Supporting Information

Connecting the Conformational Behavior of Cyclic Octadepsipeptides With Their Ionophoric Property and Membrane Permeability

Thomas Stadelmann^[a], Govindan Subramanian ^[b], Sanjay Menon^[b], Chad E.

Townsend^[c], R. Scott Lokey^[c], Marc-Olivier Ebert^{*[a]}, Sereina Riniker^{*[a]}

- [a] Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
- [b] Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Bldg.300, Kalamazoo, Michigan 49007, USA
- [c] Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 93064, USA
- * marc-olivier.ebert@org.chem.ethz.ch; sriniker@ethz.ch

NMR Assignments:

Figure S 1. ¹³C-HSQC spectra of PF1022A (1) in CDCl₃ (top) and in CD₃OH (bottom). Empty regions are cut out for clarity. S 7v: not visible with the employed contour levels.

Table S 1. Assignment of the major (asymmetric) and minor (symmetric) conformation of PF1022A (1) in $CDCI_3$ referenced to the residual $CHCI_3$ shift in the solvent set to 7.29 ppm. * indicates non-assignable signals due to overlap.

		Ηα	Ηβ	Hγ	Ηδ	Ηε	Ηζ	HMe
Lac ¹		5.10	1.03	-	-	-	-	-
Mle ²		4.49	1.75	1.63	1.05, 0.97	-	-	2.85
Phl ³		5.70	3.15	-	7.25	7.31	7.28	-
Mle ⁴		5.47	1.73, 1.53	0.91	0.86, 0.84	-	-	2.82
Lac⁵		5.43	1.41	-	-	-	-	-
Mle ⁶		5.52	1.77, 1.49	1.29	0.92, 0.91	-	-	2.83
Phl ⁷		5.64	3.17, 3.11	-	7.26	7.30	7.27	-
Mle ⁸		5.37	1.68, 1.60	0.98	0.83, 0.83	-	-	3.04
Lac ¹⁵		5.44	1.39	-	-	-	-	-
MIe ²⁶		5.23	1.72, 1.58	1.44	0.92, 0.90	-	-	2.73
Phl ³⁷		5.70	3.16, 3.11	-	7.25-7.35*	7.25-7.35*	7.25-7.35*	-
MIe ⁴⁸		5.63	1.68, 1.50	1.05	0.90, 0.85	-	-	2.74
	С	Сα	Сβ	Сү	Сб	Сε	Сζ	СМе
Lac ¹	171.6	68.6	15.8	-	-	-	-	-
Mle ²	171.2	57.1	38.0	24.7	21.2, 23.4	-	-	29.4
Phl ³	170.0	71.2	37.6	135.1	129.5	128.6	127.2	-
Mle ⁴	169.8	54.0	37.0	24.7	21.0, 23.4	-	-	30.5
Lac⁵	170.4	66.9	17.1	-	-	-	-	-
Mle ⁶	169.8	54.0	37.5	25.1	23.6, 20.9	-	-	30.6
Phl ⁷	170.2	70.8	38.0	135.4	129.5	128.5	127.1	-
Mle ⁸	171.0	54.1	36.2	24.3	23.4, 21.1	-	-	31.2
Lac ¹⁵	169.9	67.5	16.4	-	-	-	-	-
MIe ²⁶	170.6	55.1	36.7	24.9	23.1, 21.7	-	-	31.1
Phl ³⁷	169.4	70.8	37.8	135.4	129.7	128.5	127.0	-
Mle ⁴⁸	170.9	54.1	37.1	24.6	21.6, 23.2	-	-	30.5

