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Supplementary Methods and Results 
Literature review 
We searched for published studies that compared BMI, overweight or obesity rates between individuals with AD and 
controls. All studies identified in a PubMed search were considered for review. PubMed was searched on 18/11/2016 
with the terms “(eczema OR atopic dermatitis AND (obesity OR overweight OR BMI)”. We included studies with any 
operationalized definition of AD, since ‘atopy’ is often not clearly defined. We also included studies with cases 
meeting this definition of AD plus a control group without AD; that presented data for a BMI-related trait within the 
AD and control groups. Studies were excluded if they did not present data for both groups; if they matched individuals 
with AD and controls on BMI; or if cases and controls were both drawn from a disease sub-population. We did not 
exclude studies where participants may have had incidental comorbidities. We extracted the location of the study, the 
study name (if applicable), age of the study population, features of the control group (for example, if they were drawn 
from another dermatological population), the type of study, how AD was defined (if it was current, recent, or lifetime 
disease), the covariates used in the analysis, and the definition of overweight and/or obesity used by the study.  
The definitions used for obesity and being overweight were based on international guidelines1 or study-specific 
thresholds. Where stated, for the majority of studies BMI greater than 25 kg/m2 was used to define being overweight, 
while BMI greater than 30 kg/m2 was used to define obesity. 

 
Figure E1. Flow diagram summarising literature review 
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Six studies reported the mean difference in BMI between AD cases and controls (Table E1). These studies showed 
mixed results, but the majority (4 out of 6) reported mean BMI to be lower in AD cases compared to controls. 
Kusunoki et al. reported the odds of AD in children to be 1.02 per 1 kg/m2 increase in BMI,2 and the same direction of 
effect was observed in overweight and obese children (Fig 2). The remaining 5 studies reported the odds of AD with 
higher BMI (Table E2), where the majority (4 out of 5) estimates gave evidence of increased AD risk. 
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Figure E2. Observational association between being overweight and having AD: meta-analysis of the odds of AD in 
overweight individuals. CI, confidence interval; OR, odds ratios; top forest plot shows studies of adults, lower plot shows studies 
of children, final estimate is meta-analysis of both sets of data. 

 
Figure E3. Observational association between obesity and AD: meta-analysis of the odds of AD in obese individuals. 
CI, confidence interval; OR, odds ratio; top forest plot shows studies of adults, lower plot shows studies of children, final estimate is 
meta-analysis of both sets of data.  
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Table E1. Reviewed studies reporting the 
difference in BMI (kg/m2) between AD cases 
and controls. CI, confidence interval; *Unable to 
estimate 95% confidence interval; +Mean 
difference in BMI z-score. 

 
 

 

 
Table E2. Reviewed studies reporting the 
odds of AD per unit increase in BMI (kg/m2)  
CI, confidence interval; *per unit increase in BMI z-
score; **per unit increase in BMI standard 
deviation score  
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Meta-analysis of published studies 
All data pertaining to BMI and AD were extracted and a meta-analysis was performed for the definition with the most 
available data, this being the odds of AD in overweight and/or obese individuals. This analysis represents an update of 
the 2015 review by Zhang et al.3 The meta-analysis was conducted separately for children and adults, as well as 
combined. A random effects model was used due to the inclusion of heterogeneous populations and study designs 
being meta-analysed.  
The overall OR for AD in overweight individuals was 1.05 (95% CI 0.94 to 1.19) in adults (n=51,008) and 1.08 (95% CI 
1.00 to 1.16) in children (n=506,202) (Figure E2). For obese individuals, the OR for having AD was 1.19 (95% CI 0.95 to 
1.49) in adults (n=1,400,679) and 1.20 (95% CI 1.11 to 1.30) in children (n=796,514) (Figure E3). Where stated, children 
were defined as those under 18 years of age, although one paediatric study included individuals aged up to 19 years.4 
Adults were defined as those aged 18 years and above in studies where this had been described.  

