Supplementary Information

Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors

Shenghan Gao,a‡ Thibault Broux,a‡ Susumu Fujii,b‡ Ce dric Tassel,a* Kentaro Yamamoto,c Yao Xiao,c Itaru Oikawa,d Hitoshi Takamura,d Hiroki Ubukata,a Yuki Watanabe,a Kotaro Fujii,e Masatomo Yashima,e Akihide Kuwabara,b Yoshiharu Uchimoto,c and Hiroshi Kageyamaa*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan

Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17 O-okayama, Meguro-ku, Tokyo 152-8551, Japan

Table of Contents	Т	abl	e of	Contents
-------------------	---	-----	------	----------

Section 1. Supplementary Methods	\$3-\$4
Section 2. Crystal structure analysis of M3HCh antiperovski	tes S5-S14
	Supplementary Figures 1-9
	Supplementary Tables 1-5
Section 3. Size-flexibility of hydride anion	S15-S18
	Supplementary Figure 10-11
	Supplementary Table 6-7
Section 4. Ambient synthesis of Na ₃ HTe	S19
	Supplementary Figure 12
	Supplementary Table 8
Section 5. Electronic band structures at 0 GPa	S20
	Supplementary Figure 13
Section 6. Phonon band structures at 0 and 5 GPa	S21-S23
	Supplementary Figure 14
Section 7. Na ⁺ migration pathways in orthorhombic Na ₃ HS-	
	Supplementary Figure 15
Section 8. The migration barriers and defect formation ene	
	Supplementary Figure 16
	Supplementary Table 9
Section 9. Ionic diffusion	
	Supplementary Figures 17-21
	Supplementary Table 10
Section 10. Supplementary references	

Section 1. Supplementary Methods

Theoretical Calculations. Total energy calculations and structural optimizations of M₃HCh, MH and M₂Ch under 0 and 5 GPa were performed with Vienna *Ab initio* Simulation Package (VASP) (Kresse, G. & Hafner, J. *Phys. Rev. B* **1993**, 47, 558–561; Kresse, G. & Furthmu ller, J. *Phys. Rev. B* **1996**, 54, 11169–11186), using the plane-wave basis projector augmented wave (PAW) method (Blöchl, P. E. *Phys. Rev. B* **1994**, 50, 17953–17979) and the generalized gradient approximation (GGA) in the form of PBEsol (Perdew, J. P. *et al. Phys. Rev. Lett.* **2008**, 100, 136406). We used PAW potentials with the following valence configurations: $1s^22s^1$ for Li, $2p^63s^1$ for Na, $1s^1$ for H, $3s^23p^4$ for S, $4s^24p^4$ for Se and $5s^25p^4$ for Te. An energy cutoff of 650 eV was used for the plane-wave basis set. The criteria of convergence for electronic self-consistent cycle and structure optimization were set to be 1.0×10^{-6} eV/atom and 1.0×10^{-3} eV/A, respectively. The Brillouin zones were sampled with Γ-centered *k*-point meshes with the spacing of 0.2 A ⁻¹ (and 0.1 A ⁻¹ for the calculations of electronic density of states). Enthalpies of M₃HCh, MH and M₂Ch were calculated according to the following equation:

$$H(p) = U(V) + pV(1),$$

where H, U, p and V are enthalpy, internal energy, pressure and volume.

Phonon dispersions and vibrational free energies were calculated using the Parlinsk-Li-Kawazoe method (Parlinski, K., Li, Z. Q. & Kawazoe, Y. *Phys. Rev. Lett.* **1997**, 78, 4063–4066) as implemented in Phonopy (Togo, A. & Tanaka, I. *Scr. Mater.* **2015**, 108, 1–5). Dynamical matrixes were constructed from real space interatomic force constants. To determine the force constants, symmetrically nonequivalent atomic displacements with the distance of 0.01 A were introduced to the stationary atomic positions. For these phonon calculations, $2 \times 2 \times 2$ supercells were used for all compounds after the preliminary tests using $3 \times 3 \times 3$ and $4 \times 4 \times 4$ supercells of Li₃HS. Vibrational free energies, *F*_{vib}, were calculated with dense *q*-point meshes containing at least 560 *q*-points. Gibbs free energies of M₃HCh, MH and M₂Ch were calculated as below:

 $G(T, p) = U(V) + pV + _{vjb(T, V)} = H(p) + _{vjb(T, V)} (2),$

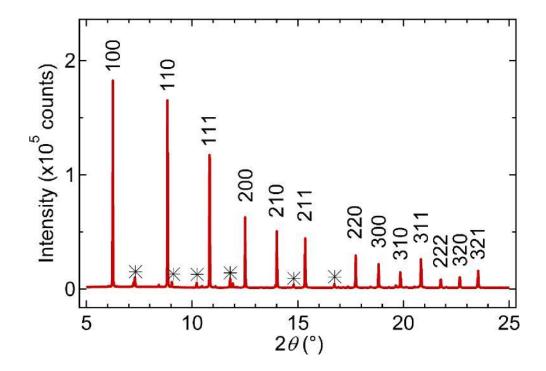
where G and T are Gibbs free energy and temperature. In the present study, only vibrational entropy was considered, not configurational entropy. Phonon band centers for

M+ ions were calculated as the average phonon frequencies, W_{ave} , by the following equation: f W. g(W) dW

$$W_{ave} = \underline{fg(W)} dW (3),$$

where W and g are phonon frequency and phonon density of states (DOS). Imaginary frequencies were neglected for the calculations.

The force constant k_{rot} with respect to the phonon mode at M point, which corresponds to the rotational motion of a HM₆ octahedron, was estimated by $k_{rot} = W_{rot}^2$. mM, where W_{rot} and mM are the frequency of the rotational phonon mode and the atomic mass of M, respectively. This is in accordance with the equation of simple harmonic motion W =

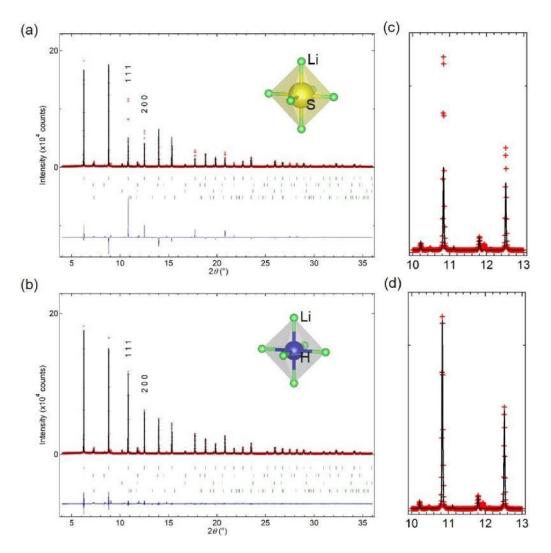

 $\sqrt{k/m}$.