		Ηα	Ηβ	Нγ	Ηδ	Ηε	Ηζ	HMe
Lac ¹		5.19	0.94	-	-	-	-	-
Mle ²		4.78	1.85, 1.74	1.58	1.06, 0.99	-	-	2.82
Phl ³		5.83	3.19, 3.08	-	7.24-7.35	7.24-7.35*	7.24-7.35*	-
Mle ⁴		5.40	1.69, 1.64	0.86	0.84	-	-	2.90
Lac ⁵		5.55	1.40	-	-	-	-	-
Mle ⁶		5.45	1.75, 1.69	1.33	0.95, 0.90	-	-	2.92
Phl ⁷		5.75	3.17, 3.11	-	7.24-7.35	7.24-7.35*	7.24-7.35*	-
Mle ⁸		5.24	1.58, 1.51	0.94	0.83, 0.80	-	-	3.01
Lac ¹⁵		5.37	1.38	-	-	-	-	-
Mle ²⁶		5.15	1.61	1.39	0.91, 0.87	-	-	2.94
Phl ³⁷		5.70	3.10	-	7.32	7.24-7.35*	7.24-7.35*	-
Mle ⁴⁸		5.35	1.66	1.14	0.89, 0.87	-	-	2.95
	С	Cα	Сβ	Сү	Сδ	Сε	Сζ	СМе
Lac ¹	C 173.1	Cα 68.5	Cβ 15.8	Сү -	Cδ -	Cε -	Cζ -	CMe -
Lac ¹	C 173.1 171.0	Cα 68.5 57.2	Cβ 15.8 37.6	Cγ - 24.7	Cδ - 20.2, 22.3	Cε - -	Cζ - -	CMe - 28.6
Lac ¹ Mle ² Phl ³	C 173.1 171.0 171.7	Cα 68.5 57.2 71.1	Cβ 15.8 37.6 37.2	Cγ - 24.7 134.8	Cδ - 20.2, 22.3 129.4	Cε - - 128.4	Cζ - - 126.9	CMe - 28.6 -
Lac ¹ Mle ² Phl ³ Mle ⁴	C 173.1 171.0 171.7 169.3	Cα 68.5 57.2 71.1 54.3	Cβ 15.8 37.6 37.2 36.4	Cγ - 24.7 134.8 24.1	Cδ - 20.2, 22.3 129.4 22.3, 20.0	Cε - - 128.4 -	<i>Cζ</i> - - 126.9 -	CMe - 28.6 - 29.9
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵	C 173.1 171.0 171.7 169.3 172.1	Cα 68.5 57.2 71.1 54.3 67.1	Cβ 15.8 37.6 37.2 36.4 16.1	Cγ - 24.7 134.8 24.1 -	Cδ - 20.2, 22.3 129.4 22.3, 20.0 -	Cε - - 128.4 - -	Cζ - - 126.9 - -	CMe - 28.6 - 29.9 -
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵ Mle ⁶	C 173.1 171.0 171.7 169.3 172.1 169.6	Cα 68.5 57.2 71.1 54.3 67.1 54.1	Cβ 15.8 37.6 37.2 36.4 16.1 37.2	Cγ - 24.7 134.8 24.1 - 24.8	Cδ - 20.2, 22.3 129.4 22.3, 20.0 - 22.5, 19.7	Cε - - 128.4 - - -	Cζ - - 126.9 - - -	CMe - 28.6 - 29.9 - 29.7
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵ Mle ⁶ Phl ⁷	C 173.1 171.0 171.7 169.3 172.1 169.6 171.7	Cα 68.5 57.2 71.1 54.3 67.1 54.1 70.9	Cβ 15.8 37.6 37.2 36.4 16.1 37.2 37.5	Cγ - 24.7 134.8 24.1 - 24.8 135.1	Cδ - 20.2, 22.3 129.4 22.3, 20.0 - 22.5, 19.7 129.3	Cε - 128.4 - - - 128.3	<i>Cζ</i> - 126.9 127.0	CMe - 28.6 - 29.9 - 29.7 -