Observational analysis using UK Biobank and HUNT datatsets 
Clinical outcomes 
The BMI of UK Biobank participants was calculated from standing height and weight measurements that were taken 
while visiting an assessment centre. Individuals were defined as having atopic dermatitis (AD) based on their response 
during a verbal interview with a trained member of staff at the assessment centre. Participants were asked to tell the 
interviewer which serious illnesses or disabilities they had been diagnosed with by a doctor and were defined as AD 
cases if this disease was mentioned. Disease information was also obtained from the Hospital Episode Statistics (HES) 
data extract service where health-related outcomes had been defined by International Classification of Diseases (ICD)-
10 codes (Table E3). Additionally, if any had answered “yes” to “Has a doctor ever told you that you have hay fever, 
allergic rhinitis or eczema”, then these individuals were excluded from the AD controls. 

 

Table E3. International Classification of Diseases (ICD)-10 codes 
used to obtain disease information for AD (eczema; atopic 
eczema; atopic dermatitis) from the UK Biobank resource 
 

Within HUNT, participants’ height and weight were measured and used to calculate BMI (kg/m2). Participants were 
defined as AD cases based on their response to a general questionnaire sent to all HUNT participants. AD cases 
responded affirmatively to both “Have you had or do you have any of the following diseases: Eczema on hands” and 
“Did you have eczema when you were a child? (also called atopic eczema)”. In addition, cases were obtained from the 
Nord-Trøndelag Health Trust which includes the two hospitals (Levanger and Namsos) in the study area, and the 
General Practitioner records. Disease classifications are shown in Table E4. 

  

Study Age group Mean difference (95% CI) 
Ellison (Males), 2006 Children 0.44* 
Ellison (Females), 2006 Children -0.18* 
Kusunoki, 2008 Children -0.10 (-2.47, 2.27) 
Machura, 2013 Children -0.66 (-4.89, 3.57) 
Kim, 2015 Adults -0.06 (-3.89, 3.77) 
Lee (Males), 2016 Adults -0.20 (-6.66, 6.26) 
Lee (Females), 2016 Adults 0.60 (-4.67, 5.87) 
D’Auria, 2017 Children -0.05*+ 

Study Age group OR (95% CI) 
Lee, 2001 Children 1.29 (1.15, 1.44) 
Irei, 2005 Children 1.02 (0.70, 1.47) 
Purvis, 2005 Children (BMI >18 kg/m2) 0.28 (0.07, 1.16) 
Murray, 2010 Children 1.79* (1.03, 3.13) 
Byberg, 2016 Children 1.32** (1.06, 1.65) 

Phenotype ICD10 codes 
Atopic dermatitis L20 
Besnier’s prurigo L20-L200 
Other atopic dermatitis L20-L208 
Atopic dermatitis, unspecified L20-L209 
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Table E4. International Classification of Diseases 
(ICD) and International Classification of Primary 
Care-2 (ICPC-2) codes used to obtain disease 
information for AD (eczema; atopic eczema; 
atopic dermatitis) from the HUNT study 

Confounder variables 
Within UK Biobank, confounders that were considered in the current study were age, sex, smoking status, alcohol 
intake and educational attainment. The age and sex of participants were baseline characteristics determined at 
recruitment. The information on age was coded and analysed as a continuous variable, while sex was analysed as a 
binary variable. Smoking status, alcohol intake and educational attainment were defined by responses to a 
touchscreen questionnaire. The smoking status of participants was summarised as being a current or previous smoker, 
or never smoked, where this information was coded into a categorical variable. Alcohol intake frequency was 
determined by asking participants “about how often do you drink alcohol?”, where options included “Daily or almost 
daily”, “Three or four times a week”, “One to three times a month”, “Special occasions only” and “Never”. This 
information was categorised for daily, weekly and monthly alcohol intake. Educational attainment was also defined by 
asking “which of the following qualifications do you have?”, where participants could select more than one option 
including “College or University degree”, “A levels/AS levels or equivalent”, “O levels/GCSEs or equivalent”, “CESs or 
equivalent”, “NVQ or HND or HNC or equivalent”, “Other professional qualifications eg: nursing, teaching”, or “None 
of the above”. Participant responses were coded into categorical variables for degree holders, those who had 
completed advanced level studies (A-level) or had obtained their general certificate of secondary education 
(GCSE).   Within HUNT, confounders considered in the current study were age, sex, smoking status and alcohol intake. 
Information on educational attainment was not available in the third survey of the HUNT study. The age and sex of 
participants were determined at the time of participation. The information on age was coded and analysed as a 
continuous variable, while sex was analysed as a binary variable. Smoking status and alcohol intake were defined by 
the participants’ response to a questionnaire. Smoking status was defined as being never, former, occasional, or 
current smoker. Alcohol intake frequency was determined by asking participants “about how often in the last 12 
months did you drink alcohol?”, where options included “4-7 times a week”, “2-3 times a week”, “about once a 
month”, “a few times a year”, “not at all last year” and “never drunk alcohol”.   