The Bader population analysis, which partitions a charge density grid into the Bader region of each ion, was performed to investigate the size variation of each ion upon changing M and Ch species and applying external pressure (Tang, W., Sanville, E. & Henkelman, G. *J. Phys. Condens. Matter* **2009**, 21, 084204). The partition results for cubic Li₃HS are shown in Supplementary Figure 11 as an example. The volume of the partitioned region (Bader volume) was used to estimate the radius of each ion (Bader radius)

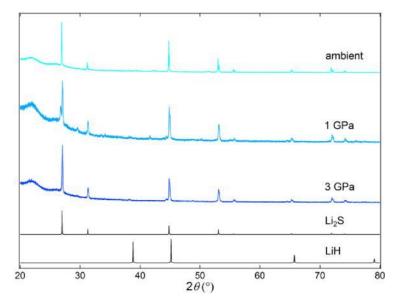
according to the equation $B = 3 B^3$, where V_B and r_B are the Bader volume and radius, respectively (Harashima, Y., Terakura, K., Kino, H., Ishibashi, S. & Miyake, T. *J. Appl. Phys.* **2016**, 120, 203904). Note that the Bader radii are larger than the commonly used ionic radii such as Shannon ionic radii since Bader regions are space filling whereas spheres are not.

The nudged elastic band (NEB) calculations (Mills, G., Jónsson, H. & Schenter, G. K. *Surf. Sci.* **1995**, 324, 305–337) were performed to estimate energy barriers for ion migration mediated by vacancy or interstitial defects. The climbing image NEB method (Henkelman, G., Uberuaga, B. P. & Jónsson, H. *J. Chem. Phys.* **2000**, 113, 9901–9904) was employed for orthorhombic Na₃HS. For these calculations, $3 \times 3 \times 3$ or $2 \times 2 \times 2$ charged supercells were used for cubic M₃HCh and orthorhombic Na₃HS, respectively. The Brillouin zones of the supercells were sampled with one *k*-point at (0.25 0.25). The criteria of convergence for electronic self-consistent cycle and structure optimization in NEB calculations were set to be 1.0×10^{-6} eV/supercell and 2.0×10^{-2} eV/A , respectively. The total energies of the defect models calculated with the same condition were used to estimate the formation energies of Schottky and Frenkel defects.

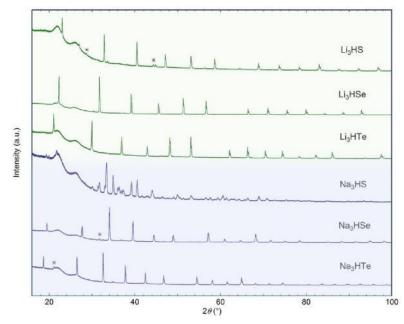
Section 2. Crystal structure analysis of M₃HCh antiperovskites

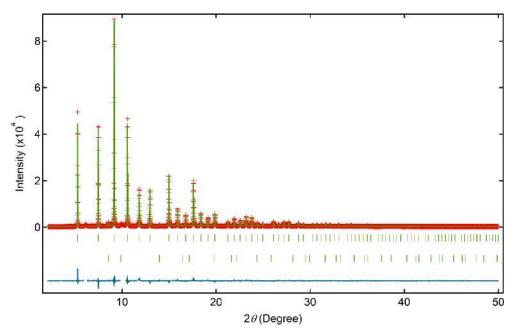

Supplementary Figure 1 SXRD pattern of Li₃HS synthesized from a mixture of Li₂S and LiH (molar ratio of 1:3) at 5 GPa and 700 °C. The diffraction peaks are indexed in a cubic symmetry and labelled with the Miller indices of the lattice planes. Asterisks denote unreacted precursor impurities.

Atom	Site	х	у	z	Uiso Uii (100 Ų)	g
Li	3 <i>d</i>	0.5	0	0	$U_{11} = 1.73(16)$ $0.11(8) U_{22} =$ $U_{33} = 4.41(14)$ 3.79(10)	0.98(7)/1
S	1 <i>b</i>	0.5	0.5	0.5	1.05(12) 0.43(4) 0.63*	1
Н	1 <i>a</i>	0	0	0	1.61(5)	1


Supplementary Table 1 Atomic coordinates, displacement parameters and occupancy factors for the cubic 3^{*Q*} structure of Li₃HS by SXRD (upper)_a/ND (lower)_{.b}

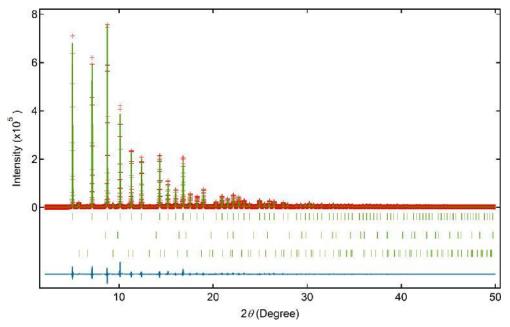
aFor SXRD (λ = 0. 0.41989 A) refinement using FULLPROF program, *a* = 3.85189(6) A . *R*_{Bragg} = 4.28% and *R*_f = 2.87%, 78.1vol% Li₃HS with the impurity of 0.3vol% Li₂S, 17.7vol% LiH, and 3.9vol% BN.


^bFor ND refinement, *a* = 3.853354(17) A, R_{WP} = 1.35% and R_{Bragg} = 6.28%, weight fraction of 67.06%. Rietveld refinement assuming the anion exchange between *A* and *B* site (*g*_A = $g_A(S) + g_A(H), g_B = g_B(S) + g_B(H), g_A(H) + g_B(H) = 1$, and $g_A(S) + g_B(S) = 1$) yield R_{WP} = 1.37% and R_{Bragg} = 6.64% with the occupancies of $g_B(H)$ = 1.015(5) and $g_A(H)$ = −0.015(5). ^{*}The isotropic displacement parameter of H⁻ was not refined for SXRD.


