to remove any antibiotics and were finally resuspended in an appropriate amount of LB. The resulting suspensions were then mixed in a 3:1 ratio of donor strains and acceptor strain (600 μL *E. coli* NEBTurbo with pEX18Tc::Δ*frsA* or pEX18Tc::ΔvioA, 600 μL E. coli ET12567 pUB307, 200 μL C. vaccinii MWU205), centrifuged (2 min, 9,000 rpm, RT) and the pellet resuspended in a small part of the supernatant (ca. 100 µL). This mixture was applied to a LB agar plate without antibiotics in the form of a 'puddle'. After drying, the plate was incubated for 24 h at 30 °C. On the next day, the resulting cell layer was scraped off and resuspended in 1 mL LB without NaCI (NS-LB). The suspension was then plated on NS-LB agar containing Amp200. Gem30 and 15% sucrose (w/v) and the plates were incubated for 60-72 h at 25 °C. Resulting clones were screened for a successful double homologous recombination event by colony PCR as described above. Three positive clones were then further tested for an integration of the FRT cassette at the right genomic locus. For this, the respective regions were amplified by Q5 PCR with primers binding outside the sequences used for construction of the knockout vectors (Supplementary Table 1, Supplementary Fig. 8a). All PCR reactions were prepared in a 25 µL scale with 75 - 200 ng of C. vaccinii MWU205 mutant gDNA as template as described above. Resulting PCR products which showed the expected size difference (minus 1,897 bp for $\Delta frsA$::FRT, plus 879 bp for $\Delta vioA$::FRT) compared to the wild type (6,144 bp for frsA, 2,043 bp for vioA) (Supplementary Fig. 8b), were purified and applied to terminalend Sanger sequencing along with the primers used for amplification. As pUB307 is a self-transferable helper plasmid, all correct clones were routinely tested for the loss of pUB307 by plating them on kanamycin and tetracycline. Only clones, who failed to grow on either antibiotic, were considered for further usage as this indicates a loss of the plasmid. Alternatively, cells were cured from pUB307 by growing them in LB supplemented with 5 % (w/v) SDS at 30 °C for 24-48 h and replating them on selective agar. To remove the FRT cassette from the genome of the C. vaccinii ΔfrsA::FRT or $\Delta vioA$::FRT deletion mutants, the genes *flp* and *sacB* from pFlp2^[3] were introduced into the broad host vector pBMTL-2^[6] as described by Wang et al.^[7] The resulting vector pBMTL-2::*flp-sacB* was then transferred to the deletion mutants by electroporation following the protocol established for Chromobacterium violaceum.^[8] After the transformation clones were grown overnight at 30 °C, which has been shown to be sufficient for FRT removal by Flp mediated site specific recombination.^[3] Positive clones that lost the FRT cassette were identified by colony PCR and plated on NS-LB with Amp200 and 15% sucrose (w/v) to remove the pBMTL-2:: flp plasmid. Loss of the plasmid was then confirmed by colony PCR as well as testing the clones for kanamycin susceptibility. To verify modification of the correct genomic locus, three clones were further investigated by Q5 PCR as described above. In this case, removal of the FRT cassette was indicated by the formation of a smaller

PCR product (loss of 1,725 bp) compared to the mutants with FRT cassette. The mutants verified in this manner were termed *C. vaccinii* MWU205 Δ *frsA* and *C. vaccinii* MWU205 Δ *vioA*, respectively. The double mutant *C. vaccinii* MWU205 Δ *frsA*/ Δ *vioA* was constructed as described above by using *C. vaccinii* MWU205 Δ *frsA* as starting strain. Mutant strains were grown and extracted analogous to the wild type strain (see above).

Supplementary Figure 8: Verification of *C. vaccinii* **deletion mutants.** a) PCR-based genotype verification applied during the construction of markerless *C. vaccinii* deletion mutants. All primers used for amplification (for/rev) bind to the regions outside the sequences used for knock-out vector construction (Up/Dn), which are shown here in red. This ensures a modification at the right locus. b) Q5-PCR of the *C. vaccinii* wild type as well as the different deletion mutants ($\Delta frsA::FRT$, $\Delta frsA$, $\Delta vioA::FRT$, $\Delta vioA$) with the respective verification primers (PCR-frsA_for/rev or PCR-vioA_for/rev). PCRs performed with the same primer pairs for the *C. vaccinii* $\Delta frsA/\Delta vioA$ double mutant yielded identical results as for the single knock-out mutants. ($\Delta xxxY::FRT$ = deleted gene with integrated FRT cassette; $\Delta xxxY$ = deleted gene with scar). These experiments were independently repeated at least three times with similar results.

Structure elucidation of FR-Core (2)

Supplementary Figure 9: Chemical structure of FR-Core (2). Carbon atoms are numbered.

Supplementary Table 4: ¹H and ¹³C NMR spectroscopic data of **2** (see Supplementary Figure 9) in acetonitrile d_3 (¹H: 600 MHz; ¹³C: 150 MHz).