Meta-analysis 
Within the UK Biobank and HUNT datasets, logistic regression models were used to estimate the observational 
association between BMI and AD. This analysis was performed for all individuals, as well as for overweight (25 
kg/m2<BMI<30 kg/m2) and obese (BMI>30kg/m2) individuals alone. Analyses were adjusted for age, sex, smoking 
status, alcohol intake and educational attainment (where information on education was available in UK Biobank only). 
The estimates for each dataset were meta-analysed assuming a random effects model to account for heterogeneity. 

Results 
There was very little evidence of an association between BMI and AD in UK Biobank, but some evidence within the 
HUNT dataset (Figure E4). Upon meta-analysis, the OR of AD per 1 kg/m2 higher BMI was 1.01 (95% CI 1.00 to 1.01; 
P=0.26). Among overweight individuals (BMI = 25 to 30 kg/m2), the OR of AD per 1 kg/m2 higher BMI was 1.02 (95% CI 
1.00 to 1.04; P=0.07; 4,820 cases; 130,776 controls). A similar estimate was found among obese individuals (BMI 
greater than 30 kg/m2) but with stronger evidence of an association (OR=1.02; 95% CI 1.01 to 1.03; P=3.3x10-4

; 2,741 
cases and 73,907 controls). 

 
Figure E4. Observational association between BMI upon AD in two population-based studies. Association analysis and 
meta-analysis of observational data from the UK Biobank and HUNT study, Norway. Observational analysis was restricted to 
individuals with complete information on potential confounders. Estimates are given per 1kg/m2 increase in BMI. CI, confidence 
interval. 

 
 

Phenotype ICD10  ICD9  ICPC-2 
Atopic dermatitis L20   
Other and unspecified dermatitis L30   
Atopic dermatitis and related conditions  691  
Atopic dermatitis/eczema   S87 
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Analysis of causal relationships 
Study populations and phenotypes 
Data were available, with written informed consent, for a total of 317,391 participants including 9,933 AD cases from 
the UK Biobank5 aged 40-69 years and 1,775 AD cases from the third survey of the Nord-Trøndelag Health Study, 
Norway6 (HUNT, 2006-08) aged 20 years and over (Table E5). AD in the UK Biobank was defined by patient-report of 
doctor diagnosis or hospital statistics using ICD-10 codes; in the HUNT study AD was defined by self-report and/or 
hospital statistics using ICD-9 and ICD-10 codes and/or diagnosed by general practitioners using ICPC-2 codes. Healthy 
controls were individuals from the same population-based studies, but without reported AD. All individuals included in 
this analysis were of white European ethnicity. The BMI (kg/m2) of UK Biobank and HUNT participants was calculated 
from height and weight measurements. UK Biobank is approved by the National Health Service National Research 
Ethics Service (ref 11/NW/0382; UK Biobank application number 10074); the HUNT Study was approved by the 
Regional Committee for Medical and Health Research Ethics (REC Central), which also gave specific approval for this 
study (2015/2003). Summary level data were available for 425,220 individuals of European ancestry from published 
GWAS studies for BMI7 (n=322,154) and AD8 (n=103,066) (Table E5).   

