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Supplementary Section 

 

     In the Support Vector Regress Algorithm, the cost function is 
𝐶𝑜𝑠𝑡 = ∑ 𝑙𝜀(𝑓(𝑥𝑖) − 𝑦𝑖)

𝑚
𝑖=1  (s.1) 

where (xi,yi) are the training samples, f(xi) is the target regression equation, 𝑙𝜀 is the insensitive loss 

function to ε, which can be represented as 

𝑙𝜀(𝑧) = 𝑚𝑎𝑥(0, |𝑧| − 𝜀) (s.2) 

The regularization term l2-norm was adopted to restrict large weights and to reduce the 

dimensionality of fitting curves so that the problem of overfitting was slowed down. Therefore, the 

problem of SVR was converted into 
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where 𝑤𝑇𝑥 + 𝑏 = 0 is hyperplane, C is the regular parameter, which was used to control the weight 

of the regular term in the whole cost function and represented the emphasis to the outlier. In order 

to obtain optimal regularization constants through data training, the relaxation variable, 𝜉𝑖和𝜉𝑖
∗，

was introduced and Equation(s.3) was converted to 
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 (s.4) 

The duality of Equation (s.4) can be obtained through the Lagrange multiplier method: 
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The requirement of KKT(Karush–Kuhn–Tucker) must be met: 

{
 
 

 
  𝑎𝑖(𝑓(𝑥𝑖) − 𝑦𝑖 − 𝜀 − 𝜉𝑖) = 0,

𝑎𝑖
∗(𝑦𝑖 − 𝑓(𝑥𝑖) − 𝜀 − 𝜉𝑖

∗) = 0,

𝑎𝑖𝑎𝑖
∗ = 0, 𝜉𝑖𝜉𝑖

∗ = 0,

(𝐶 − 𝑎𝑖)𝜉𝑖 = 0, (𝐶 − 𝑎𝑖
8)𝜉𝑖

∗ = 0

 (s.6) 

From Equation (s.6), it can be deduced that one of the two items  𝑎𝑖  or (𝑓(𝑥𝑖) − 𝑦𝑖 − 𝜀 − 𝜉𝑖) 

must be at least zero. For the same reason, 𝑎𝑖
∗ and (𝑦𝑖 − 𝑓(𝑥𝑖) − 𝜀 − 𝜉𝑖

∗) also satisfy this demand. 

When the samples fall into an acceptable region, both  𝑎𝑖 and 𝑎𝑖
∗ are zero and are not involved in 

error calculation. On the contrary, in an unacceptable region,  𝑎𝑖 and 𝑎𝑖
∗ maybe nonzero and should 

be used to calculate loss. Apart from this, either (𝑓(𝑥𝑖) − 𝑦𝑖 − 𝜀 − 𝜉𝑖) or (𝑦𝑖 − 𝑓(𝑥𝑖) − 𝜀 − 𝜉𝑖
∗) must 

be nonzero at the same time and  𝑎𝑖 and 𝑎𝑖
∗ must be at least zero. The solution of SVR is 

𝑓(𝑥) = ∑ (𝑎𝑖
∗ − 𝑎𝑖)𝑥𝑖

𝑇𝑥 + 𝑏𝑚
𝑖=1  (s.7) 

The kernel was introduced based on the SVR primitive equation and equation (s.7) was 

converted into 

𝑓(𝑥) = ∑ (𝑎𝑖
∗ − 𝑎𝑖)𝑘(𝑥, 𝑥𝑖) + 𝑏

𝑚
𝑖=1  (s.8) 

The Gauss kernel, 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
), was adopted, where 𝛾>0 was the bandwidth 

of Gauss kernel. 
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In Equation (s.8), only the sample at 𝑎𝑖
∗ − 𝑎𝑖 ≠ 0 are the support vector of SVR outside of the 𝜀 

margin. Both 𝑎𝑖
∗ and 𝑎𝑖 are zero inside, and only part samples were used by SVR. The data, (x,y), 

were trained to deduce C and 𝛾 before the SVR algorithm was adopted to reduce noise. The signal 

was modified by itself and the adaptive noise reduction was realized. The algorithm is illustrated in 

supplementary Figure S1. ‘Flag’ is the control flag and is set by the main program. 
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Figure S1. Adaptive Support Vector Regress (SVR) noise reduction algorithm. 

 

 