Supplementary Figure 2 Rietveld refinement of SXRD data of *3* Li₃HS using two different anion arrangements with S²⁻ centered in a Li octahedron (a, c) and H⁻ centered in a Li octahedron (b, d). The right panel of magnified reflections of 111 and 200 compares the intensities of the observed (red crosses) and calculated (black solid line) patterns under two proposed anion distributions. The red crosses, black solid line, the blue solid line, and green dashes denote the observed, calculated, difference intensities and calculated Bragg reflections (from top to bottom: Li₃HS, Li₂S, LiH, BN), respectively.

Supplementary Figure 3 The diffraction patterns of obtained powders from reactions of mixtures of Li₂S and LiH under ambient pressure, 1 GPa and 3 GPa at 700 °C. The broad hump in the low-angle range originates from the Kapton tape used to cover the sample and in order to avoid the moisture and air contamination during the measurement.

Supplementary Figure 4 All the diffraction patterns of the new class of M₃HCh antiperovskites (M = Li, Na; Ch = S, Se, Te). All data were collected from a laboratory X-ray diffractometer with Cu-K α radiation, where the broad hump in the low-angle range originates from the Kapton tape used to cover the sample powders to avoid the moisture and air contamination during the measurement. Asterisks denote a few minor impurity peaks.

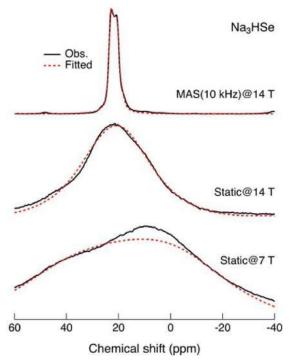

Supplementary Figure 5 Rietveld refinement of SXRD ($\lambda = 0.42043$ A) pattern of Na₃HSe. The red crosses, green solid line, the blue solid line, and green dashes denote the observed, calculated, difference intensities and calculated Bragg reflections (from top to bottom: Na₃HSe, NaH), respectively. A few broad peaks of Na₂Se and unknown impurity can be observed in the following ranges and were excluded from the refinement: 4.941–4.985°, 5.947–6.313°, 5.656–5.687°, 6.681–6.741°, 7.938–7.985°, 9.322–9.385°, 9.824–10.423°, 10.363–10.41°, 10.815–10.862°, 11.062–11.138°, 11.583–11.671°, 15.239–15.286°, and 15.559–15.622°.

Supplementary Table 2 Atomic coordinates, displacement parameters and occupancy factors for the cubic Na₃HSe by SXRD_a

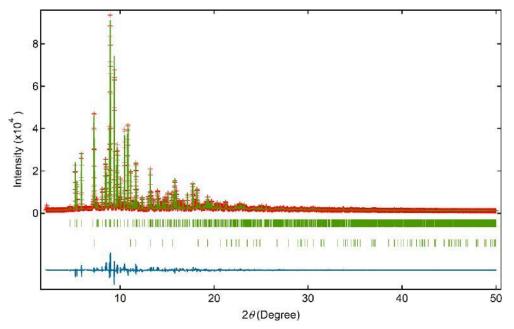
Atom	Site	Х	у	Z	Uiso Uii (100 Ų)	g
Na	3 <i>d</i>	0.5	0	0	$U_{11} = 1.01(7)$	0.996(2)
Se	1b	0.5	0.5	0.5	1.708(12) = 515(6)	1
Н	1 <i>a</i>	0	0	0	1*	1

^aSpace group 3^{a} (No. 221), a = 4.55901(7) Å. $R_{wp} = 7.16\%$, GOF = 2.04, $R_{Bragg} = 4.99\%$ and $R_{f} = 3.97\%$ for SXRD using JANA2006 program. Mass fractions are Na₃HSe = 96.3(3)%, NaH = 3.71(7)%. Rietveld refinement assuming the anion exchange between A and B site $(g_{A} = g_{A}(Se) + g_{A}(H), g_{B} = g_{B}(Se) + g_{B}(H), g_{A}(H) + g_{B}(H) = 1$, and $g_{A}(Se) + g_{B}(Se) = 1$) yielded $R_{wp} = 6.60\%$ and $R_{Bragg} = 2.80\%$ with the occupancies of $g_{A}(Se) = 1.0236(7)$ and $g_{A}(H) = -0.0236(7)$. The refined composition is Na_{2.988(9)}HSe.

The isotropic displacement parameter is not refined.


Supplementary Figure 6 Rietveld refinement of SXRD ($\lambda = 0.41989$ A) pattern of Na₃HTe. The red crosses, green solid line, the blue solid line, and green dashes denote the observed, calculated, difference intensities and calculated Bragg reflections (from top to bottom: Na₃HTe, NaH, Na₂Te), respectively.

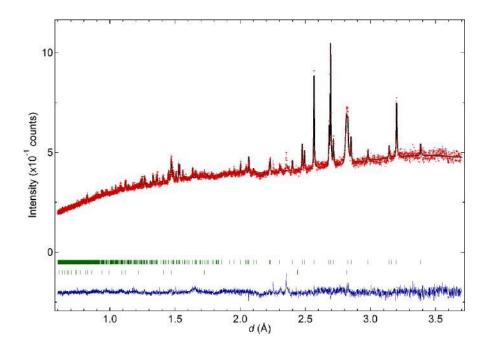
Supplementary Table 3 Atomic coordinates, displacement parameters and occupancy factors for the cubic Na₃HTe by SXRD_a


Atom	Site	х	у	Z	U _{iso} Uii (100 Ų)	g
Na	3 <i>d</i>	0.5	0	0	$U_{11} = 1.65(9)$	0.986(3)
Те	1b	0.5	0.5	0.5	1.551(9) = 3 106	1
Н	1 <i>a</i>	0	0	0	1*	1

^aSpace group 3^{\Box} (No. 221), a = 4.76349(2) Å. $R_{WP} = 7.72\%$, GOP = 6.38, $R_{Bragg} = 3.71\%$ and $R_f = 2.53\%$ for SXRD using JANA2006 program. Mass fractions are Na₃HTe = 95.3(3)%, NaH = 1.3198(3)%, Na₂Te = 3.37(3)%. Rietveld refinement assuming the anion exchange between A and B site ($g_A = g_A(Te) + g_A(H)$, $g_B = g_B(Te) + g_B(H)$, $g_A(H) + g_B(H) = 1$, and $g_A(Te) + g_B(Te) = 1$) yielded $R_{WP} = 7.68\%$ with the occupancies of $g_A(Te) = 0.9828(6)$ and $g_A(H) = 0.0172(6)$. The refined composition is Na_{2.958(9)}HTe.