Table E5. Descriptive statistics of datasets used in the study. HUNT, Nord-Trøndelag Health Study; SD, standard deviation. 

Genotyping 
Genotyping of UK Biobank participants was performed with one of two arrays (Applied BiosystemsTM UK BiLEVE 
AxiomTM Array (Affymetrix) and Applied BiosystemsTM UK Biobank AxiomTM Array). Sample quality control (QC) 
measures included removing individuals who were duplicated and highly related (third degree or closer), had sex 
mismatches, as well as those identified to be outliers of heterozygosity and of non-European descent. Further details 
of the QC measures applied, and imputation performed have been described previously.9-11  
Genotyping of the HUNT participants was performed with one of three different Illumina HumanCoreExome arrays 
(HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0). The genotypes from different 
arrays had QC performed separately and were reduced to a common set of variants across all arrays. Sample QC 
measures were similar to those applied to the UK Biobank. Related individuals were excluded from the analysis 
(n=30,256). Details of the genotyping, QC and imputation are described elsewhere.12 

Genetic instruments 
The genetic instrument for BMI comprised the 97 BMI-associated SNPs reported by the GIANT consortium (a meta-
analysis of 125 GWAS studies with 339,224 individuals).7 We note that this study included 1,334 individuals from the 
HUNT dataset in their analysis. The 97 SNPs were extracted from both UK Biobank and HUNT datasets and combined 
to create a separate standardised genetic risk score (GRS) for each dataset using the --score command in PLINK 
(version 1.9). The dosage of the effect allele for each SNP was weighted by the effect estimates reported for the 
European sex-combined analysis (n= 322,154) by Locke et al,7 summed across all variants and divided by the total 
number of variants. The scores were standardized to have a mean of 0 and standard deviation of 1. One BMI-
associated SNP, rs12016871, was not present within the UK Biobank and HUNT datasets, therefore rs9581854 was 
used as a highly correlated proxy (r2 = 1.0). Of the 97 BMI SNPs, 22 are strongly associated with BMI in childhood13 and 
since AD is a predominantly paediatric disease we used these SNPs as genetic instruments for BMI in childhood. The 
associations of BMI genetic instruments with BMI in UK Biobank and HUNT and associations of BMI genetic 
instruments with atopic dermatitis (AD) in UK Biobank and HUNT (using BMI variants reported by Locke et al. 2015) 
are available in GitHub (https://github.com/abudu-aggrey/Eczema_BMI_MR).  
In addition, the BMI-associated SNPs most recently reported by Yengo et al14 were used as an updated genetic 
instrument for BMI, to include novel BMI variants which may strengthen the genetic instrument. However, this study 
included individuals from the UK Biobank and was therefore not our preferred genetic instrument for the main 
analysis. 
For the AD genetic instrument, 24 SNPs that had been reported within white European populations in the most recent 
AD GWAS (meta-analysis of 21,399 cases and 95,464 controls)8 were used. This GWAS did not contain individuals from 
UK Biobank or HUNT (Table E5). The associated SNPs were extracted from UK Biobank and HUNT datasets and 
combined to create a standardized GRS for each dataset, weighted by the published effect estimates reported for 
European individuals (18,900 cases; 84,166 controls).8 Within the HUNT dataset, the AD-associated SNP rs12153855 
was not present and no suitable proxy (r2 > 0.8) was found, therefore 23 SNPs were used to create the genetic 
instrument in the HUNT analysis. 

