- ¹ **Supplementary Information:**
- ² **Properties and dynamics of meron topological spin textures**
- ³ in the two-dimensional magnet CrCl₃
- 4 Mathias Augustin¹, Sarah Jenkins², Richard F. L. Evans², Kostya S. Novoselov^{3,4} & Elton J. G.

Santos $5,^{\dagger}$ 5

- 1 School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, UK
- 7^{2} Department of Physics, The University of York, York, YO10 5DD, UK
- 3 Department of Material Science & Engineering, National University of Singapore, Block EA, 9
- ⁹ Engineering Drive 1, 117575, Singapore
- ¹⁰ ⁴Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing 400714, China
- $_{11}$ ⁵ Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy,
- 12 The University of Edinburgh, EH9 3FD, UK.
- [†] Corresponding author: esantos@ed.ac.uk

¹⁴ Contents

¹⁵ [1 Computational details](#page-2-0) 3

¹⁶ [2 Simulation movies](#page-3-0) 4

²⁰ 1 Computational details

21 **Ab initio methods:** First-principles calculations were performed using the projector-augmented ²² wave (PAW) method in the framework of density-functional theory (DFT), as it implemented in the 23 VASP code^{[1](#page-22-0)}. The lattice parameters were optimized with a variable cell-shape relaxation method ²⁴ to minimize forces and internal pressure. The electron-ion interaction was described by means [2](#page-22-1)5 of PBE functional², where a plane wave kinetic energy cutoff was set to 500 eV. The tetrahedron 26 method with Blöchl corrections and Γ -centered k-points meshes $15 \times 15 \times 1$ were used for inte-₂₇ gration in the irreducible Brillouin zone. This ensures a convergence of total energy to less than $_{28}$ 10⁻⁶ eV/atom. We have taken into account strong correlation corrections in the frame of GGA+U 29 simplified scheme introduced by Dudarev et al.^{[3](#page-22-2)}. We used an effective Hubbard $U_{eff} = U − J$ 30 which values were previously obtained using linear response method^{[4](#page-22-3)} for CrCl₃ of 2.63 eV.

31 **Atomistic approximations:** Curie temperature calculations based on DFT simulations were mapped 32 onto spin Hamiltonians by calculating total energies of different spin configurations in the 2×2 su- 33 percell as described in Ref.^{[5](#page-22-4)}. The magnetization as a function of temperature were calculated by ³⁴ using Monte Carlo method in the frame of the developed version of the Vampire atomistic spin dy-³⁵ namics package ^{[6](#page-22-5)}. A 288 \times 166 \times 1 model super-cell (191232 sites in total) based on the rectangular ³⁶ unit cell of honeycomb lattice (4 sites) with periodic boundary conditions was used.

³⁷ The spin dynamics calculations are performed using atomistic spin dynamics within the 38 stochastic Landau-Lifshitz-Gilbert equation^{[7](#page-22-6)} integrated with the Heun numerical scheme and 1 39 fs timestep ^{[6](#page-22-5)}. Equilibrium temperature dependent properties are computed using the Monte Carlo

 Metropolis method integrated with the adaptive move algorithm^{[8](#page-23-0)}. The dipole field contributions $_{41}$ are computed using the macrocell approximation^{[9](#page-23-1)} with a 1 nm cell size and refined using a paral-⁴² lel fully atomistic dipole-dipole field calculation. A gyromagnetic ration of 1.76 T⁻¹s⁻¹ is used 43 throughout the simulations. The atomistic calculation utilizes a recently implemented massively ⁴⁴ parallel algorithm allowing such calculations with full generality and high accuracy^{[10](#page-23-2)}.

2 Simulation movies

⁴⁷ Movie S1: Spin dynamics showing the cooling down process at zero magnetic field from 80 K 48 down to 0 K for monolayer $CrCl₃$.

Movie S2: Similar as the Movie S1, but at a 50 mT magnetic field.

Movie S3: Similar as the Movie S1, but at a 500 mT magnetic field.

