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1 Preprocessing

The raw accelerometer data was extracted from binary files corresponding to different accelerometer brands using R1 package
GGIR2, 3. However, it needs to be processed before it can be used for classification. The preprocessing of the raw data, also
done with GGIR, involves signal calibration relative to gravitational acceleration and nonwear detection. The alignment of
polysomnography (PSG) assessment labels with raw data was done with custom Python scripts4.

Calibration
An accelerometer converts acceleration into an electrical signal using a linear relationship characterized by a gain factor and an
offset. Sensor calibration involves estimation of these parameters. Typically, accelerometers are calibrated by the manufacturers
and they can be validated manually to correct any errors. However, when data has been collected in the past and the measurement
device no longer exists it is impossible to conduct new validation experiments. Therefore, auto-calibration techniques5 have
been proposed which allow estimation of calibration parameters from accelerometer data of the participant without any
additional experiments. The technique involves monitoring observed accelerometer data for periods of non-movement. A
moving average is computed over these periods from each of the three orthogonal sensor axes to generate a three-dimensional
ellipsoid representation. In an ideal state, this representation would be a sphere with radius 1g. Hence, the deviations between
the radius 1g of the sphere and the radius of the three-dimensional ellipsoid are used to derive correction factors to rectify
axis-specific calibration errors5.

Label assignment
The classification of sleep stages within PSG is typically done by a sleep technician who analyzes every few seconds of various
EEG signals to assign the corresponding sleep stage. In this paper, we use these assigned sleep stages as ground truth labels
in our machine learning models for accelerometer data. Next, we aligned these labels with accelerometer data by matching
PSG timestamps with that of accelerometer data. In our datasets (see Section Datasets), sleep stages are estimated for every
30 seconds of night-time sleep, ranging from 10PM to 7AM. The PSG technician labels every 30 seconds as Wake, NREM1,
NREM2, NREM3 or REM state. For sleep-wake classification, we considered NREM1, NREM2, NREM3 and REM as Sleep.

https://github.com/wadpac/SleepStageClassification


Example data
An example of preprocessed accelerometer data over one night is shown in Figure 1 with sleep stages estimated using PSG
(gold standard criterion) and nonwear periods detected based on study protocol as described in the main manuscript. Time
intervals outside the PSG experiment and not detected as nonwear are unlabeled.

Figure 1. An example of a participant’s preprocessed accelerometer data with polysomnography (PSG) derived sleep stages
and heuristically detected nonwear periods. Each horizontal block of data represents 2 hours and 15 minutes of accelerometer
data. Red, green and blue signals indicate the three axes (ax,ay,az) of the accelerometer.

2 Datasets
We used three datasets collected from both poor and healthy good sleepers in our experiments. The datasets include raw
accelerometer data collected for one or two nights and polysomnography (PSG) assessment over that period. The PSG
assessments, made every 30 seconds, are used as gold-standard labels for different sleep stages in our experiments.

Newcastle
The Newcastle dataset6 consists of accelerometer data collected from 28 sleep clinic patients scheduled for polysomnography
(PSG) assessment at the Freeman Hospital, Newcastle upon Tyne, UK. The sleep clinic patients were aged between 21 and 72
years (mean±sd: 45±15 years) with sleep disorders such as hypersomnia, insomnia, REM behaviour disorder, sleep apnoea,
narcolepsy, sleep apnoea, parasomnia, restless leg syndrome, sleep paralysis, and nocturnia. The accelerometer data and PSG
assessment were collected for one night. All 28 patients had data collected for the left wrist while only 27 patients had data
collected for the right wrist. For a more detailed description see7.