Dataset Sample size AD cases/controls (prevalence %) Females (%) Mean [SD] 
age (years) 

Mean [SD] BMI 
(kg/m2) 

UK Biobank 299,343 9,933 / 289,410 (3.3) 158,103 (52.8) 57 [8.0] 27.4 [4.8] 
HUNT 18,048 1,775/ 16,273 (9.9) 9,940 (55.1) 53.7 [15.2] 27.2 [4.4] 
BMI GWAS17 322,154 - - - 27.1 [4.6] 
AD GWAS19 103,066 18,900 / 84,166 (18.3) - - - 
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The BMI GRS was strongly associated with BMI in both UK Biobank (Beta=0.64; 95% CI 0.63 to 0.66, F-statistic=7091, 
R2=1.8%) and HUNT (Beta=0.66; 95% CI 0.60 to 0.72, F-statistic=422, R2=2.3%). Likewise, a GRS of the childhood BMI 
SNPs was also strongly associated with BMI in UK Biobank (Beta=0.48; 95% CI 0.47 to 0.50, F-statistic=185, R2=2.6%). 
The AD GRS was found to be a good predictor of AD in both UK Biobank (OR=1.26; 95% CI 1.23 to 1.28, F-
statistic=2036, R2=0.7%) and HUNT (OR=1.15; 95% CI 1.11 to 1.21, F-statistic=97, R2=0.4%) datasets. 
MR: investigation of the effect of BMI on AD 
One-sample MR analysis was performed in the UK Biobank and HUNT datasets with the individuals’ BMI SNPs, 
measured BMI and AD status (Figure E5(a)). The MR estimates from each SNP were meta-analysed assuming a 
random effects model, giving a single estimate for the analysis performed in each dataset. A random effects model 
was used to avoid over-precision of the causal estimate, and to allow for heterogeneity in the causal estimates being 
meta-analysed from the different genetic variants.  

Figure E5.  Schematic representation of MR analyses.  
a) BMI SNPs were used as instrumental variables to investigate the causal  
effect of BMI upon AD.  
b) AD SNPs were used as instrumental variables to investigate the causal  
effect of AD genetic risk of upon BMI. Arrows indicate MR assumptions where 
the instrumental variable is associated with the exposure, not associated with 
confounders, and only affects the outcome via the exposure. AD, atopic 
dermatitis; BMI, body mass index; SNP, single nucleotide polymorphism. 

The MR analysis with the individual BMI SNPs was performed with the 
two-stage predictor substitution (TSPS) method.15 The first stage 
involved regression of BMI upon individual BMI SNPs. The outcome (AD) 
was then regressed upon the fitted values from the first regression 

stage. As AD is a binary outcome, the first stage linear regression was restricted to control individuals, as 
recommended by Burgess et al.16 Logistic regression was then performed in the second stage where the fitted values 
for the cases were predicted. The standard errors (SE) of these estimates were adjusted using the first term of the 
delta method expansion for the variance of a ratio, allowing for the uncertainty in the first regression stage to be 
considered.16 Genetic principal components (as previously described11, 12) were included as covariates in the analysis 
to control for residual population structure. UK Biobank analysis also controlled for the platform used to genotype the 
samples. A similar protocol was followed in HUNT adjusting for the first four principal components and genotyping 
batch.  
Two-sample MR analysis of published GWAS data was performed using the “TwoSampleMR” R package.17 Estimates 
for the association between BMI and BMI SNPs in Europeans were taken from the GIANT BMI GWAS study published 
by Locke and colleagues.7 Summary statistics from the most recent AD GWAS meta-analysis8 were used to obtain 
estimates for the association of AD with the BMI SNPs in Europeans. The published BMI SNP estimates were based on 
an inverse normal transformation of BMI residuals on age and age-squared, as well as any necessary study-specific 
covariates. In unrelated individuals, residuals were calculated according to sex and case/control status and were sex-
adjusted amongst related individuals. The causal estimates for the two-sample analysis were converted to raw BMI 
units (kg/m2), assuming 4.6kg/m2 to be the median BMI standard deviation.7  The one-sample estimates obtained from 
UK Biobank and HUNT were meta-analysed assuming a fixed effect model. This was then meta-analysed with the two-
sample estimate to obtain an overall causal estimate, assuming no between-method heterogeneity. This was 
performed using the genetic instrument of 97 BMI-associated SNPs, and separately for the instrument of 22 childhood 
BMI-associated SNPs.  A separate two-sample MR analysis was performed in the same manner, using BMI SNP-BMI 
association estimates from the more recent BMI meta-analysis reported by Yengo and colleagues.14  