 Movie S4: Spin dynamics at zero field and 0 K showing the collision process between a vortex and an antivortex since the early times when both are relatively isolated till they collapsed. Two antimerons are involved in this process.

Movie S5: Similar as Movie S4, but involving a meron and a antimeron.

⁵⁵ Movie S6: Macro-dynamics of the magnetic domains showing the movement of the vortex and antivortex at the boundary between domain structures. The colors of the vortex and antivortex ⁵⁷ (blue and red) are kept the same as the one for the *S^y* component of the magnetization to simplify the analysis. However, the core of the spin textures are primarily composed by out-of-plane spins as highlighted in Figure [2.](#page-13-0)

- ⁶⁰ Movie S7: Spin dynamics showing the cooling down process at zero magnetic field from 80 K ⁶¹ down to 0 K for monolayer CrI₃.
- ⁶² Movie S8: Spin dynamics showing the cooling down process at zero magnetic field from 60 K
- 63 down to 0 K for monolayer CrBr₃.
- 64 Movie S9: Spin dynamics showing the cooling down process at zero magnetic field from 80 K
- ⁶⁵ down to 0 K for monolayer CrF₃.
- 66

Figure S1: Calculated relative magnetization (a.u.) versus temperature (K) for monolayer CrCl₃ (blue triangles). Fit curve is obtained by using equation $M(T) = (1 - T/T_c)^{\beta}$, where T_c is the critical temperature and β the critical exponent. Converged values of T_c in Kelvin and β are included in the plot.

 67 3 Calculation of the meron and anti-meron radius

⁶⁸ The estimation of the full width at half maximum is done by fitting Pearson type VII function with $m = 3$ to our S^z data profile:

$$
f(x) = I_{max} \left[1 + 4\left(2^{\frac{1}{3}} - 1\right) \left(\frac{x - x_0}{w_F} \right)^2 \right]^{-3} \tag{1}
$$

⁷⁰ where I_{max} is the maximum value of the peak, x_0 is the center of the peak and w_F is the 71 FWHM. The fitting immediately gives the FWHM but to extract the radius of the bubble, we have τ_1 to find the x_{lim} s.t. $f(x < x_{lim}) < \alpha$, with α an arbitrary small value (we choose $\alpha = 10^{-2}$). Thus ⁷³ we need to solve the equation:

Figure S2: Spin dynamics of monolayer CrCl₃ at different magnitudes of magnetic field and temperatures: a-c 5 mT and **d-f** 10 mT. The out-of-plane spin component S^z is utilized to follow the nucleation of meron and antimerons across the surface (bright and dark dots).

Figure S3: Spin dynamics of monolayer CrCl₃ at different magnitudes of magnetic field: 100 mT, 150 mT, 175 mT and 200 mT. The out-of-plane spin component S_z is utilized to follow the nucleation of meron and antimerons across the surface. At 100 mT, all nucleated spin textures have similar polarization $(S_z = 1)$ with features following those at lower fields. For magnetic fields beyond 150 mT there is no formation of spin quasiparticles as all domains are strongly field polarized. A different scale colour (red-blue) is utilized for fields larger than 150 mT to allow observations of further features in the spin dynamics. Such colour scale is instrumental to identify small variations of S^z throughout the surface.

Figure S4: We estimated the critical magnetic field for monolayer CrCl₃ performing simulations on the hysteresis curve on one side of the full loop. The simulation were done with a starting field of 0 mT to a final 0.235 mT with an increment of 0.0005mT.

$$
\alpha = I_{max} \left[1 + 4 \left(2^{\frac{1}{3}} - 1 \right) \left(\frac{x_{lim} - x_0}{w_F} \right)^2 \right]^{-3}
$$

\n
$$
\Rightarrow w_F^2 + (x_{lim} - x_0)^2 = \alpha^{-\frac{1}{3}} w_F^2 I_{max}^{\frac{1}{3}}
$$