Residue ^[a]	No C/H	δ _c , mult	δ _H (<i>J</i> [Hz])
Ala	1	172.5, C	-
	2	44.3, CH	5.11 (dq, 9.1, 6.7)
	2-NH	_	7.12 (d, 9.1)
	3	16.7, CH₃	1.19 (d, 6.7)
<i>N</i> -Me-Dha	4	162.2, C	-
	5	142.1, C	-
	6a	122.8, CH ₂	a 5.62 (br s)
	6b	_	b 3.60 (br s)
	7	36.6, CH ₃	2.89 (s)
Pla	8	168.5, C	-
	9	71.6, CH	5.56 (dd, 4.3, 10.5)
	10a	38.5, CH ₂	a 3.15 (dd, 4.3, 12.5)
	10b	-	b 3.10 (dd, 10.5, 12.5)
	11	136.3, C	-
	12/16	130.5, CH	7.24 ^[b]
	13/15	128.9, CH	7.29 ^[b]
	14	127.5, CH	7.27 ^[b]
<i>N</i> -Ac-β-OH-Leu	17	169.7, C	-
	18	53.1, CH	4.91 (dd, 2.2, 9.6)
	18-NH	-	6.88, (d, 9,6)
	19	78.3, CH	5.41 (br d, 10.0)
	20	30.4, CH	1.79 (m)
	21	18.6, CH₃	0.83 (d, 6.8)
	22	18.1, CH ₃	0.87 (d, 6.8)
	23	170.5, C	_

	24	22.4, CH ₃	2.02 (s)
N,O-Me ₂ -Thr	25	168.1, C	-
	26	67.9, CH	3.55 (d, 9.8)
	27	74.1, CH	3.95 (dq, 9.8, 5.9)
	28	17.8, CH ₃	1.26 (d, 5.9)
	29	40.0, CH ₃	3.23 (s)
	30	56.5, CH ₃	3.27 (s)
β-OH-Leu	31	170.5, C	-
	32	50.3, CH	4.95 (dd, 6.9, 10.4)
	32-NH		6.94, (d, 10.4)
	32-NH 33	77.1, CH	6.94, (d, 10.4) 3.42 (br t, 5.8)
	32-NH 33 34	77.1, CH 28.8, CH	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m)
	32-NH 33 34 35	77.1, CH 28.8, CH 20.3, CH₃	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m) 1.02 (d, 6.7)
	32-NH 33 34 35 36	77.1, CH 28.8, CH 20.3, CH ₃ 15.6, CH ₃	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m) 1.02 (d, 6.7) 0.93 (d, 6.7)
<i>N</i> -Me-Ala	32-NH 33 34 35 36 37	77.1, CH 28.8, CH 20.3, CH₃ 15.6, CH₃ 169.6, C	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m) 1.02 (d, 6.7) 0.93 (d, 6.7)
<i>N-</i> Me-Ala	32-NH 33 34 35 36 37 38	 77.1, CH 28.8, CH 20.3, CH₃ 15.6, CH₃ 169.6, C 61.4, CH 	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m) 1.02 (d, 6.7) 0.93 (d, 6.7) - 3.61 (q, 6.7)
<i>N</i> -Me-Ala	32-NH 33 34 35 36 37 38 39	 77.1, CH 28.8, CH 20.3, CH₃ 15.6, CH₃ 169.6, C 61.4, CH 12.3, CH₃ 	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m) 1.02 (d, 6.7) 0.93 (d, 6.7) - 3.61 (q, 6.7) 1.38 (d, 6.7)
<i>N</i> -Me-Ala	32-NH 33 34 35 36 37 38 39 40	77.1, CH 28.8, CH 20.3, CH ₃ 15.6, CH ₃ 169.6, C 61.4, CH 12.3, CH ₃ 38.0, CH ₃	6.94, (d, 10.4) 3.42 (br t, 5.8) 1.93 (m) 1.02 (d, 6.7) 0.93 (d, 6.7) - 3.61 (q, 6.7) 1.38 (d, 6.7) 3.17 (s)

[a] Residues: Ala = alanine, N-Me-Dha = N-methyldehydroalanine, Pla = 3-phenyllactic acid, N-Ac- β -OH-Leu= N-acetyl-3-hydroxyleucine, N, O-Me₂-Thr = N, O-dimethylthreonine, β -OH-Leu = 3-hydroxyleucine, N-Me-Ala = N-methylalanine,. [b] overlapping resonances.

Supplementary Figure 10: ¹H NMR spectrum of compound **2** in acetonitrile-*d*₃(600 MHz).

Supplementary Figure 11: ¹³C NMR spectrum of compound 2 in acetonitrile- d_3 (150 MHz).

Supplementary Figure 12: ¹H-¹H COSY NMR spectrum of compound **2** in acetonitrile- d_3 (600 MHz).

Supplementary Figure 13: ¹H-¹³C HSQC NMR spectrum of compound **2** in acetonitrile-*d*₃ (600 MHz).

Supplementary Figure 14: ¹H-¹³C HMBC NMR spectrum of compound **2** in acetonitrile- d_3 (600 MHz).

Supplementary Figure 15: ¹H-¹H ROESY NMR spectrum of compound **2** in acetonitrile- d_3 (600 MHz)

In vitro Characterization of NRPS Domains and FrsH

Supplementary Figure 16: a) SDS-PAGE gel of FrsA, FrsD and FrsH constructs. FrsA and FrsD were always coexpressed with the MbtH-like protein FrsB (not visible on the a) gel), which was crucial for solubility and activity of the NRPS proteins. These experiments were independently repeated at least three times with similar results. **b) SDS-PAGE gel of coexpressed FrsA and FrsB.** The FrsB, expressed without His₆-tag, coelutes in approximately 1:1 molar ratio with FrsA and is visible in SDS buffer systems for small proteins, Size FrsB: 8.12 kDa. These experiments were independently repeated at least three times with similar results.

Supplementary Figure 17: ¹⁸O₄-ATP exchange adenylation assay results for FrsA and FrsD, both coexpressed with FrsB. Data are presented as mean values ± SD. All experiments were performed in triplicate.