Asessment of confounders 
When investigating the association between the BMI GRS and potential confounders of BMI, some small associations 
with the confounders were seen (Figures E6 and E7). However, the magnitudes of these associations were minimal in 
comparison to the strength of association with BMI. The FTO variant alone also showed some effect on confounders, 
but it was much more strongly associated with measured BMI than potential confounders (Figures E8 and E9). 
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Figure E6. Association of BMI genetic 
risk score with BMI (kg/m2) and 
potential confounders in UK Biobank. 
Estimates are given per 1 standard deviation 
increase in BMI GRS. A-level, Advanced level 
studies; CI, confidence interval; GCSE, 
General Certificate of Secondary Education; 
Monthly Alcohol Consumption was defined as 
frequency of “one to three times a month”. 
For “sex”, reference = Female”. 

 

 

 
 

 

 

Figure E7. Association of BMI GRS with 
BMI (kg/m2) and potential confounders 
in HUNT. Estimates are given per 1 standard 
deviation increase in BMI GRS. BMI, body 
mass index; CI, confidence interval.*age given 
per 10-year intervals. For “sex”, reference = 
Female”. 
 
 
 
Figure E8. Association of FTO SNP 
(rs1558902) with BMI (kg/m2) and 
potential confounders in UK Biobank. 
Estimates are given per 1 copy increase in 
effect allele (A). A-level, Advanced level 
studies; CI, confidence interval; GCSE, General 
Certificate of Secondary Education; Monthly 
Alcohol Consumption, defined as frequency of 
“one to three times a month”. For “sex”, 
reference = Female”. 
 
 
 
 
 
Figure E9. Association of FTO SNP 
(rs1558902) with BMI (kg/m2) and 
potential confounders in HUNT. 
Estimates are given per 1 copy increase in 
effect allele (A). *age given per 10-year 
intervals. For “sex”, reference = Female”. 
 

 

 

Sensitivity analysis 
MR-Egger regression, weighted median analysis and the weighted mode-based estimate (MBE) were used to 
investigate potential horizontal pleiotropy. The strict definition of pleiotropy is when a SNP influences more than one 
trait.18 In MR, vertical pleiotropy is assumed where the genetic instrument influences the exposure which in turn 
influences the outcome. However, SNPs that influence the exposure and the outcome through different pathways, 
known as horizonal pleiotropy, would violate the MR assumption that the instrumental variable has an effect on the 
outcome only via the exposure being investigated and could bias the causal estimate.19 The weighted median method 
provides a valid causal estimate if at least 50% of the information in the MR analysis comes from valid instruments.20 
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Likewise, the weighted MBE also provides a valid causal estimate based on the assumption that the most frequent 
pleiotropy value is zero across the genetic instruments,21 whilst the intercept from the MR-Egger regression analysis 
allows the size of any pleiotropic effect to be determined.22 MR-Egger regression gives a valid causal estimate under 
the ‘InSIDE’ assumption, where each SNP-exposure effect is uncorrelated with the horizontal pleiotropic effect of the 
SNP.22  We also used heterogeneity statistics to detect invalid instruments in MR that are due to the presence of 
pleiotropy.23 As a proof-of-concept, one-sample MR analysis was performed using the FTO SNP alone (rs1558902) as a 
genetic instrument due to its strong association with BMI.24, 25 The instrumental variables used in an MR analysis are 
assumed to be independent of confounders to avoid bias of the causal estimate. We therefore investigated the 
relationship between the BMI GRS, the FTO variant alone, and potential confounders of BMI by performing a simple 
regression of the confounder upon the BMI GRS and FTO variant.  