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵ Mle ⁶ Phl ⁷ Mle ⁸	C 173.1 171.0 171.7 169.3 172.1 169.6 171.7 170.7	Cα 68.5 57.2 71.1 54.3 67.1 54.1 70.9 54.0	Cβ 15.8 37.6 37.2 36.4 16.1 37.2 37.5 35.9	Cγ - 24.7 134.8 24.1 - 24.8 135.1 23.8	Cδ - 20.2, 22.3 129.4 22.3, 20.0 - 22.5, 19.7 129.3 22.2, 20.3	Cε - - 128.4 - - - 128.3 -	<i>Cζ</i> 126.9 127.0 -	CMe - 28.6 - 29.9 - 29.7 - 30.6
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵ Mle ⁶ Phl ⁷ Mle ⁸ Lac ¹⁵	C 173.1 171.0 171.7 169.3 172.1 169.6 171.7 170.7 171.9	Cα 68.5 57.2 71.1 54.3 67.1 54.1 70.9 54.0 68.3	Cβ 15.8 37.6 37.2 36.4 16.1 37.2 37.5 35.9 15.4	Cγ - 24.7 134.8 24.1 - 24.8 135.1 23.8 -	Cδ - 20.2, 22.3 129.4 22.3, 20.0 - 22.5, 19.7 129.3 22.2, 20.3 -	Cε - - 128.4 - - - 128.3 - - - 128.3	<i>Cζ</i> 126.9 127.0	CMe - 28.6 - 29.9 - 29.7 - 30.6 -
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵ Mle ⁶ Phl ⁷ Mle ⁸ Lac ¹⁵ Mle ²⁶	C 173.1 171.0 171.7 169.3 172.1 169.6 171.7 170.7 171.9 n.d.	Cα 68.5 57.2 71.1 54.3 67.1 54.1 70.9 54.0 68.3 55.3	Cβ 15.8 37.6 37.2 36.4 16.1 37.2 37.5 35.9 15.4 36.8	Cγ - 24.7 134.8 24.1 - 24.8 135.1 23.8 - 24.6	Cδ - 20.2, 22.3 129.4 22.3, 20.0 - 22.5, 19.7 129.3 22.2, 20.3 - 22.3, 20.1	Cε - - 128.4 - - - 128.3 - - - - - - - - - - - - -	<i>Cζ</i> 126.9	CMe - 28.6 - 29.9 - 29.7 - 30.6 - 31.0
Lac ¹ Mle ² Phl ³ Mle ⁴ Lac ⁵ Mle ⁶ Phl ⁷ Mle ⁸ Lac ¹⁵ Mle ²⁶ Phl ³⁷	C 173.1 171.0 171.7 169.3 172.1 169.6 171.7 170.7 171.9 n.d. 170.7	Cα 68.5 57.2 71.1 54.3 67.1 54.1 70.9 54.0 68.3 55.3 71.3	Cβ 15.8 37.6 37.2 36.4 16.1 37.2 37.5 35.9 15.4 36.8 37.1	Cγ - 24.7 134.8 24.1 - 24.8 135.1 23.8 - 24.6 135.5	Cδ - 20.2, 22.3 129.4 22.3, 20.0 - 22.5, 19.7 129.3 22.2, 20.3 - 22.3, 20.1 129.3	Cε - - 128.4 - - - 128.3 - - 128.3 - - 128.3	<i>Cζ</i> 126.9 127.0 127.0 127.8	CMe - 28.6 - 29.9 - 29.7 - 30.6 - 31.0 -