Supplementary Figure 18: Absorption spectra of FrsH. The iron cluster is visible as a broad feature between 300 – 400 nm in the ferrous state. Reduction to the ferric state diminishes the feature.

Supplementary Figure 19: EIC (*m*/*z* = 202.108) showing production of **5**. i) **5**, 1 μ g/mL. ii) Enzymatic assay with purified FrsA_{CAT}/FrsB, FrsH, incubated with D-Leu and propionyl-CoA, hydrolyzed with KOH. iii) Enzymatic assay with L-lle v) negative control with heat inactivated proteins.

Chemical synthesis of compounds 5 and 6

General Procedures

Thin-layer chromatography was carried out on Merck (Darmstadt, Germany) aluminium sheets, silica gel 60 F254. Detection was performed with UV light at 254 nm. Preparative column chromatography was performed on Merck silica gel (0.063-0.200 mm, 60 Å). Melting points were determined on a Büchi (Essen, Germany) 510 oil bath apparatus. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker Avance DRX 500. Chemical shifts δ are given in ppm referring to the signal centre using the solvent peaks for reference: DMSO-*d*₆ 2.49/39.7 ppm. LC-MS analyses were carried out on an API2000 (Applied Biosystems, Darmstadt, Germany) mass spectrometer coupled to an Agilent (Santa Clara, CA, USA) 1100 LC system using a EC50/2 Nucleodur C18 Gravity column (Macherey-Nagel, Düren, Germany; 50 × 2.0 mm, particle size 3 µm). Purity of the compounds was determined using the diode array detector (DAD) of the LC-MS instrument between 200 and 400 nm. HRMS were recorded on a microTOF-Q (Bruker, Köln, Germany) mass spectrometer connected to a Dionex (Thermo Scientific, Braunschweig, Germany) Ultimate 3000 LC via an ESI interface using a Nucleodur C₁₈ Gravity column (50 × 2.0 mm I.D., 3 µm, Macherey-Nagel, Düren, Germany).

(2S,3R)-3-Hydroxy-4-methyl-2-propionamidopentanoic acid (5).

A stirred solution of propanoic acid (370 mg, 5.00 mmol) and *N*-methylmorpholine (506 mg, 5.00 mmol) in THF (8.6 mL) was cooled to -10 °C. Isobutyl chloroformate (683 mg, 5.00 mmol) was added and the reaction was allowed to stir for 0.5 h. The temperature was adjusted to 0 °C, followed by treatment with (2*S*,3*R*)-2-amino-3-hydroxy-4-methylpentanoic acid (1.10 g, 7.50 mmol) in 1 M NaOH (5.2 mL). Since excess of base was avoided, racemization was prevented After stirring the reaction for further 24 h at room temperature, the mixture was diluted with H₂O (16 mL) and washed with ethyl acetate (2 × 16 mL). The combined ethyl acetate layer was extracted with sat. aq. NaHCO₃ solution (3 × 16 mL). All aqueous layers were combined, adjusted to pH ~2 by adding 1 M HCl and extracted with ethyl acetate (3 × 32 mL). This combined organic layer was dried over Na₂SO₄, filtered and evaporated to dryness. The crude residue was purified by column chromatography on silica gel using a gradient of petroleum ether/ethyl acetate (1:1) + 1% AcOH to 100% ethylacetate + 1% AcOH to give a white solid (762 mg, 75%); mp 104–106 °C.

¹H NMR (500 MHz, DMSO-*d*₆) δ 0.77 (d, ³*J* = 6.7 Hz, 3H) and 0.90 (d, ³*J* = 6.6 Hz, 3H, CH(CH₃)₂), 0.98 (t, ³*J* = 7.6 Hz, 3H, CH₂CH₃), 1.50 – 1.58 (m, 1H, CH(CH₃)₂), 2.12 – 2.20 (m, 2H, CH₂), 3.50 (dd, ³*J* = 8.7 Hz, ³*J* = 2.8 Hz, 1H, CH-OH), 4.40 (dd, ³*J* = 9.1 Hz, ³*J* = 2.8 Hz, 1H, CH-NH), 7.53 (d, ³*J* = 9.1 Hz, 1H, NH). Two proton signals (CO₂H, OH) do not appear. ¹³C NMR (125 MHz, DMSO-*d*₆) δ 10.08 (CH₂CH₃), 19.12, 19.21 (CH(CH₃)₂), 28.48 (CH(CH₃)₂), 30.92 (CH₂CH₃), 54.54 (CHNH), 76.18 (CHOH), 173.09, 173.30 (CO₂H, CONH). LC-MS (ESI) (90% H₂O to 100% MeOH in 10 min, then 100% MeOH for 10 min, DAD 196–400 nm), *m/z* = 204.0 ([M+H]⁺).

(2S,3R)-S-2-Acetamidoethyl 3-hydroxy-4-methyl-2-propionamidopentanethioate (6).

(2S,3R)-3-Hydroxy-4-methyl-2-propionamidopentanoic acid (**5**, 610 mg, 3.00 mmol) was dissolved in anhydrous acetonitrile (120 mL) under nitrogen atmosphere. A solution of DCC (650 mg, 3.15 mmol) and HOBt × H₂O (482 mg, 3.15 mmol) in acetonitrile (120 mL) was slowly added, followed by *N*acetylcysteamine (375 mg, 3.15 mmol). The reaction mixture was stirred at room temperature for 24 h. Subsequently, the urea was filtered off and the filtrate was evaporated to dryness. The crude residue was purified by preparative column chromatography using ethyl acetate/MeOH (9:1) as eluent to obtain clear oil (82 mg, 9%).