Reverse MR: investigating the effect of AD genetic risk on BMI 
In this reverse MR, we investigated the genetic liability of AD upon BMI (Figure E5(b)). One-sample MR analysis was 
performed separately in the UK Biobank and HUNT datasets using the two-stage least squares (TSLS) method with 
individual AD SNPs as genetic instruments. This analysis involves two regression stages where AD is first regressed 
upon the instrument (disease-associated SNPs), then the outcome (BMI) is regressed upon the fitted values from the 
first stage regression.19 The final one-sample MR estimates from UK Biobank and HUNT were meta-analysed assuming 
a fixed effect model to give a single causal estimate (change in BMI per log odds of AD). To aid interpretation of the 
causal estimate, one-sample MR was also performed where genetic liability for AD was considered as a continuous 
variable, with values from “0” to “1” to give the difference in BMI between AD cases and controls with the “ivpack” R 
package.26 Two-sample MR analysis was performed with the “TwoSampleMR” R package,17 using summary results 
from GWAS studies for AD8 and BMI.7 The one- and two-sample MR estimates were meta-analysed using a fixed effect 
model to give an overall causal estimate. To aid interpretation, these estimates were multiplied by 0.693 to give the 
change in BMI per doubling odds of AD, as demonstrated by Gage et al.27 Sensitivity analyses for the reverse MR were 
performed using MR-Egger regression, weighted median and weighted MBE analysis methods. A two-sample MR 
analysis was performed in the same manner, where AD SNP-BMI association estimates were extracted from the more 
recent BMI meta-analysis.14  

Analysis software 
All analyses were performed using R (www.r-project.org) unless otherwise stated. The code used to carry out these 
analyses is available on GitHub (https://github.com/abudu-aggrey/Eczema_BMI_MR). 

Results of MR analyses 
Causal effect of BMI upon AD 
Similar causal estimates were found in UK Biobank (OR=1.03; 95% CI 1.00 to 1.06; P=0.10) and HUNT (OR=1.03; 95% CI 
0.96 to 1.10; P=0.41). The estimate from the two-sample analysis with published GWAS data gave limited evidence of 
higher BMI increasing AD risk (OR=1.02; 95% CI 0.99 to 1.04; P=0.19).  
Meta-analysis of the UK Biobank, HUNT and two-sample estimates showed evidence of a small causal effect, OR=1.02 
(95% CI 1.00 to 1.04; P=0.03) (Figure 1 in Letter). This represents an increase in the odds of AD by ~2% for each 1 unit 
increase in BMI, or an increase in the risk of AD by approximately 11% for an increase in BMI of 5 units (OR per 5 units 
higher BMI = exp(Beta per 1 unit higher BMI * 5), for example, from 20 to 25kg/m2. A similar causal estimate was 
found when restricting the BMI instrument to SNPs most strongly associated with childhood BMI (OR=1.04; 95% CI 
1.01 to 1.07; P=0.01). 
Sensitivity analyses 
MR-Egger regression analysis showed little evidence of pleiotropy (UK Biobank intercept= 0.00; 95% CI -0.01 to 0.01; 
P=0.80, HUNT intercept=0.01; 95% CI -0.01 to 0.02; P=0.34) and the sensitivity analyses gave similar estimates (Table 
E6, Figure E10). There was also little evidence of heterogeneity among the individual effect estimates for each SNP in 
both datasets (UK Biobank Q=101.07, P=0.32; HUNT Q=100.04, P=0.37). MR analysis with the FTO SNP alone gave a 
slightly stronger estimate but with a wider confidence interval (OR=1.05; 95% CI 0.98 to 1.12; P=0.20) (Figure E11). 
Performing two-sample MR with the larger number of most recently published BMI SNP estimates (941 SNPs)14 also 
gave evidence of a causal effect upon AD risk (OR=1.08; 95% CI 1.01 to 1.16; P=0.02). 
Effect of AD genetic risk upon BMI 
One-sample MR estimates in UK Biobank and HUNT gave little evidence that genetic risk of AD influences BMI 
(0.00kg/m2 change in BMI per doubling odds of AD, 95% CI -0.06 to 0.06, P=0.94). Meta-analysis with the two-sample 
estimate also gave weak evidence of a very small causal effect (0.03 kg/m2 change in BMI per doubling odds of AD, 
95% CI -0.02 to 0.08, P=0.24). However, we note that the FLG loss-of-function variant (R501X/rs61816761) known to 
be strongly associated with AD28 was not available in the two-sample analysis. There was little evidence of pleiotropy 
in the causal estimate for genetic risk of AD on BMI, and modest heterogeneity among the individual SNP effects (UK 
Biobank Q=66.51, P=4.15x10-6; HUNT Q=24.10, P=0.34) (Table E7, Figure E12). 
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When performing two-sample MR with summary data for the most recently reported BMI SNPs,14 the causal 
difference in BMI also gave very little evidence for BMI being influenced by genetic risk for AD, (0.02 kg/m2 lower BMI 
in cases compared with controls, 95% CI -0.12 to 0.15, P=0.82). It should be noted, however, that summary statistics 
were not available for 5 of the 24 AD-associated SNPs in this analysis, including the FLG loss-of-function variant 
(R501X/rs61816761), thereby weakening the genetic instrument.  