Table S 2. Assignment of the major (asymmetric) and minor (symmetric) conformation of PF1022A in CD_3OH referenced to the residual CH_3OH shift in the solvent set to 3.33 ppm. * indicates non-assignable signals due to overlap and n.d. indicates signals that could not be detected.

Figure S 2. ¹³C-HSQC spectra of emodepside (**2**) in CDCl₃ (top) and in CD₃OH (bottom). Empty regions are cut out for clarity.

Table S 3. Assignment of the major (asymmetric) and minor (symmetric) conformation of emodepside (2) in $CDCl_3$ referenced to the residual $CHCl_3$ shift in the solvent set to 7.28 ppm. * indicates non-assignable signals due to overlap. Mor1 is the C/H next to the oxygen in the morpholine ring, and Mor2 is the C/H next to the nitrogen in the morpholine ring.

		Ηα	Ηβ	Hγ	Ηδ	Ηε		HMe	HMor1	HMor2
Lac1		5.09	1.03	-	-	-		-	-	-
Mle ²		4.49	1.77	1.64	1.05, 0.98	-		2.85	-	-
Phm ³		5.65	3.08	-	7.13-7.17*	6.84		-	3.12-3.16*	3.87
Mle ⁴		5.47	1.73, 1.54	0.94	0.85	-		2.82	-	-
Lac⁵		5.43	1.42	-	-	-		-	-	-
Mle ⁶		5.53	1.81,1.54	1.31	0.92	-		2.85	-	-
Phm ⁷		5.59	3.07	-	7.13-7.17*	6.85		-	3.12-3.16*	3.87
Mle ⁸		5.36	1.68, 1.60	1.0	0.83	-		3.02	-	-
Lac ¹⁵		5.44	1.39	-	-	-		-	-	-
Mle ²⁶		5.21	1.73, 1.60	1.45	0.92, 0.90	-		2.76	-	-
Phm ³⁷		5.64	3.04	-	7.13-7.17*	6.83		-	3.11	3.87
Mle ⁴⁸		5.63	1.69, 1.51	1.09	0.90, 0.86	-		2.74	-	-
	С	Сα	Сβ	Сү	Сδ	Cε	Сζ	CMe	CMor1	CMor2
Lac1	171.7	68.6	15.8	-	-	-	-	-	-	-
Mle ²	171.2	57.1	38.1	24.7	21.2, 23.4	-	-	29.4	-	-
Phm ³	170.1	71.3	36.8	126.1	130.3	115.6	150.3- 150.4*	-	49.3-49.4*	66.9
Mle ⁴	169.8	54.0	37.0	24.6	21.1, 23.6	-	-	30.5	-	-
Lac⁵	170.3	66.9	17.1	-	-	-	-	-	-	-
Mle ⁶	169.8	54.0	37.6	25.1	20.9, 23.7	-	-	30.6	-	-
Phm ⁷	170.4	70.9	37.1	126.6	130.3	115.6	150.3- 150.4*	-	49.3-49.4*	66.9
Mle ⁸	171.1	54.0	36.2	24.2	21.2, 23.5	-	-	31.2	-	-
Lac ¹⁵	169.9	67.6	16.4	-	-	-	-	-	-	-
Mle ²⁶	170.6	55.2	36.7	24.8	23.1, 21.6	-	-	31.2	-	-
Phm ³⁷	169.6	70.9	36.9	126.7	130.4	115.6	150.3	-	49.4	66.9
Mle ⁴⁸	171.0	54.1	37.1	24.6	21.8, 23.4	-	-	30.5	-	-