¹H NMR (500 MHz, DMSO-*d*₆) δ 0.74 (d, ³*J* = 6.7 Hz, 3H) and 0.90 (d, ³*J* = 6.6 Hz, 3H, CH(CH₃)₂), 1.02 (t, ³*J* = 7.6 Hz, 3H, CH₂CH₃), 1.53 – 1.61 (m, 1H, CH(CH₃)₂), 1.78 (s, 3H, COCH₃), 2.26 (q, ³*J* = 7.6 Hz, 2H, CH₂CH₃), 2.79 – 2.89 (m, 2H, CH₂S), 3.08 – 3.19 (m, 2H, NHCH₂), 3.59 (ddd, ³*J* = 9.1 Hz, ³*J* = 6.9 Hz, ³*J* = 2.4 Hz, 1H, CHOH), 4.54 (dd, ³*J* = 8.9 Hz, ³*J* = 2.4 Hz, 1H, CHNH), 5.01 (d, ³*J* = 6.9 Hz, 1H, OH), 7.98 (t, ³*J* = 5.7 Hz, 1H, NHCH₂), 8.08 (d, ³*J* = 8.9 Hz, 1H, CHNH). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 9.90 (CH₂CH₃), 18.83, 19.17 (CH(CH₃)₂), 22.66 (CH₃CO), 27.99 (SCH₂), 28.39 (CH(CH₃)₂), 30.99 (CH₂CH₃), 38.24 (NHCH₂), 61.53 (CHNH), 76.00 (CHOH), 169.44 (H₃CCONH), 174.03 (CH₂CONH), 201.86 (COS). LC-MS (ESI) (90% H₂O to 100% MeOH in 10 min, then 100% MeOH for 10 min, DAD 220–400 nm), *m*/*z* = 305.0 ([M+H]⁺). HRMS, calcd. for C₁₃H₂₄N₂O₄S: [M+H]⁺ *m*/*z* 305.1530; found: 305.1544.

Supplementary Figure 20: Synthesis of the *N*-Pp-Hle SNAC thioester **6**. Reagents and conditions: (a) propanoic acid, CICO₂*i*-Bu, NMM, THF, 1M NaOH, -10 °C (0.5 h) to rt (24 h); (b) N-acetylcysteamine, DCC, HOBt × H₂O, MeCN, rt, 24 h, N₂.

Supplementary Figure 21: ¹H NMR spectrum of compound **5** in DMSO-*d*₆ (500 MHz).

Supplementary Figure 22: ¹³C NMR spectrum of compound **5** in DMSO- d_6 (125 MHz).

Supplementary Figure 23: ¹H NMR spectrum of compound **6** in DMSO-*d*₆ (500 MHz).

Supplementary Figure 24: ¹³C NMR spectrum of compound **6** in DMSO-*d*₆ (125 MHz).

Structure Elucidation of FR-5 (7)

Supplementary Figure 25: MS/MS spectra of 1 (m/z: 1002.54) and 7 (m/z: 1016.55). From m/z: 799.42 (loss of side chain, and loss of H₂O, see Ref. 9), the compounds have the same fragmentation pattern, indicating, that the methylation of FR (M+14 Da) is in the side chain and stems most likely from the incorporation of a butyryl group from the precursor butyryl-CoA instead of the propionyl residue in FR.

Supplementary Figure 26: Chemical structure of FR-5 (7). Carbon atoms are numbered.