The isotropic displacement parameter is not refined.

Supplementary Figure 7 Magnetic field dependence of ²³Na NMR spectra of Na₃HSe at room temperature (from bottom to top, under a magnetic field of 7 T, 14 T, and 14 T with magic-angle spinning at 10 kHz). All the three spectra were fitted as a 2_{nd}-order quadrupolar line shape with a common set of C_Q = 1.61 MHz and η = 0.04, where C_Q , and η denote a quadrupole coupling constant and an asymmetry parameter, respectively.



Supplementary Figure 8 Rietveld refinement of SXRD ($\lambda = 0.41989$ A) pattern of Na₃HS. The red crosses, green solid line, the blue solid line, and green dashes denote the observed, calculated, difference intensities and calculated Bragg reflections (from top to bottom: Na₃HS, h-BN), respectively. The following ranges were excluded from the refinement: 2.168–2.264°, 4.573–4.659°, 6.167–6.227°, 6.298–6.441°, 9.806–9.996°, 16.927–17.01°, and 50-71.439°

Supplementary Table 4 Atomic coordinates, displacement parameters and occupancy factors for the orthorhombic Na₃HS by SXRD_a

Atom	Site	х	У	Z	Uiso Uii (100 Å2	g				
Na1	4 <i>c</i>	0.0331(2)	0.25	0.5932(2)	$U_{11} = 1.84(11)$	1				
Na2	8 <i>d</i>	0.19451(15)	0.04941(8)	0.19206(16)	$U_{11} = 2.81(8)$ $U_{22} = 1.77(10)$	1				
S	4 <i>c</i>	0.43047(15)	0.25	0.48481(16)	¹¹ U ³² =233412	1				
Н	4b	0.5	0.5	0	8)	1				
^a Space group (No. 62), $a = 6.76037(9)$ Å, $b = 8.89761(10)$ Å, $c_{H_2} = 6.8659(8)$ Å. $R_{wp} = 6.76037(9)$ Å, $b = 8.89761(10)$ Å, $c_{H_2} = 6.8659(8)$ Å. $R_{wp} = 6.76037(9)$ Å, $b = 8.89761(10)$ Å, $c_{H_2} = 6.8659(8)$ Å.										
6.13%, GOF = 3.09, R_{Bragg} = 7.58% and κ_f = 5.99% for SAKD using JANAZU purperam. The $U_{13} = 046(7)$										
h-BN peaks were refined using Le Bail analysis. When the occupancies of the Na1 and Na2 $U_{23} = 081(6)$										
site were	e refined	d a composition	of Na3.129(9)H	S was obtained	with $R_{wp} = 6.02\%$,	g(Na1) :				
1.039(3) and $g(Na2) = 1.045(3)$. Rietveld refinement assuming the anion exchange										
between A and B site $(g_A = g_A(S) + g_A(H), g_B = g_B(S) + g_B(H), g_A(H) + g_B(H) = 1$, and $g_A(S) + g_B(H) = 1$.										
$g_{\rm B}({\rm S}) = 1$) yielded $R_{\rm wp} = 5.93\%$ and $R_{\rm Bragg} = 7.07\%$ with the occupancies of $g_{\rm A}({\rm S}) =$										
$0.9781(10)$ and $g_{\rm A}({\rm H}) = 0.0219(10)$										

The isotropic displacement parameter is not refined.

Supplementary Figure 9 Rietveld refinement of PND pattern of Na₃HS. The red crosses, black solid line, the blue solid line, and green dashes denote the observed, calculated, difference intensities and calculated Bragg reflections (from top to bottom: Na₃HS, NaH), respectively.

Supplementary Table 5 Atomic coordinates, displacement parameters and occupancy factors for the orthorhombic Na₃HS by PND_a

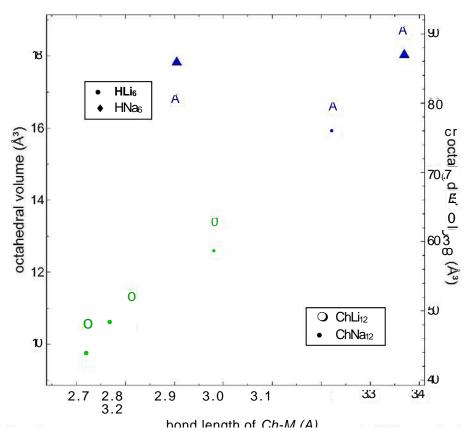
Atom	Site	х	У	Z	Uiso Uii (100 Ų)	g		
Na1	4 <i>c</i>	0.03795(9)	0.25	0.59096(9)	$U_{11} = 1.90(4)$	1		
Na2	8 <i>d</i>	0.19253(5)	0.04994(5)	0.1906(6)	$U_{11} = 1.68(2)$	1		
S	4 <i>c</i>	0.42885(9)	0.25	0.48863(11)	=1250522	1		
Н	4 <i>b</i>	0.5	0.5	0	3(43)	1		
^a Space group (No. 62), $a = 6.77242(12)$ Å, $b = 8.89811(2)$ Å, $C = 6.28671(12)$ Å. $R_{wp} = 2.53\%$ and $R_{Bragg} = 24.30\%$, weight fraction = 89.72% for PND using Z-Rietveld $U_{13} = 0.68(2)$								
$R_{wp} = 2.5$	3% and	$R_{\text{Bragg}} = 24.30$	%, weight fra	ction = 89.72%	for PND using Z-1 $U_{13} = 0.68(2)$	Rietveld		

program.