Pennsylvania
The Pennsylvania dataset8 consists of data from 22 healthy sleepers scheduled for PSG assessment at the University of
Pennsylvania Center for Sleep. The participants were aged between 18 and 35 years (mean±sd: 22.8±4.5 years). The
accelerometer data and PSG assessment were collected for one night from the non-dominant wrist of all participants. For a
more detailed description see9.
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(a) Newcastle (b) Pennsylvania (c) Amsterdam

Figure 2. Wakefulness and sleep stage distributions in the datasets

Table 1. Samples per class in the datasets

Dataset Nonwear Wake Sleep NREM 1 NREM 2 NREM 3 REM Total

Newcastle 12974 16044 38013 2868 19827 9428 5890 67031
Pennsylvania 166473 2290 15480 1560 8644 2451 2825 184243
Amsterdam 128866 24062 145122 7596 70334 37947 29245 298050

Amsterdam
The Amsterdam dataset consists of data collected from 114 individuals recruited by the VU University Medical Center,
Amsterdam, The Netherlands10. The participants were screened using online questionnaires and telephone interviews resulting
in two groups of participants based on Insomnia Severity Index (ISI). The group with insomnia disorder (ISI≥ 10) consists of 58
participants aged 21 to 69 years. The other group consists of 56 healthy sleepers (ISI < 10) aged 22 to 70 years. Accelerometer
data and PSG assessment were collected for one or two nights.

The wakefulness and sleep stage distributions among the assessed 30 second intervals for all three datasets are shown in
Figure 2. Table 1 shows the number of samples per class for all three datasets.

For our experiments, the above three datasets are pooled and split into Train and Test partitions to train and evaluate our
machine learning models. The demographics of both partitions are shown in Table 2 based on users who have this data reported.
The wakefulness and sleep stage distributions for Train and Test partitions are shown in Figure 3. Table 3 shows the number of
samples per class for both partitions.

2.1 Nap detection in Whitehall II Study, United Kingdom
To gain better insight in the potential of nap detection we looked at data from the Whitehall II Study in the United Kingdom7.
Participants were asked to fill in a Stress and Health survey11 and were then asked to wear an accelerometer on their wrist for
nine days. Question 57 of the Stress and Health11 survey asks the participant about their napping behavior: "Do you doze or
take a nap anytime during the day or behfore you go to bed?", and if answered with Yes the participant is asked to indicate the
frequency and average duration of the naps based on 4 and 5 Likert scale, respectively. From this habitual weekly napping
duration can be estimated by multiplying the frequency and average duration of naps. Out of the 4021 individuals for with
both questionnaire data and at least two week- and two weekend days with accelerometer data for at least 16 hours per day we
took a random sample of 20 individuals who do not report to take naps. Additionally we took 10 random individuals from
each of the four nap frequency categories and each of the five nap duration categories. Age: 69.7 years (Inter quartile range:
64-74). Body Mass Index: 26.35 kg/m2 (Inter quartile range: 23.6-28.7). From these 20 individual reported to take no naps,

Table 2. Demographics of the Train and Test partitions

Partition Healthy Poor Male Female Age

Train 64 70 49 82 18-72
Test 16 8 12 12 19-68
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(a) Train (b) Test

Figure 3. Wakefulness and sleep stage distributions in the Train and Test partitions

Table 3. Samples per class in the Train and Test partitions

Partition Nonwear Wake Sleep NREM 1 NREM 2 NREM 3 REM Total

Train 264800 35355 167969 10094 83366 41729 32780 468124
Test 44481 7041 30646 1930 15439 8097 5180 82168

and the distribution across the four nap frequency categories was: 21, 27, 29, and 12. The distribution across the four duration
categories was: 32, 24, 13, 10, and 10.

3 Sleep-Wake classification

Performance scores aggregated by user
The performance scores for Sleep-Wake classification, F1-score, Average Precision and Kappa score, were averaged over users
(unlike over cross-validation folds in the main paper) and the results are reported in Table 4.

Precision-Recall curves
The precision-recall curves for Wake and Sleep classes are shown in Figures 4 and 5.

Feature importances
The important features for Sleep-Wake classification are shown in Figure 6.

