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Supplementary Material 1. Mathematical method. 

Let 𝑝𝑃 be the number of patients included in the study. 

Let 𝑚𝐵 be the number of peritoneal biopsies, which have been carried out in the peritoneum of each patient to 

histologically determine if microscopic peritoneal metastases (mPM) of epithelial ovarian cancer (EOC) are present (all 

patients were assumed to have undergone the same number of biopsies). We assumed 100% reliability for biopsy (i.e., 

no false positives and no false negatives). 

Let 𝐵+ be the discrete random variable that gives the number of biopsies with mPM in each patient. Given the 

above definition of 𝑚𝐵, the possible values for 𝐵+ are 0, 1, 2, …, 𝑚𝐵 (note, that uppercase letters are used for random 

variables, whereas numbers and lowercase letters are related to the possible values of these random variables). Let 

𝐵𝑚
+ = {𝑚} be the event corresponding to the occurrence of 𝑚 biopsies with mPM among the 𝑚𝐵 performed ones. The 

probability associated with the event 𝐵𝑚
+  was denoted by 𝑃(𝐵𝑚

+). All the probabilities 𝑃(𝐵0
+), 𝑃(𝐵1

+), … and 𝑃(𝐵𝑚𝐵
+ ) 

were assumed to have been estimated from the patient data and therefore to be known. 

Let 𝑆𝑃 (cm2) be the average peritoneal surface area in adults. 

If we consider that each biopsy samples a surface area of 𝑆𝐵 (cm2), a total of 𝑛𝐴 =
𝑆𝑃

𝑆𝐵
 peritoneal biopsies should 

have been carried out in each patient to assess the entire peritoneal surface. The peritoneum in each patient can therefore 

be described as the union of 𝑛𝐴 possible areas of biopsy. Of course, 𝑛𝐴 is far higher than 𝑚𝐵 . 

Let 𝐴+ be the discrete random variable that gives the number of these possible areas of biopsy that actually have 

mPM in each patient. 𝐴+ can then have the values 0, 1, 2, up to 𝑛𝐴. We denoted by 𝐴𝑛
+ = {𝑛} the event that 𝑛 of the 𝑛𝐴 

possible areas of biopsy actually have mPM and by 𝑃(𝐴𝑛
+) the probability for this event to occur. The events 𝐴0

+, 𝐴1
+, 

…, 𝐴𝑛𝐴
+ , which are mutually exclusive (both events cannot occur at the same time) and together cover all possible values 

of 𝐴+, form a partition. As the result, the sum of the probabilities of these (𝑛𝐴 + 1) events is equal to 1 (Equation (S1)). 

 

(S1) 

The probabilities 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) might be very useful for optimizing treatment for patients. The 

deduction from 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ), is the probability of the event that at least one of the 𝑛𝐴 possible areas 

of biopsy has mPM. This event, above referred to as 𝐴?𝑎?1
+ , can be written as the union of the events 𝐴1

+, 𝐴2
+, …, 𝐴𝑛𝐴

+ , so 

that its probability can be determined as follows: 

 
(S2) 

where  represents the union operator and the two last equalities result from the fact that the events 𝐴0
+, 𝐴1

+, …, 𝐴𝑛𝐴
+  

form a partition. 

In this paper, we were particularly interested in this probability: the higher it is, the more likely the peritoneum is 

affected by mPM and the more beneficial the use of an adjuvant treatment to cytoreductive surgery. 

Another information, the probabilities 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) would provide, relates to the spread of EOC 

within the peritoneum. Let 𝑛𝑃 be the integer between 0 and 𝑛𝐴 such that the probability of the event that more than 

𝑛𝑃 possible areas of biopsy have mPM is about 𝑃 (Equation (S3)). 

 

(S3) 

where 𝐴?𝑎?𝑛𝑃

+  denotes the event that more than 𝑛𝑃 possible areas of biopsy have mPM and the equalities result from 

the fact that the events 𝐴0
+, 𝐴1

+, …, 𝐴𝑛𝐴
+  form a partition. 

The values of 𝑃 we were interested in here were the standard 5%, 25%, 50%, 75% and 95%. The corresponding 

integers 𝑛P  can be considered as kind of percentiles. Take for example 𝑃 = 25%: 𝑛25% is such that the probability to 

have more than 𝑛25% possible areas of biopsy with mPM is equal to 25%; this implies that the probability of having less 

than 𝑛25% possible areas of biopsy with mPM is equal to 75% and therefore 𝑛25%, can be viewed as the 75th percentile. 

The higher the integers 𝑛𝑃 are, the greater the spread of EOC within the peritoneum. 



 

 

Unfortunately, the probabilities 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) were unknown. The major aim of our analysis was 

therefore to determine these probabilities from the little information we had and consisting of the probabilities 𝑃(𝐵0
+), 

𝑃(𝐵1
+), … and 𝑃(𝐵𝑚𝐵

+ ). 

To achieve this, we used the law of total probability. By applying this law with the above-defined partition 𝐴0
+, 

𝐴1
+, …, 𝐴𝑛𝐴

+ , the probability 𝑃(𝐵𝑚
+) and the set of probabilities 𝑃(𝐴0

+), 𝑃(𝐴1
+), … and 𝑃(𝐴𝑛𝐴

+ ) are linked to each other 

as follows (Equation (S4)). 