Composition	Space group	Lattice parameters (Å)	Ionic radius (ppm) ª		tb t'	<i>Ch</i> ^{2–} BVSe
Li3HS	Pm3 m	a = 3.85189(6)	Li S	76 184		-1.44
			Н	140	0.85c	
			Li	116.6 76	0.95 ^d	
			Se	78 198		-1.72
Li ₃ HSe	Pm3 m	a = 3.9744(5)	Н	140	0.90	1.72
				122.6	0.98	
			Li	76		
Li3HTe	Pm3 m	a = 4.2221(3)	Те	221		-1.87
			Н	140	0.97	
			Na	135.3 102	0.99	
	_	a = 6.76037(9)	Na S	102		-1.60
Na ₃ HS	Pnma	b = 8.89761(10)	H	140	0.84	1.00
		c = 6.28659(8)		135.5	0.85	
			Na	102		
Na ₃ HSe	Pm3 m	a = 4.55901(7)	Se	198		-1.32
			Н	140	0.88	
			N	126.2	0.93	
			Na Te	102 221		-1.67
NазHTe	Pm3 m	a = 4.76349(2)	Н	140	0.94	1.07
				136.3	0.96	

Section 3. Size-flexibility of hydride anion

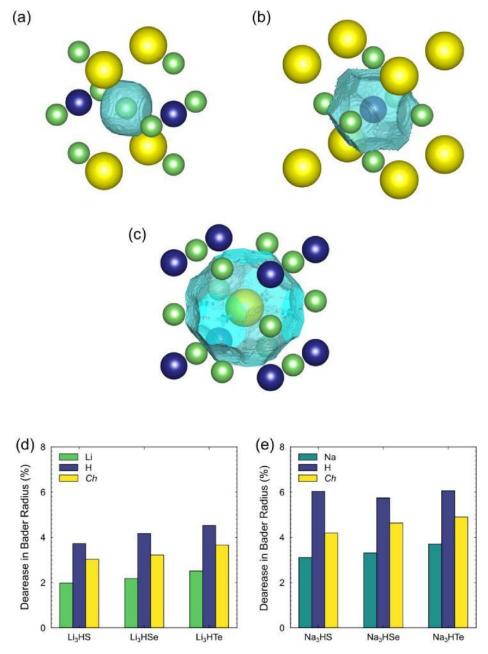
Supplementary Table 6 Information of M₃HCh (M = Li, Na; Ch = S, Se, Te).


^aThe ionic radii for *rch*, *r*M are referred as revised effective Shannon ionic radii (Shannon, R. D. *Acta Cryst.* **1976**, *32*, 751). It should be noted that Shannon ionic radius of *rch* for coordination number (CN) six was used as a rough estimation, though the CN of Ch in M₃HCh antiperovskites is twelve. The value of $r_{\rm H}$ = 140 pm is employed in many oxides and pure hydrides (Messer C. E. *J. Solid State Chem.* **1970**, 2, 144).

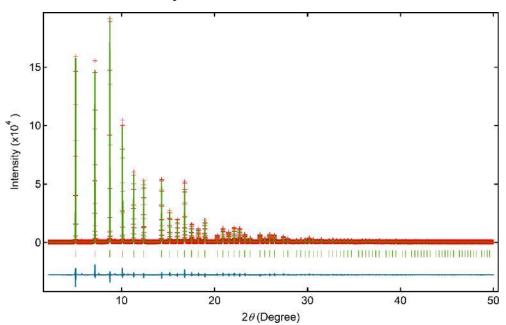
^bThe Goldschmidt tolerance factor of M₃HCh (M = Li, Na; Ch = S, Se, Te) is defined by the equation $t = (r_{ch} + r_M)/[\sqrt{2}(r_H + r_M)]$, where r_{ch} , r_M and r_H are the ionic radius of chalcogenide, alkali and hydride ion, respectively.

^cThe switching anion configuration from Li₃HS (HLi₆ octahedra) to Li₃SH (SLi₆ octahedra) led to a very low *t* value of 0.59. By comparison with *t* value of Li₃HS (0.85), the smaller t indicates the higher instability and a tendency to decomposition.

dThe refined tolerance factor (t') for M₃HCh using the observed ionic radius of hydride.


^eWe calculated bond valence sum (BVS) parameters of Ch^{2–} based on the reported Ch-Li/Na according to the reference (Brese, N. E.; O'Keeffe, M. *Acta Cryst.* **1991**, *47*, 192).

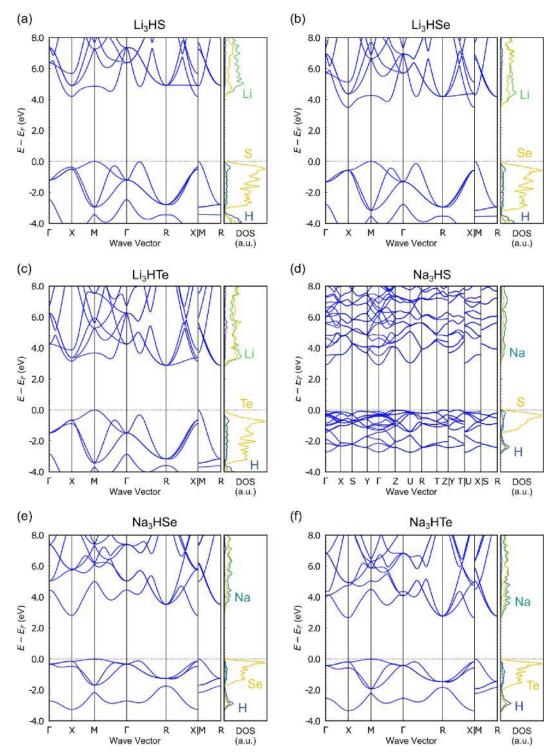
Supplementary Figure 10 The volume change of HM6 octahedra and ChM12 cuboctahedra in the M3HCh antinerovskites


		Bader A	Bader Atomic Radius (Å)		Normalized Bader Atomic Radius			
	Pressure (GPa)	М	Н	Ch	М	Н	Ch	
Li3HS	0	0.938	1.377	1.968	1.000	1.000	1.000	
	5	0.920	1.326	1.908	0.980	0.963	0.970	
Li3HSe	0	0.952	1.421	2.057	1.000	1.000	1.000	
	5	0.931	1.362	1.991	0.978	0.958	0.968	
Li3HTe	0	0.972	1.482	2.223	1.000	1.000	1.000	
	5	0.948	1.415	2.142	0.975	0.955	0.963	
c-Na3HS	0	1.322	1.477	2.151	1.000	1.000	1.000	
	5	1.281	1.388	2.060	0.969	0.940	0.958	
Na3HSe	0	1.332	1.515	2.235	1.000	1.000	1.000	
	5	1.288	1.428	2.132	0.967	0.943	0.954	
NазHTe	0	1.350	1.574	2.386	1.000	1.000	1.000	
	5	1.300	1.479	2.269	0.963	0.939	0.951	

Supplementary Table 7 Bader radius of M_+ , H^- and Ch^{2-} ions in M_3HCh compounds (M = Li, Na; Ch = S, Se, Te) under the pressure of 0 and 5 GPa.