Residue ^[c]	No C/H ^[b]	δ _{c^[a], mult}	δ _H ^[a] (mult, <i>J</i> in Hz)	COSY	НМВС
Ala	1	172.5, C	_		
	2	45.7, CH	4.90 (m)	3, 2-NH	1, 3, 4
	2-NH	_	8.53 (d, 9.1)	2	2, 4
	3	18.0, CH₃	1.38 (d, 6.7)	2	1, 2
<i>N</i> -MeDha	4	163.9, C	-		
	5	145.3, C	-		_
	6	106.7, CH ₂	a 5.31 (brs)	6b	5
	7		b 5.07 (brs)	6a	5
D DIe	/	36.2, CH ₃	3.13 (S)		5, 8
D-Fla	0	72 6 CH	- 5.20 (dd 1.2, 8.3)	10a 10b	8 10 17
	10	36.6 CH	a 3 08 (dd 4 2 14 8)	9 10b	9 11 12/16
	10	-	b 2.97 (dd, 8.3, 14.8)	10a	9, 11, 12/16
	11	136.0, C	_		-, -, -,
	12/16	129.6, CH	7.24 ^[d]	13/15	10, 14
	13/15	128.6, CH	7.27 ^[d]	14, 12/16	11
	14	126.9, CH	7.23 ^[d]	13/15	12/16
N-Ac-β-	17	169.2, C	-		
OH-Leu	18	50.3, CH	5.24 (brd, 10.0)	18-NH, 19	17, 19
	18-NH	- 77 7 CH	7.55, (d, 10,0)	18	18, 23
	19	77.7, C⊓ 28.8, CH	5.10 (DIG, 10.0)	10, 20	20, 25
	20	18 9 CH	1.00 (III) 1.01 (d. 6.8)	20	20.22
	22	18.8 CH ₂	0.85 (d, 6.8)	20	20, 22
	23	171.4. C	–	20	20, 21
	24	22.5, CH ₃	2.21 (s)		23
N-MeThr(OMe)	25	166.5 C	_		
	26	64.4, CH	4.05 (d, 9.6)	27	25
	27	72.3, CH	3.74 (m)	26, 28	26, 28
	28	16.3, CH ₃	1.16 (d, 5.8)	27	26, 27
	29	28.7, CH ₃	2.68 (s)		26, 31
	30	57.2, CH ₃	3.40 (S)		21
p-On-Leu	32	46.6 CH	- 5 35 (d. 9 9)	32-NH 33	31 33
	32-NH	40.0, 011	6.74 (d, 9.9)	32	32 37
	33	77.0, CH	5.30, (d, 10.0)	32, 34	41
	34	30.5, CH	1.70 (m)	33, 35, 36	35, 36
	35	19.4, CH₃	1.08 (d, 6.7)	34	33, 34, 36
	36	18.3, CH₃	0.82 (d, 6.7)	34	33, 34, 35
<i>N</i> -MeAla	37	169.9, C			
	38	56.4, CH	4.70 (q, 6.8)	39	37, 39
	39	14.3, CH ₃	1.37 (d, 6.8)	38	37, 38
M-But-B-	40 41	170 2 C	2.87 (\$)		1, 30
OH-Leu	47	56 8 CH	- 4 55 (brd 7 8)	42-NH	41
OTTECU	42-NH	-	7 17 (d 7 8)	42	42 47
	43	78.2, CH	3.71 (m)	43-OH, 44	41, 44
	43-OH	_	6.87 (d, 4.2)	43	
	44	30.0, CH	1.96 (m)	43, 45, 46	45, 46
	45	20.5, CH₃	1.15 (6.7)	44	43, 44, 46
	46	18.5, CH₃	0.85 (d, 6.7)	44	43, 44, 45
	47	173.9, C	-	40	
	48	37.4, CH ₂	2.4/, m	49	50
	49 50	13.1, CH2	1.00, M 0.05 (t. 7.5)	40, 5U 40	
	50	13.0, 013	0.85 (1, 7.5)	43	40, 49

Supplementary Table 5: ¹H and ¹³C NMR spectroscopic data of compound **7** in CDCl₃ (¹H: 300 MHz; ¹³C: 75 MHz).

[**a**]Assignments are based on extensive 1D and 2D NMR measurements (HMBC, HSQC, COSY). ¹³C-NMR spectra were recorded at 75 MHz. [**b**]Numbers according to Supplementary Figure 24. [**c**] Residues: Ala = alanine, *N*-MeDha = *N*-methyldehydroalanine, D-Pla = D-3-phenyllactic acid, *N*-Ac- β -OH-Leu = *N*-acetylhydroxyleucine, *N*-MeThr(OMe) = *N*,O-dimethylthreonine, β -OH-Leu = β -hydroxyleucine, *N*-MeAla = *N*-methylalanine, *N*-But- β -OH-Leu = *N*-butyryl- β -hydroxyleucine.[d] overlaying resonances

Supplementary Figure 27: ¹H NMR spectrum of compound 7 in CDCl₃ (300 MHz).

Supplementary Figure 28: ¹³C NMR spectrum of compound 7 in CDCI₃ (75 MHz).

Supplementary Figure 29: ¹H-¹H COSY NMR spectrum of compound 7 in CDCl₃ (300 MHz).

Supplementary Figure 30: ¹H-¹³C HSQC NMR spectrum of compound 7 in CDCl₃ (300 MHz).

Supplementary Figure 31: ¹H-¹³C HMBC NMR spectrum of compound 7 in CDCl₃ (300 MHz).

Gq Inhibition Assays

Supplementary Figure 32: CRISPR-Cas9 HEK293 Gaq/Ga11-null cells were unresponsive to carbachol. DMR analysis of whole cell responses evoked by epidermal growth factor (EGF, as viability control) and carbachol (CCh), which activates Gaq-sensitive endogenous muscarinic M3 receptors at the indicated concentrations in CRISPR-Cas9 genome-edited HEK293 cells that lack functional alleles for Gaq and Ga11. Shown are real-time measurements (mean + s.e.m., technical triplicates) representative of three such experiments.

Supplementary Figure 33: Pharmacological characterization of FR-Core and FR-5 on G α q-mediated signaling. Concentration-dependent inhibition of cell responses induced with carbachol (CCh) [100 μ M] by FR, FR-Core and FR-5 in HEK293 G α q/G α 11-null cells transfected to express wild type G α q. Data shown are representative real-time recordings (mean + s.e.m., technical triplicates) of at least four independent experiments.

Supplementary Table 6: Quantification of FR, FR-Core and FR-5 inhibitory activities at wild type $G\alpha q$ in HEK $G\alpha q/G\alpha 11$ -null cells. IC₅₀ values were determined by nonlinear regression on concentration-effect data and represent the mean of 'n' independent biological replicates performed as technical triplicates.

#	plC₅₀± s.e.m.	IC ₅₀ [μΜ]	n
FR (1)	6.34±0.03	0.45	11
FR-Core (2)	5.13±0.04	7.34	4
FR-5 (7)	5.50±0.06	3.18	4

Bioinformatic Analyses on frs BGC and FrsA domains

Supplementary Figure 34: Histogram displaying distances of 239,899 BGC relative to *frs* revealed by a BiG-SliCE analysis.^[10] X-axis displays distance, y-axis number of BGCs. BGCs marked in red (up to d=1400) were selected for a more detailed BiG-SCAPE analysis.^[11]

Supplementary Table 7: Databank accession numbers and source organisms of protein sequences used for phylogenetic analyses of C_{starter} domains. Related to Fig. 5c and Supplementary Fig. 35.