\n
$$
\Rightarrow 0 = x_{lim}^2 - 2x_{lim}x_0 + x_0^2 + w_F^2 \left(1 - \alpha^{-\frac{1}{3}} I_{max}^{\frac{1}{3}} \right)
$$
(2)

and thus we find:

$$
x_{\lim}^{\pm} = x_0 \pm w_F \sqrt{\alpha^{-\frac{1}{3}} I_{max}^{\frac{1}{3}} - 1}
$$
 (3)

and

$$
R = \frac{x_{\text{lim}}^+ - x_{\text{lim}}^-}{2} = w_F \sqrt{\alpha^{-\frac{1}{3}} I_{\text{max}}^{\frac{1}{3}}} - 1 \tag{4}
$$

74 4 Computing the topological quantum number

In the continuum case the topological charge Q is:

$$
Q = \frac{1}{4\pi} \int d^2 r \left(\frac{\partial s}{\partial x} \times \frac{\partial s}{\partial y} \right) \cdot s \tag{5}
$$

⁷⁵ where *s* is the three-component spin field. This charge can also be defined for a lattice spin field *S* ⁷⁶ :

$$
Q = \frac{1}{4\pi} \sum_{\Omega} \left[\Omega(\mathbf{S}_1, \mathbf{S}_2, \mathbf{S}_3) + \Omega(\mathbf{S}_1, \mathbf{S}_3, \mathbf{S}_4) \right]
$$
(6)

with $\Omega(\mathbf{S}_1, \mathbf{S}_2, \mathbf{S}_3)$ denoting the signed area of the spherical triangle with corner $\mathbf{S}_1, \mathbf{S}_2, \mathbf{S}_3$. ⁷⁸ The convention we used for the signed area is shown in Fig[.S5](#page-11-0) with the blue and red triangle. ⁷⁹ The topological charge is obtained by gluing together all elementary triangles (the blue and red 80 triangles in Fi[gS5](#page-11-0) are elementary triangles). The formula to compute the signed area Ω with unit \sin spin vectors^{[1](#page-10-0)} is ^{[12](#page-23-3)}:

$$
\exp\left(i\frac{\Omega(\mathbf{S}_1,\mathbf{S}_2,\mathbf{S}_3)}{2}\right) = \rho^{-1}\left[1+\mathbf{S}_1\cdot\mathbf{S}_2+\mathbf{S}_2\cdot\mathbf{S}_3+\mathbf{S}_3\cdot\mathbf{S}_1+i\mathbf{S}_1\cdot(\mathbf{S}_2\times\mathbf{S}_3)\right]
$$
(7)

where

$$
\rho = \left[2\left(1 + \mathbf{S}_1 \cdot \mathbf{S}_2\right)\left(1 + \mathbf{S}_2 \cdot \mathbf{S}_3\right)\left(1 + \mathbf{S}_3 \cdot \mathbf{S}_1\right)\right]^{\frac{1}{2}}
$$

the previous equation can be written as:

$$
\tan\left(\frac{\Omega(\mathbf{S}_1,\mathbf{S}_2,\mathbf{S}_3)}{2}\right) = \frac{\mathbf{S}_1\cdot(\mathbf{S}_2\times\mathbf{S}_3)}{1+\mathbf{S}_1\cdot\mathbf{S}_2+\mathbf{S}_2\cdot\mathbf{S}_3+\mathbf{S}_3\cdot\mathbf{S}_1}
$$
(8)

 ϵ_{22} This kind of topological charge on honeycomb/hexagonal lattice was done in 13 13 13 and it gives 83 the expected results for skyrmions.

84 To compute the topological charge of our bubbles we wrote a code:

⁸⁵ • First we create a file containing only one bubble with the coordinate order in x. This gives a ⁸⁶ number of rows with the same x and different y coordinates as shown in Fig. [S5](#page-11-0) (the i, i+1, 87 etc).

¹We use this formula because vampire outputs unit vectors, one can find a more general formula in 11

Figure S5: Honeycomb lattice showing spins S_i ($i = 1, 2, 3, 4$) following a counter-clockwise order on each triangle grid. The different sites are denoted by *j*, *k* and *i* indexes.