Supplementary Figure 11 Bader region (light blue) of each ion (a) Li⁺ (green), (b) H- (blue) and (c) S²⁻ (yellow) in Li₃HS. Decrease percentage of Bader radius of each ion in (d) Li₃HCh and (e) Na₃HCh under the pressure of 5 GPa.

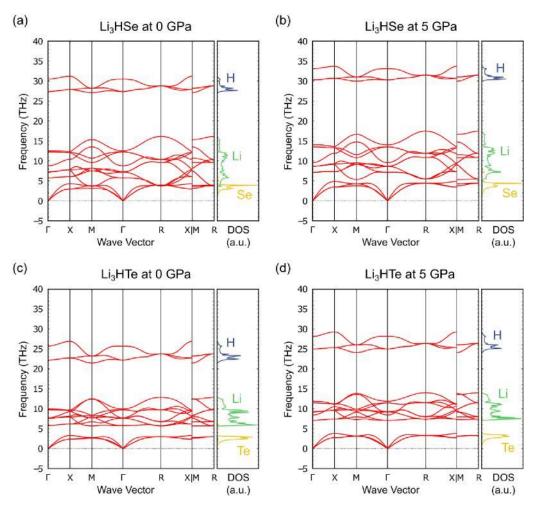
Section 4. Ambient synthesis of Na₃HTe

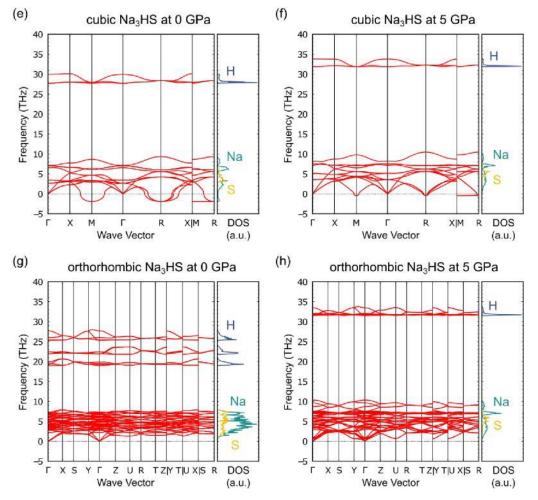

Supplementary Figure 12 Rietveld refinement of SXRD ($\lambda = 0.41943$ A) pattern of Na₃HTe obtained at ambient pressure. Na₂Te (Kojundo, 99%) was mixed with NaH (Sigma-Aldrich, 99%) in a 1:2 molar ratio, sealed in an evacuated pyrex tube, and heat at 400 °C for 12 h. The red crosses, green solid line, the blue solid line, and green dashes denotes the observed, calculated, difference intensities and calculated Bragg reflections, respectively. The refinement was performed between 2^o and 50^o.

Supplementary Table 8 Atomic coordinates, displacement parameters and occupancy factors for Na₃HTe ambient phase by SXRD_a

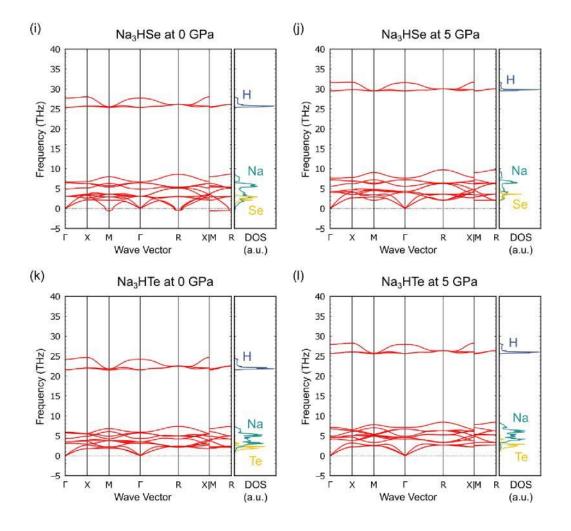
Atom	Site	Х	у	Z	Uiso Uii (100 Ų)	g
Na	3 <i>d</i>	0.5	0	0	$U_{11} = 1.95(8)$ $U_{22} = U_{33} = 3.18(6)$	0.987(3)
Те	1b	0.5	0.5	0.5	1.622(5)	1
Н	1 <i>a</i>	0	0	0	1*	1

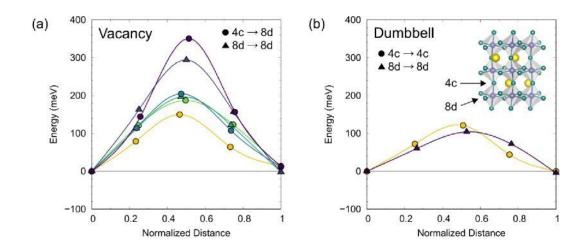
aSpace group 3^{\Box} (No. 221), a = 4.76717(5)Å. $R_{wp} = 7.07\%$, GOP = 2.69, $R_{Bragg} = 1.14\%$ and $R_f = 0.63\%$ for SXRD using JANA2006 program. Rietveld refinement assuming the anion exchange between A and B site ($g_A = g_A(Te) + g_A(H), g_B = g_B(Te) + g_B(H), g_A(H) + g_B(H) = 1$, and $g_A(Te) + g_B(Te) = 1$) yielded $R_{wp} = 7.05\%$ with the occupancy of $g_A(Te) = 1.0042(5)$ and $g_A(H) = -0.0042(5)$. The refined composition is Na2.961(9)HTe.


*The isotropic displacement parameter is not refined.

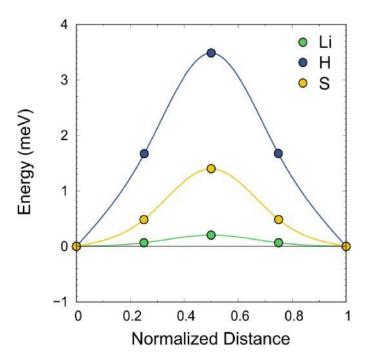

Section 5. Electronic band structures at 0 GPa

Supplementary Figure 13 Electronic band structures and partial electronic density of states (DOS) of (a) Li₃HS, (b) Li₃HSe, (c) Li₃HTe, (d) *o*-Na₃HS, (e) Na₃HSe, and (f) Na₃HTe under 0 GPa. All plots are normalized by Fermi level, *E*_F.