Accession	Organiam	Accession	Organiam
Accession	Organism	Accession	Organism
MT876545	Chromobacterium vaccinii MWU205	WP_084480120.1	Methylosarcina lacus
MT876545	Chromobacterium vaccinii MWU205	WP_078996481.1	Lysobacter enzymogenes
KNE75171.1	Candidatus Burkholderia crenata	WP_096414584.1	Lysobacter capsici
KNE75168.1	Candidatus Burkholderia crenata	WP_119629200.1	Methylocaldum marinum
WP_162850377.1	Rhodococcus jostii	WP_174932260.1	Burkholderia lata
WP_007299123.1	Rhodococcus imtechensis	WP_120026908.1	Amycolatopsis panacis
RZK84214.1	Rhodococcus sp.	WP_054261810.1	Propionispora sp. 2/2-37
WP_169695704.1	Rhodococcus opacus	WP_091794482.1	Lysobacter sp. yr284
ELB93997.1	Rhodococcus wratislaviensis IFP 2016	WP_040376786.1	Peribacillus psychrosaccharolyticus
TMK21117.1	Alphaproteobacteria bacterium	WP_138885197.1	Lysobacter enzymogenes
TMJ40383.1	Alphaproteobacteria bacterium	WP_052756236.1	Lysobacter capsici
WP_036714060.1	Paenibacillus ehimensis	KJS54231.1	Streptomyces rubellomurinus subsp.
			indigoferus
WP_176165338.1	Streptomyces sp. NA00687	WP_166530797.1	Agaribacter marinus
WP_106046991.1	Bacillus atrophaeus	TQF01515.1	Kitasatospora sp. MMS16-CNU292
WP_183596885.1	Paenibacillus phyllosphaerae	WP_057921675.1	Lysobacter capsici
NQD50526.1	Bacillus altitudinis	WP_049786543.1	Mycetohabitans rhizoxinica
WP_156746001.1	Mycobacterium sp. 1423905.2	CBW76866.1	Mycetohabitans rhizoxinica HKI 454
WP_186229549.1	Burkholderia gladioli	WP_146064026.1	Mycetohabitans endofungorum
OKH99041.1	Streptomyces sp. CB02923	WP_174993913.1	Burkholderia arboris
WP_157638970.1	Burkholderia ubonensis	OPD64588.1	Lysobacter enzymogenes