 

(S4) 

With 𝑃(𝐵𝑚
+|𝐴𝑛

+) is the conditional probability of 𝐵𝑚
+  given 𝐴𝑛

+, that is, the probability that 𝐵𝑚
+  occurs given that 

𝐴𝑛
+ occurs (in other words, this is the probability that 𝑚 of the 𝑚𝐵 peritoneal biopsies present mPM given that 𝑛 of 

the 𝑛𝐴 possible areas of biopsy have mPM). 

This conditional probability clearly follows a hypergeometric distribution. A hypergeometric distribution allows 

to describe the probability of obtaining a certain number of successes (here, biopsies with mPM, 𝑚) in a certain number 

of draws (here, biopsies, 𝑚𝐵) given a population of a certain size (here, possible areas of biopsy, 𝑛𝐴) containing a certain 

number of successes (here, possible areas of biopsy with mPM, 𝑛), without replacement. According to the definition of 

the hypergeometric distribution, 𝑃(𝐵𝑚
+ |𝐴𝑛

+) can therefore be expressed as in Equation (S5): 

 

(S5) 

where the binomial coefficient (
𝑝
𝑘

) is the total number of subsets of 𝑘 distinct elements in a set of 𝑝 elements, for any 

integers 𝑘 and 𝑝 such that . 

Applying Equation (S4) for 𝑚 between 0 and 𝑚𝐵, the following system of 𝑚𝐵 linear equations in 𝑛𝐴 unknowns 

were constructed (Equation (S6)): 

 

(S6) 

In this system, only the probabilities 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) were unknown. To determine them, this 

system had to be solved. With many more unknowns than equations, this consistent system has infinite solutions (con-

sistency was ensured by the above definition of 𝑃(𝐵𝑚
+ |𝐴𝑛

+) (Equation (S5)). 

However, many of these solutions were not relevant from a probabilistic perspective. Bearing in mind that the 

solution consists of the probabilities of a partition, the solution had to meet two specific constraints: the first one, ex-

pressed in Equation (S1), states that the sum of 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) is equal to 1 and the second one indicates 

that 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) each lies within the range [0; 1] (Equation (S7)): 

 for any 𝑛 between 0 and 𝑛𝐴 (S7) 

with such constraints, the system in Equation (S6) could not be solved exactly. Instead, an approximation to the true 

solution could be obtained by the least squares method. The resulting solution would be the set of probabilities 𝑃(𝐴0
+), 

𝑃(𝐴1
+), … and 𝑃(𝐴𝑛𝐴

+ ), which minimizes the fitting error defined in Equation (S8) while respecting the constraints of 

Equations (S1) and (S7). 

 

(S8) 

However, without additional constraint, particularly on the trend, this solution might contain irregularities. This 

means that there might be jumps between sequential probabilities: the probability that 𝑛 of the 𝑛𝐴 possible areas of 



 

 

biopsy actually have mPM might, in fact, differ significantly from the probability that (𝑛 + 1) or (𝑛 − 1) of the 𝑛𝐴 

possible areas of biopsy actually have mPM. Such jumps would be obviously unphysical. This is why we introduced a 

smoothness constraint designed to discard solutions containing irregularities. The smoothness term 𝑇𝑠𝑚𝑜𝑜𝑡ℎ, we used 

to impose this smoothness constraint on the solution, involves the third-order difference as shown in Equation (S9) (the 

forward finite difference and the backward finite difference were applied for 𝑛 = 0 and 1 and for 𝑛 = 𝑛𝐴 − 1 and 𝑛𝐴, 

respectively. The central finite difference was used for all the other 𝑛): 

 
The unspecified elements in matrix are equal to 0. 

(S9) 

The closer to 0 this smoothness term is, the smoother the trend of the solution. Note that this smoothness term was 

designed for constant, linear, and quadratic solutions (the third-order difference and thus the smoothness term for such 

solutions indeed is zero). 

This smoothness term was associated with the above defined fitting error (Equation (S8)) into a total error, which 

therefore accounts for both the compliance with smoothness and the closeness to the data (Equation (S10)): 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑓𝑖𝑡𝑡𝑖𝑛𝑔+? 𝑎 𝑇𝑠𝑚𝑜𝑜𝑡ℎ  (S10) 

with the parameter ? 𝑎 controlling the trade-off between the compliance with smoothness and the closeness to the data: 

for large ? 𝑎, the solution, resulting from the minimisation of the total error 𝐸𝑡𝑜𝑡𝑎𝑙 , will be smoother at the expense of 

being further from the data, whereas for small ? 𝑎, the solution will be closer to the data but with more irregularities. 

The optimal value for ? 𝑎 was determined using the cross-validation method [1]. 

The total error can be rearranged by using a matrix format so that the least squares method can be applied (Equa-

tion (S11)): 

Applying the least squares method to minimize the total error under constraints of Equations (S1) and (S7) would 

provide the most suitable solution 𝑃(𝐴0
+), 𝑃(𝐴1

+), … and 𝑃(𝐴𝑛𝐴
+ ) to our problem. 

This minimization was performed using the function “lsqlin” of the Matlab software. 
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