Section 6. Phonon band structures at 0 and 5 GPa


Supplementary Figure 14 Phonon band structures and partial phonon density of states (DOS) of M, H and Ch ions under 0 and 5 GPa. (a,b) Li₃HSe, (c,d) Li₃HTe. Negative number of vertical axis represents imaginary frequency.

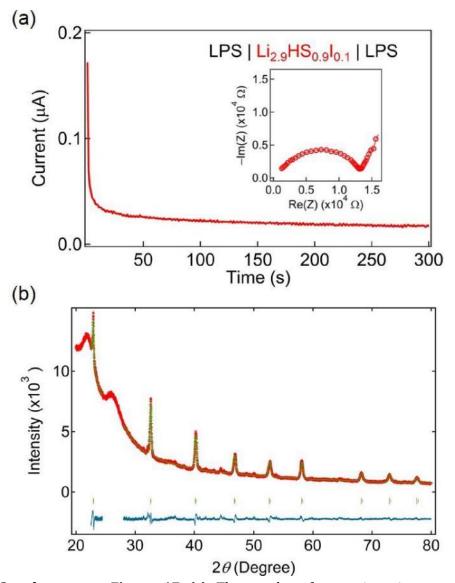
Supplementary Figure 14 (Continued) Phonon band structures and partial phonon density of states (DOS) of M, H and Ch ions under 0 and 5 GPa. (e,f) hypothetical c-Na₃HS, (g,h) o-Na₃HS. Phonon DOS of o-Na₃HS under 5 GPa are similar with that of c-Na₃HS because its crystal structure becomes closer to the cubic form due to the application of pressure. Negative number of vertical axis represents imaginary frequency.


Supplementary Figure 14 (Continued) Phonon band structures and partial phonon density of states (DOS) of M, H and Ch ions under 0 and 5 GPa. (i,j) Na₃HSe and (k,l) Na₃HTe. Negative number of vertical axis represents imaginary frequency.

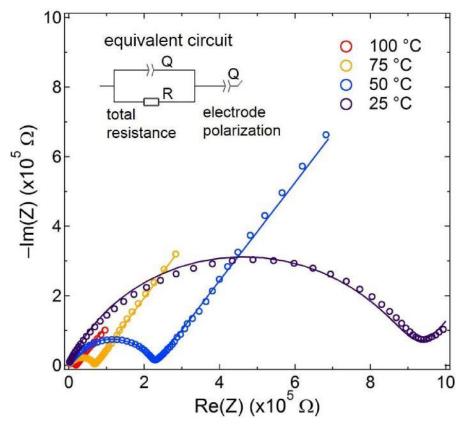
Section 7. Na⁺ migration pathways in orthorhombic Na₃HS

Supplementary Figure 15 Calculated energy migration pathways in orthorhombic Na₃HS via (a) vacancy and (b) interstitial-dumbbell mechanism. The inset in (b) shows Wyckoff positions of Na ions with the crystal structure where light-green, blue and yellow balls represent Na⁺, H⁻, and S²⁻ ions, respectively. There are six migration pathways for the vacancy mechanism, and the pathway depicted in yellow is displayed in Figure 5 in the main text. The formation energy of Na⁺ vacancy at the 4*c* site is slightly lower than that of the 8*d* site by roughly 10 meV. We found only two migration pathways by the dumbbell mechanism, namely from 4*c* to 4*c* and from 8*d* to 8*d* sites, since most of interstitial models that we constructed were not stable and did not fall into local energy minima. The pathway from 8*d* to 8*d* sites, the formation energy of Na⁺ interstitial at the 8*d* site is more stable than that at the 4*c* site by roughly 170 meV.

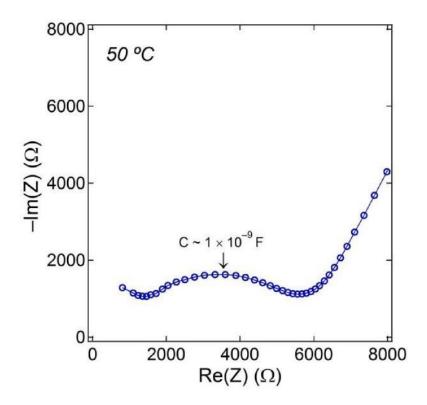
Section 8. The migration barriers and defect formation energies in M₃HCh

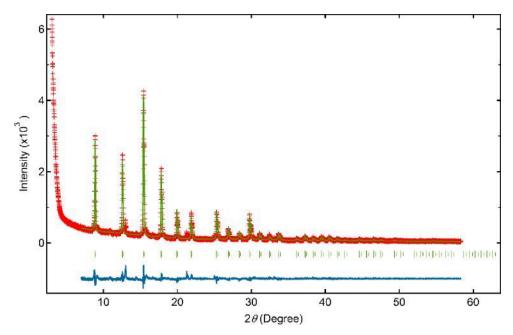


Supplementary Figure 16 Migration energy barriers via vacancy mechanism in Li₃HS. The calculated migration barrier is ~0.20 eV for Li⁺, ~3.49 eV for ^{H-} and ~1.40 eV for S²⁻. Supplementary Table 9 Formation energies of Schottky and Frenkel defects. The possible charge carriers include MH Schottky defects with a M-vacancy (V_M⁻) and H-vacancy (V_H⁻), M₂Te Schottky defects with two V_M[']and one Ch-vacancy (V_{Ch}⁻). Charge-


neutral M/M-vacancy Frenkel defect pair is expressed by $V_{M'} + M_{i'}$ with the Kröger-Vink notations. For o-Na₃HS, the energies of the most stable vacancy and interstitial were used for the calculation. Energies are in eV per defect.