99 5 Spin dynamics on other Cr-trihalide materials: CrX_3 (X=F, Br, I)

 $2S_1$ and S_2 are second nearest neighbour in a honeycomb lattice

Figure S6: Snapshot of a magnetic domain configuration on monolayer CrCl₃ projected on in-plane spin components: *S x* and *S y* . The small circles (blue and red) show the different spin textures stabilized during the cooling process.

Figure S7: a)-d) Spin dynamics of monolayer CrCl₃ without taking into account dipole-dipole interactions at zero field and at different temperatures. As the system cools down, there is no appearance of topological spin-textures over the surface. The small bubbles observed in d) disappeared at longer times. Interestingly, the magnetic domains have out-of-plane magnetization following the single ion anisotropy. Only the *S*^{*z*} component is showed similarly as in Figure [1.](#page-13-1)

Figure S8: Zero-field cooling simulations for monolayer CrI₃ from temperatures above the Curie temperature (64 K) till 0 K. We use similar setup as those for monolayer CrCl₃. The out-of-plane component of the magnetization (S^z) is displayed in the plots. Dark/bright areas correspond to spins point either up or down to the surface.

Figure S9: Zero-field cooling simulations for monolayer CrB₃ from temperatures above the Curie temperature (60 K) till 0 K. We use similar setup as those for monolayer CrCl₃. The out-of-plane component of the magnetization (S^z) is displayed in the plots. Dark/bright areas correspond to spins point either up or down to the surface. The scale bar is 100 nm.

Figure S10: Zero-field cooling simulations for monolayer CrF₃ from temperatures above the Curie temperature (80 K) till 0 K. We use similar setup as those for monolayer CrCl₃. The out-of-plane component of the magnetization (S*z*) is displayed in the plots. Dark/bright areas correspond to spins point either up or down to the surface. Due to the anti-ferromagnetic character of the exchange coupling in CrF₃ the magnetic domains look differently than thee other Cr-trihalides.

Figure S11: Snapshot of a spin dynamics of CrCl₃ at 8 K without considering dipolar interactions at any direction but setting an easy-plane (XY) for the magnetic anisotropy^{[14,](#page-23-6) [15](#page-24-0)}.

Figure S12: Snapshot of a spin dynamics of CrCl₃ at different temperatures (10 K, 5 K, 0 K) without considering second- and third-nearest neighbours (J_{2nd} , J_{3rd} , $λ_{2nd}$, $λ_{3rd}$) but including dipolar interactions and biquadratic exchange into the simulations. There is no formation of vortex or antivortex spin textures throughout the system at this level of theory.

Figure S13: Snapshot of a spin dynamics of CrCl₃ at 8 K without considering biquadratic exchange but including up to third-nearest neighbours on bilinear exchange and dipolar interactions. The formation of merons and antimerons become more chaotic on the spin patterns.

Figure S14: **a-b,** Snapshots of a spin dynamics of CrCl₃ at 0 K taking into account Dzyaloshinskii-Moriya interaction (DMI) with $A = 0.05$ mev and $A = 0.1$ meV, respectively. DMI is included in Eq. [1](#page-0-0) via an additional term given by $A\sum_{i,j}(S_i \times S_j)$, where *A* is the strength of DMI and $S_{i,j}$ the spin vectors. We considered DMI perpendicular to the surface at second nearest neighbours since there is none at the first-nearest neighbours due to the symmetry of the lattice. The out-of-plane component of the magnetization S^z is utilized for following the evolution of the spin-textures. We have observed no modifications of the dynamics of merons and antimerons in monolayer $CrCl₃$ with the inclusion of DMI.

Figure S15: Snapshot of a spin dynamics of CrCl₃ at 0 K considering a single-ion anisotropy slightly larger (36 μ eV) than that considered in the other simulations (12.67 μ eV) in this study. The fluctuations are still present but now with all spins pointing out-of-plane along S*^z* with no formation of merons or antimerons.

References