WP_161220653.1	Streptomyces sp. SID6137	WP_156123907.1	Paraburkholderia mimosarum
WP_155634472.1	Burkholderia stagnalis	WP_081052109.1	Burkholderia cepacia
REK66978.1	Brevibacillus sp.	WP_026869105.1	Inquilinus limosus
APD71879.1	Streptomyces sp.	WP_143200560.1	Kitasatospora sp. CB01950
TDL85614.1	Vibrio vulnificus	SFN60854.1	Actinomadura madurae
WP_171565203.1	Brevibacillus sp. MCWH	WP_051213701.1	Glomeribacter sp. 1016415
WP_090670197.1	Paenibacillus tianmuensis	WP_067343588.1	Marinomonas spartinae
WP_139641914.1	Streptomyces sedi	WP_169750257.1	Streptosporangium amethystogenes
PBC50623.1	Rhodococcus sp. ACS1	WP_092071365.1	Dendrosporobacter quercicolus
WP_161218580.1	Streptomyces sp. SID6139	WP_045303061.1	Saccharothrix sp. ST-888
WP_135342059.1	Streptomyces palmae	WP_181556777.1	Anoxybacillus caldiproteolyticus
WP_155754571.1	Burkholderia stagnalis	WP_034840793.1	Inquilinus limosus
WP_161783329.1	Burkholderia sp. A1	WP_157441225.1	Actinoplanes awajinensis
WP_187438659.1	Streptomyces sp. sk2.1	WP_172236540.1	Bradyrhizobium sp. LMG 8443
AEA62641.1	Burkholderia gladioli BSR3	WP 143956941.1	Mycobacterium sp. KBS0706
SEC10944.1	Rhodococcus koreensis	WP 165781571.1	Streptosporangium minutum
WP 158315302.1	Bacillus megaterium	WP 176072366.1	Paraburkholderia mimosarum
WP 072274058.1	Peribacillus simplex	WP 056114189.1	Lysobacter sp. Root690
PAE69549.1	Bacillus subtilis	WP 165940603.1	Burkholderia sp. SRS-46
WP 120709248.1	Rhizobium iaquaris	WP 083780791.1	Bradvrhizobium sp. BTAi1
WP 094237092.1	Tumebacillus algifaecis	WP 067015022.1	Marinomonas spartinae
QAR15116.1	Streptomyces costaricanus	PMS18374.1	Burkholderia dabaoshanensis
WP 104825816.1	Rhizobium sp. NXC24	WP 162791553.1	Dvella sp. 4-6
BBA33607 1	Methylocaldum marinum	WP 103564835 1	Actinomadura sp. RB29
WP 090514810.1	Paenibacillus sp. cl6col	RDD80443.1	Dvella sp. 4-6
WP 094237092 1	Tumebacillus algifaecis	WP 146014032 1	Burkholderia dabaoshanensis
WP_098680385.1	Bacillus altitudinis	WP 132240709 1	Micromonospora sp. CNZ303
WP 081114287 1	Bacillus stratosphericus	WP 091621489 1	Micromonospora peucetia
WP_068017976.1	Rhodoplanes sp. 72-YC6860	WP 093292387 1	Thermoactinomyces sp. DSM 45892
WP 181799076 1	Kitasatospora sp. MMS16-CNI I292	WP_184260366.1	Granulicella mallensis
WP_061420802.1	Bacillus numilus	WP_067109092.1	Mycobacterium sp. 852002-
		007103032.1	51057 SCH5723018
WP 125058020 1	Streptomyces rimosus	WP 110573648 1	Marinomonas alcarazii
WP 128788709 1	Streptomyces sn. endonhyte N2	WP_03367/8/11	Bacillus gaemokensis
PVS27780 1	Acidobacteria bacterium	WP 172/27363 1	Streptomyces griseofuscus
WP 048411362 1	Chromobacterium sp. 1 K1	W/D 157/10571 1	Actinomadura kijanjata
WP_000306555_1	Indobacter sp. B IB302	WI 1961/51// 1	Burkholderia aladioli
AVE22757 1	Chromobacterium sp. IIBBL 112-1	WP_007052768_1	Pelosinus fermentans
W/D 092112610 1	Chromobacterium vaccinii	WP_007932700.1	Cobrolla sp. CC MHH1044
WI 002113010.1	Chromobacterium subtsugae	WI 13037 1303.1	Burkholderia sp. 66-Milli 11044
VF_122903744.1	Chromobacterium an E40	WP_0/0/002/2.1	
NZE0J020.1	Chromobacterium voosinii	WP_140012739.1	Muostobobitopo ondofungorum
OVE47510.1	Chromobacterium violoogum	WP_140004107.1	
		WP_142401190.1	Mycobacterium on 1091009 1
WP_001545507.1	Chromobacterium rhizerruzee	WP_067013092.1	Mycobacterium sp. 1061906.1
WP_118200927.1	Chromobacterium mizoryzae	WP_052407967.1	Allokutzneria albata
WP_106076243.1	Chromobacterium amazonense	MPZ86334.1	Actinophytocola sp.
WP_107800191.1	Chromobacterium sp. Panama	WP_141996174.1	Amycolatopsis cinanbeyllensis
WP_156/46001.1	Wycobacterium sp. 1423905.2	KAK48/42.1	Capalleronia jiangsuensis
WP_1/58/9/83.1	Nycobacterium sp. IS-2888	WP_099661199.1	Sporosarcina sp. P29
WP_1/2880913.1		WP_066488029.1	Burknolderia sp. BDU8
WP_09/231083.1	Streptomyces znaoznouensis	WP_0/3604292.1	
WP_053416733.1	virialbacillus arvi	SAL02479.1	Capalleronia arationis
WP_143665067.1	Streptomyces cacaol	NVK/1858.1	
WP_123647243.1	Lysobacter enzymogenes	WP_061162849.1	Capalleronia temeraria
WP_035299007.1	Brevibacillus thermoruber	SLC21331.1	Mycobacteroides abscessus subsp.
			massiliense
VVP 076794250.1	Burknolderia sp. b14		

Supplementary Figure 35: Phylogenetic tree of NRPS C_{Starter} **domains**. The scale bar represents 20 substitutions per 100 amino acids. Related to Figure 5c. For experimental details, see Methods Section and Supplementary Table 8.

TE_FrsA	1 HPLFCIHPEGGLGWSYIGLALHLDHEQPIYTLQARGLDGMSELAPSIPDM	50
TE_FrsG	1 PPLFCIHPGGCLSWTYVSLVRYLDAEQPIYGLQARGIDGQSEPASSIEAM	50
TE_FrsA	51 AADYIEQIRSIQPNGPYHLLGW <mark>S</mark> LGGVIAQEVAVQLERVGEKTALLAIL <mark>D</mark>	100
TE_FrsG	51 AADYVAQIRGIQPHGPYYLLGW <mark>S</mark> LGGNLAQAMASQLESMDQEVGLLFLL <mark>D</mark>	100
TE_FrsA	101 TFPIEILHEAMFGKQACAYDLFARVVQEMYLMPIEEARLKSMYLIGLNHM	150
TE_FrsG	101 SGP-SPMHKDDEMIEYPLFTKEFKNTFKFHVSETKMQAIFEVTKRHV	146
TE_FrsA	151 KITAAFSSSHYGGDLLLFRSLIPYAEDALMPEADTWQPYLSGQLEVHDIE	200
TE_FrsG	147 ELIRQSTTPVSQGPALLFRATVPYDESTPLLPPHAWNEYVKGDIEVHEVH	196
TE_FrsA	201 CT <mark>H</mark> MDMMQRDVLKIIGPVLESKL 223	
TE_FrsG	197 CQ <mark>H</mark> AQMNRIEFMEQMGPVIERKL 219	
	Length: 223	
	# Identity: 93/223 (41.7%)	
	# Similarity: 139/223 (62.3%)	
	# Gaps: 4/223 (1.8%)	
	# Score: 482.0	

Supplementary Figure 36: Emboss Needle Alignment of $FrsA_{TE}$ and $FrsG_{TE}$ from *C. vaccinii*. Residues in the active site, which are responsible for hydrolysis, are marked in yellow.

Supplementary Table 8: Names, databank accession numbers, source organisms of protein sequences used for phylogenetic analyses of TE domains. Related to Fig. 5d.