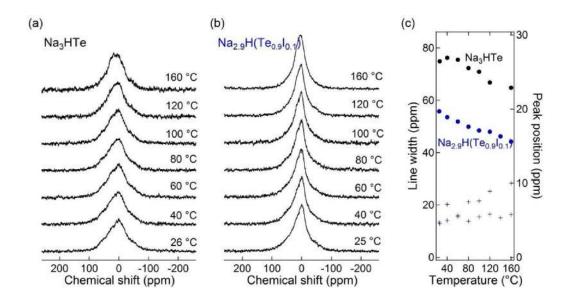
Compound	V _M ' + V _H '	2V _M ′ +	V _M ' + Mi [.]
Li ₃ HS	0.707	0.653	0.862
Li ₃ HSe	0.693	0.760	1.016
Li3HTe	0.542	0.855	1.069
Na ₃ HS	0.667	0.866	0.893
Na ₃ HSe	0.647	0.570	0.804
Na ₃ HTe	0.672	0.767	1.061


Section 9. Ionic diffusion


Supplementary Figure 17 (a) The results of potentiostatic measurement of the symmetric cell Li₃PS₄/Li_{3-x}H(S_{1-x}I_x)/Li₃PS₄, where Li₃PS₄ is a well-known Li-ion conductor and synthesized by mechanical milling according to the reference (Hayashi, A., Hama, S., Morimoto, H., *et al. J. Am. Ceram. Soc.* **2001**, 84, 477-479). The steady current is observed when a DC voltage of 0.5 V is applied at room temperature. Inset shows the Nyquist plot of the cell Li₃PS₄/Li_{2.9}H(S_{0.9}I_{0.1})/Li₃PS₄ before the potentiostatic measurement. (b) Le bail analysis of Cu-Kα XRD pattern of iodine doped Li_{2.9}H(S_{0.9}I_{0.1}) yielded a cubic phase with *a* = 3.89205(12) A , *R*_{wp} = 3.85%, GOF = 1.64. The red crosses, green solid line, the blue solid line, and green dashes denotes the observed, calculated, difference intensities and calculated Bragg reflections, respectively. The following ranges were excluded from the refinement: 5.0–22.5^o and 24.5–28.0^o.

Supplementary Figure 18 Nyquist plots (open circles denote raw data; solid lines denote fitting curves) of cold-pressed Na₃HSe pellet in the temperature range of 25 °C to 100 °C. The spectra were fit with an equivalent circuit consisting of a serial connection of one parallel arrangements of a resistor (R) and a constant phase element (CPE, Q) and an additional CPE component for electrode polarization.

Supplementary Figure 19 Nyquist plots of cold-pressed Na2.9H(Se0.9I0.1) pellet at 50 °C. The impedance spectrum at 50 °C features a small half-semicircle in the high-frequency region and a large semicircle from which the apex frequency is \sim 4.0 \Box 10⁴ Hz and the corresponding capacity is \sim 1.0 \Box 10⁻⁹ F. This is a typical value for the grain boundary capacitance of a sample (Irvine, J. T. S., Sinclair, D. C. & West, A. R. *Adv. Mater.* **1990**, 2, 132–138), and therefore the small half-semicircle with the associated resistance is attributed to the bulk properties of the Na2.9H(Se0.9I0.1).


Supplementary Figure 20 Rietveld refinement of XRD (Mo-K α) pattern of Na2.9H(Se0.9I0.1). The red crosses, green solid line, the blue solid line, and green dashes denotes the observed, calculated, difference intensities and calculated Bragg reflections, respectively.

Supplementary Table 10 Atomic coordinates, displacement parameters and occupancy factors for the cubic Na_{2.9}H(Se_{0.9}I_{0.1}) using Mo-Kα XRD_a

Atom	Site	X	У	Ζ	<i>U</i> iso(100 Å ²)	g
Na	3 <i>d</i>	0.5	0	0	4.91(15)	0.964(3)
Se	1b	0.5	0.5	0.5	2.67(5)	0.892(8)
Ι	1b	0.5	0.5	0.5	2.67(5)	0.108(8)
Н	1 <i>a</i>	0	0	0	1*	1

aSpace group 3^{\Box} (No. 221), a = 4.57627(16) Å. $R_{wp} = 11.84\%$, GOP = 1.57, $R_{Bragg} = 5.17\%$ and $R_f = 3.89\%$ for XRD using JANA2006 program. In order to preserve the charge neutrality of the structure, the refinement was constrained using the equation: 3g(Na) = 2g(Se) + g(I) + g(H). The refined composition is Na2.892(9)HSe0.892I0.108.

'The isotropic displacement parameter is not refined.

Supplementary Figure 21 Temperature-variable ²³Na static NMR spectra of (a) pristine Na₃HTe and (b) Na_{2.9}H(Te_{0.9}I_{0.1}) recorded under 7 T magnetic field. (c) Temperature dependence of their line width (circle) and peak position (cross).

Section 10. Supplementary references

S1. Chern, M. Y.; Vennos, D. A.; Disalvo, F. J. Synthesis, Structure, and Properties of Anti-Perovskite Nitrides Ca₃MN, M=P, As, Sb, Bi, Ge, Sn, and Pb. *J. Solid State Chem.* **1992**, *96*, 415–425.

S2. Widera, A.; Schäfer, H. Übergangsformen Zwischen Zintlphasen Und Echten Salzen: Die Verbindungen A₃BO (MIT A = Ca, Sr, Ba Und B = Sn, Pb). *Mater. Res. Bull.* **1980**, *15*, 1805–1809.

S3. Velden, A.; Jansen, M. Zur Kenntnis Der Inversen Perowskite M₃TO (M = Ca, Sr, Yb; T = Si, Ge, Sn, Pb). *Zeitschrift fur Anorg. und Allg. Chemie* **2004**, *630*, 234–238.

S4. Quilty, C. D.; Avdeev, M.; Driskell, J. D.; Sullivan, E. Structural Characterization and Photoluminescence in the Rare Earth-Free Oxy-Fluoride Anti-Perovskites Sr_{3-x}Bi_{2x/3}AlO₄F and Sr_{3-x}Bi_{2x/3}GaO₄F. *Dalt. Trans.* **2017**, *46*, 4055–4065.

S5. Prado-Gonjal, J.; Schmidt, R.; Romero, J. J.; Ávila, D.; Amador, U.; Morán, E. Microwave-Assisted Synthesis, Microstructure, and Physical Properties of Rare-Earth Chromites. *Inorg. Chem.* **2013**, *52*, 313–320.

S6. Coutinho, P. V.; Cunha, F.; Barrozo, P. Structural, Vibrational and Magnetic Properties of the Orthoferrites LaFeO₃ and YFeO₃: A Comparative Study. *Solid State Commun.* **2017**, *252*, 59–63.

S7. Pagnier, T.; Charrier-Cougoulic, I.; Ritter, C.; Lucazeau, G. A Neutron Diffraction Study of BaCe_xZr_{1-x}O₃. *Eur. Phys. J. Appl. Phys.* **2000**, *9*, 1–9.

S8. Koopmans, H. J. A.; Van De Velde, G. M. H.; Gellings, P. J. Powder Neutron Diffraction Study of the Perovskites CaTiO₃ and CaZrO₃. *Acta Cryst.* **1983**, *C39*, 1323–1325.