Table 4. Binary Sleep-Wake classification aggregated by user
F1 - F1-score, AP - Average Precision

Approach Outer Cross-validation Test
F1 (%) AP (%) Kappa F1 (%) AP (%) Kappa

Sadeh 65.15 ± 10.51 61.72 ± 7.78 0.33 ± 0.18 66.56 ± 13.38 63.10 ± 9.92 0.36 ± 0.24
Cole-Kripke 64.82 ± 10.50 61.29 ± 7.71 0.33 ± 0.18 66.29 ± 13.07 62.75 ± 9.74 0.36 ± 0.23
vanHees 65.95 ± 9.91 60.01 ± 8.15 0.33 ± 0.19 67.90 ± 11.36 62.20 ± 9.64 0.37 ± 0.22
Random Forests 71.09 ± 11.41 77.69 ± 11.95 0.44 ± 0.21 70.93 ± 11.25 79.21 ± 11.29 0.43 ± 0.21
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(a) Outer Cross-validation (b) Test

Figure 4. Sleep-Wake classification: Precision-Recall curves for Wake

(a) Outer Cross-validation (b) Test

Figure 5. Sleep-Wake classification: Precision-Recall curves for Sleep

4 Nonwear classification
Performance scores aggregated by user
The performance scores for Nonwear-Wear classification, F1-score, Average Precision and Kappa score, were averaged over
users and the results are reported in Table 5.

Precision-Recall curves
The precision-recall curves for Nonwear and Wear classes are shown in Figures 7 and 8.

Feature importances
The important features for nonwear classification are shown in Figure 9.

5 Sleep stage classification
The sleep stage classification performance metrics across the five outer folds are averaged and reported in Table 6. Similarly,
the precision-recall curves for five classes are shown in Figures 10, 11, 12, 13 and 14. The important features for sleep stage
classification averaged across all folds are shown in Figure 16. It can be observed that statistical measures for LIDS and Z-angle
are the most important features for sleep stage classification across all three datasets.
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Figure 6. Random Forests feature importances for binary classification

Table 5. Binary Nonwear-Wear classification aggregated by user
F1 - F1-score, AP - Average Precision

Approach Outer Cross-validation Test
F1 (%) AP (%) Kappa F1 (%) AP (%) Kappa

Random Forests 83.66 ± 11.35 90.29 ± 10.03 0.68 ± 0.21 81.77 ± 13.15 91.57 ± 12.38 0.64 ± 0.26

(a) Outer Cross-validation (b) Test

Figure 7. Precision-Recall curves for Nonwear

6 Nap classification

The data points corresponding to the comparison between self-reported habitual nap duration per week and accelerometer-based
estimates as discussed in the main paper are shown in Figure 17.
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(a) Outer Cross-validation (b) Test

Figure 8. Precision-Recall curves for Wear

Figure 9. Random Forests feature importances for nonwear classification

7 Sleep-Wake classification using Deep learning

We investigated sleep classification with learned features from raw data using a convolutional residual neural network12. Raw
accelerometer signals (ax,ay,az) and the three derived feature signals, ENMO, Z-angle and LIDS, were used as input feature
channels. Each sample spans a time interval of 30 seconds and the signals were resampled to 50Hz before being fed to the
neural network.

The residual network shown in Figure 18 starts with a 1-dimensional convolution layer with 32 7×1 filters and a stride of 2.
This was followed by a convolutional residual block and two identity residual blocks with 16,16 and 32 filters of size 3×1
each. The output of the residual blocks was fed to a 1-dimensional max-pooling layer. It was followed by a fully connected
layer and a softmax classification layer.