Table E6. Sensitivity analyses for the causal effect of BMI upon AD. 

OR per 1 unit increase in BMI (kg/m2); CI, confidence interval; IVW, inverse variance weighted analysis; MBE, mode-based estimate; 
OR, odds ratio; TSPS, two-stage predictor substitution. 

 
Figure E10. 
Associations of BMI 
SNPs with BMI and 
AD within a) UK 
Biobank b) HUNT. 
IVW, MR-Egger, 
weighted median and 
weighted mode 
estimates are 
indicated by the light 
blue, dark blue, light 
green, and dark green 
lines respectively. 
 
 

 

 
Figure E11. Effect of FTO variant, rs1558902 upon AD. Results from MR analysis using rs1558902 as an instrumental variable. 
These are compared with final estimates obtained when using all BMI SNPs as a genetic instrument. Estimates are given per 1 unit 
increase in BMI (kg/m2).   

 
Figure E12. 
Association of AD 
SNPs with AD and BMI 
within (a) UK Biobank 
and (b) HUNT. IVW, 
MR-Egger, weighted 
median and weighted 
mode estimates are 
indicated by the light 
blue, dark blue, light 
green, and dark green 
lines respectively. 
 
 

  

Dataset TSPS OR  
(95% CI) 

IVW OR  
(95% CI) 

MR-Egger OR  
(95% CI) 

Weighted Median OR 
(95% CI) 

Weighted MBE OR  
(95% CI) 

UK Biobank 1.03 (1.00, 1.06) 1.03 (1.00, 1.06) 1.03 (0.97, 1.10) 1.02 (0.97, 1.07) 1.02 (0.97, 1.08) 
HUNT 1.03 (0.96, 1.10) 1.04 (0.97, 1.11) 0.99 (0.88, 1.11) 0.99 (0.89, 1.09) 0.99 (0.82, 1.20) 
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Table E7. Sensitivity analyses for the causal effect of AD genetic risk upon BMI.  

Dataset TSLS estimate* (95% 
CI) 

IVW estimate** 
(95% CI) 

MR-Egger estimate 
(95% CI) 

Weighted Median 
estimate (95% CI) 

Weighted MBE (95% 
CI) 

UK 
Biobank -0.01 (-0.07, 0.05) -0.10 (-0.44, 0.23) -0.06 (-0.71, 0.59) -0.21 (-0.51, 0.09) -0.21 (-0.56, 0.13) 

HUNT 0.13 (-0.13, 0.39) 0.60 (-0.44, 1.64) 0.31 (-1.29, 1.91) 0.47 (-1.01, 1.96) 0.85 (-0.60, 2.30) 

Change in BMI (kg/m2) per doubling odds of atopic dermatitis; CI, confidence interval; IVW, inverse variance weighted analysis; 
MBE, mode-based estimate; TSLS, two-staged least squares. 
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