Name	Accession	Organism
BcFrsA-TE	KNE75171.1	"Candidatus Burkholderia crenata"
BcFrsG-TE	KNE75165.1	"Candidatus Burkholderia crenata"
cvFrsA-TE	MT876545	Chromobacterium vaccinii MWU205
cvFrsG-TE	MT876545	Chromobacterium vaccinii MWU205
DhbF - TE	WP_144530663.1	Bacillus subtilis ATCC 21332
EntF - TE	AYG20286.1	Escherichia coli str. K-12 substr. MG1655
ERYA3_TE	Q03133	Saccharopolyspora erythraea
FtdB - TE	ADJ54381.1	Streptomyces sp. SPB78
HbnA	ALV82446.1	Streptomyces variabili
HSAF - TE	ABL86391.1	Lysobacter enzymogenes
lkaA - TE	AJD77023.1	Streptomyces sp. ZJ306
KirHI	AGS67165.1	Streptomyces collinus Tu 365
KSE_70420	BAJ32800	Kitasatospora setae KM-6054
LipX2	ABB05100	Streptomyces aureofaciens
LybB - TE1	AEH59100.1	Lysobacter sp. ATCC 53042
LybB - TE2	AEH59100.1	Lysobacter sp. ATCC 53042
MassC - TE1	EIK63041.1	Pseudomonas fluorescens SS101
MassC - TE2	EIK63041.1	Pseudomonas fluorescens SS101
NocB - TE	AAT09805.1	Nocardia uniformis subsp. tsuyamanensis
ObiF - TE	KX134687.1	Pseudomonas fluorescens ATCC 39502
Pys-Pent - TE	WP_011533552	Pseudomonas entomophila
Pys-Pflu -TE	WP_064118616	Pseudomonas fluorescens HKI 0770
RomH	WP_078586793.1	Streptomyces rimosus NRRL B-2659
Roml	WP_004571777.1	Streptomyces rimosus NRRL B-2659
SGR814 - TE	AGK81502	Streptomyces fulvissimus DSM 40593
SlgL	CBA11558	Streptomyces lydicus
SIn6 - TE	DAB41476.1	Streptomyces sp. CNB-091
SIn9 - TE	DAB41479.1	Streptomyces sp. CNB-091
SrfA-C - TE	2VSQ	Bacillus subtilis ATCC 21332
SSHG - TE	EFE85271.1	Streptomyces albus J1074
SwrW - TE	17GF64	Serratia marcescens

TaaE - TE1	CCJ67640.1	Pseudomonas costantinii DSM 16734
TaaE - TE2	CCJ67640.1	Pseudomonas costantinii
TrdC	ADY38535.1	Streptomyces sp. SCSIO 1666
TycC - TE	AAC45930.1	Brevibacillus brevis
ViscC - TE1	CAY48789.1	Pseudomonas fluorescens SBW25
ViscC - TE2	CAY48789.1	Pseudomonas fluorescens SBW25
WlipC - TE1	AFJ23826.1	Pseudomonas putida
WlipC - TE2	AFJ23826.1	Pseudomonas putida

Supplementary Figure 37: Alignment of the structural models of $FrsA_{TE}$ (orange) and $FrsG_{TE}$ (white) from *C. vaccinii*. The amino acids of the active site are displayed in red (FrsA) and blue (FrsG).

Discussion: FrsA_{TE} acceptor substrate specificity

Supplementary Figure 38: EICs of HPLC-MS experiments of transesterification assays with the added minimal substrate HIe in varying concentrations (50 μ M, 100 μ M, 200 μ M), instead of **2**. EIC for the proton adduct (*m/z*: 333.202) and the sodium adduct (*m/z*: 355.180) of the anticipated product HIe-N-Pp-HIe ester were generated. Also, the data was analyzed for formation of dimer and trimer esters. No product formation could be observed. FrsA TE was reconstituted in active conformation in this assay, as can be seen from the positive control experiment in the bottom chromatogram (formation of **1** after addition of **2**).

Supplementary References

- Carlier, A. et al. The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. *Environ. Microbiol.* 18, 2507–2522 (2016).
- Madeira, F. et al., The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
- [3] Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J., Schweizer, H. P. A broad-host-range FIp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. *Gene* 212, 77–86 (1998).
- [4] Norrander, J., Kempe, T., Messing, J. Construction of improved M13 vectors using oligodeoxynucleotidedirected mutagenesis. *Gene* 26, 101–106 (1983).
- [5] Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison 3rd, C. A., Smith, H. O. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 6, 343–345 (2009).
- [6] Lynch, M. D., Gill, R. T. Broad host range vectors for stable genomic library construction. *Biotechnol. Bioeng.* 94, 151–158 (2006).
- [7] Wang, C., Wesener, S. R., Zhang, H. Cheng, Y.-Q. An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. *Chem. Biol.* 16, 585-593 (2009).
- [8] Broetto, L., Cecagno, R., Sant'Anna, F. H., Weber, S., Schrank, I. S. Stable transformation of Chromobacterium violaceum with a broad-host-range plasmid. *Appl. Microbiol. Biotechnol.* **71**, 450–454 (2006).
- [9] Reher, R. et al. Applying molecular networking for the detection of natural sources and analogues of the selective Gq Protein inhibitor FR900359. J Nat. Prod. 81, 1628–1635 (2018).
- [10] Kautsar, S.A., van der Hooft, J.J.J., de Ridder, D., Medema, M.H. BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. *bioRxiv* (2020).
- [11] Navarro-Muñoz, J. C., et al. A computational framework to explore large-scale biosynthetic diversity. *Nat. Chem. Biol.* **16**, 60-68 (2020).