The network layers were initialized using Glorot uniform initializer. The network parameters were constrained using a
max norm constraint to prevent overfitting. LeakyReLU activations were used throughout the network with α = 0.1. We used
batch renormalization layers13 since our data is not i.i.d, i.e. time series data split up into samples spanning 30 seconds each.
The network was trained with renormalization turned off (r = 1,d = 0) for the first epoch and momentum = 0.9. From second
epoch, r was gradually increased to 2 and d was increased to 4 over the next two epochs.
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Table 6. Sleep stage classification
F1 - F1-score, AP - Average Precision

Dataset F1 (%) AP (%)

Outer Cross-validation 33.53 37.59
Test 34.49 36.58

(a) Outer Cross-validation (b) Test

Figure 10. Sleep stage classification: Precision-Recall curves for Wake

(a) Outer Cross-validation (b) Test

Figure 11. Sleep stage classification: Precision-Recall curves for NREM 1

The network was optimized using Adam optimization algorithm14. Instead of the cross-entropy loss functions, we used the
custom focal loss function as our objective function since it has been shown to be effective for highly imbalanced scenarios like
object detection15. Let p be the estimated probability of a sample belonging to class with label y = 1. Let

pt =

{
p, if y = 1
1− p, otherwise

(1)

The focal loss is given by

FL(pt) =−αt(1− pt)
γ log(pt) (2)
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(a) Outer Cross-validation (b) Test

Figure 12. Sleep stage classification: Precision-Recall curves for NREM 2

(a) Outer Cross-validation (b) Test

Figure 13. Sleep stage classification: Precision-Recall curves for NREM 3

where α ∈ [0,1] is the weighting factor for classes and γ ≥ 0 is the focusing factor. The focusing factor increases the loss for
samples with low predicted probabilities (i.e. hard examples) thereby making the model focus more on hard samples. In our
experiments, we used γ = 2.0 and α = 1.0.

We used a five-fold nested cross-validation approach to determine sleep classification performance using Resnets. Similar
to the dataset partitioning described in the main paper, in the outer fold, the data is split into training and test partitions such that
users in both partitions do not overlap in each fold. The training partition is further divided into training and validation data (4:1)
such that the validation data is used to chose the optimal hyperparameters and best trained model. The tuned hyperparameters
include the learning rate, maxnorm constraint,dropout rate and the number of hidden units in the penultimate dense layer. The
model was trained with a batch size of 64 for 50 epochs. During training, we used data augmentation to make our model robust
to various perturbations. Transformations such as jitter, time warping, accelerometer rotation and random sampling were used
to augment the data. During training, the samples were shuffled every epoch and each minibatch was balanced to have similar
number of samples from both classes.

Resnets were trained and evaluated using only the Amsterdam dataset. The van Hees approach and Random Forests
approach were used to determine the effectiveness of Resnets using the same dataset. The classification performance metrics
across the five outer folds are averaged and reported in Table 7. The precision-recall curves for Wake and Sleep classes are
shown in Figure 19.

It can be seen that Random Forests approach performs better than the heuristic vanHees approach and Resnets. Specifically,

9/13



(a) Outer Cross-validation (b) Test

Figure 14. Sleep stage classification: Precision-Recall curves for REM

(a) Outer Cross-validation (b) Test

Figure 15. Confusion matrices for Sleep stage classification

the classification performance of all three approaches are similar for the Sleep class whereas Random Forests perform better at
Wake prediction than other two approaches. Resnets seem to struggle with Wake prediction for the Amsterdam dataset in which
Wake samples constitute only 14% of the data. In spite of balancing classes with data augmentation during training, Resnets
fail to be effective for Wake prediction.

A possible explanation for the poor performance of our deep learning approach is the use of a 30 second window, by which
only signal features shorter than 30 seconds can be learnt. The choice for a 30 second window was driven by computational
constraints. The larger the window size the longer the training process. A more powerful computational infrastructure capable
of handling larger time windows is desirable.
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Figure 16. Random Forests feature importances for sleep stage classification

Figure 17. Comparison self-reported and accelerometer-based estimate of nap duration (r=0.60, p < .001). Dashed line: line
of identity.
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Figure 18. Residual network for sleep stage classification

Table 7. Sleep-Wake classification
F1 - F1-score, AP - Average Precision

Approach Amsterdam
F1 (%) AP (%)

vanHees 70.37 67.51
Random Forests 73.01 76.78
Resnets 68.32 72.09

(a) Wake (b) Sleep

Figure 19. Sleep-Wake classification: Precision-Recall curves using Resnets
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