HMor1 Ηα Ηβ Hγ Ηδ Нε HMe HMor2 Lac¹ 5.18 0.94 ------Mle² 4.78 1.88, 1.76 1.06, 1.00 1.58 2.84 ---Phm³ 5.79 3.11, 3.02 7.19 6.92 3.12-3.14* 3.83 --Mle⁴ 5.40 1.65 0.85 0.84 2.87 ---Lac⁵ 5.55 1.40 ------Mle⁶ 5.45 1.75 1.35 0.96, 0.91 2.94 ---5.71 Phm⁷ 3.11, 3.03 -7.19 6.92 -3.12-3.14* 3.83 Mle⁸ 5.23 1.57, 1.50 0.92 0.83, 0.80 3.00 ---Lac¹⁵ 5.36 1.37 ------Mle²⁶ 5.33 1.65 1.11 0.89, 0.87 2.97 ---Phm³⁷ 5.68 3.01 -7.18 6.92 3.12 3.83 -Mle⁴⁸ 5.11 1.65 1.40 0.92, 0.89 2.92 ---С Сα Сβ Сү Сδ Сε Сζ СМе CMor1 CMor2 Lac¹ 173.1 68.5 15.8 -------Mle² 170.9 57.2 37.6 24.7 20.2, 22.3 --28.6 --171.8 150.6-Phm³ 71.2 36.5 125.5 130.0 115.5 49.1-49.2* 66.6 -150.7* 36.5 Mle⁴ 169.4 54.2 24.0 22.5, 20.1 30.0 ----172.1 Lac⁵ 67.1 16.1 -------Mle⁶ 169.6 54.1 37.2 24.8 22.5, 19.7 29.7 ----70.9 171.8 36.7 Phm⁷ 125.8 130.0 115.5 150.6-49.1-49.2* 66.6 -150.7* Mle⁸ 170.7 54.0 36.0 23.6 22.4, 20.3 30.6 ----Lac¹⁵ 171.9 68.3 15.4 -------Mle²⁶ 54.2 36.8 22.3, 20.4 n.d. 24.3 -31.3 ---Phm³⁷ 170.8 71.3 36.4 130.0 126.4 115.6 150.5 49.3 66.6 -Mle⁴⁸ 170.4 24.7 22.4, 20.1 30.3 n.d. n.d. ----

Table S 4. Assignment of the major (asymmetric) and minor (symmetric) conformation of emodepside (2) in CD_3OH referenced to the residual CH_3OH shift in the solvent set to 3.33 ppm. * indicates non-assignable signals due to overlap and n.d. indicates signals that could not be detected. Mor1 is the C/H next to the oxygen in the morpholine ring, and Mor2 is the C/H next to the nitrogen in the morpholine ring.

Figure S 3. ¹³C-HSQC spectra of bis-aza-PF1022A analog (**8**) in CDCl₃ (top) and in CD₃OH (bottom). Empty regions are cut out for clarity.

		Ηα	Ηβ	Hγ	Ηδ	Ηε	Hζ	HMe
Lac1		4.96	1.08	-	-	-	-	-
MIn ²		-	3.67, 3.35	2.07	0.98, 0.86	-	-	3.13
Phl ³		5.42	3.14	-	7.25	7.34	7.26	-
MIn ⁴		-	3.69, 2.93	1.54	0.89, 0.89	-	-	3.16
Lac ⁵		5.57	1.39	-	-	-	-	-
Mle ⁶		5.56	1.72, 1.54	1.32	0.92	-	-	2.87
Phl ⁷		5.59	3.18, 3.13	-	7.26	7.31	7.29	-
Mle ⁸		5.38	1.67, 1.54	0.94	0.83, 0.82	-	-	2.96
Phl ^{3'}		5.81						
Lac ^{5'}		5.28						
Mle6'		3.68						
Phl7'		5.99						
Mle8'		5.01						
	С	Сα	Сβ	Сү	Сδ	Сε	Сζ	СМе
Lac1	173.4	69.6	16.0	-	-	-	-	-
MIn ²	154.7	-	58.6	27.2	20.5, 19.8	-	-	35.4
Phl ³	168.7	72.6	37.7	134.9	129.4	128.7	127.1	-
MIn ⁴	154.0	-	57.2	27.3	20.2, 19.8	-	-	38.9
Lac ⁵	171.0	67.6	17.7	-	-	-	-	-
Mle ⁶	170.2	53.7	37.8	25.2	23.6, 21.0	-	-	30.5
Phl ⁷	170.2	70.7	38.0	135.4	129.5	128.5	127.4	-
Mle ⁸	171.5	54.1	36.3	24.3	21.2, 23.3	-	-	31.1

Table S 5. Assignment of the major conformation (asymmetric) as well as assignment of H α chemical shifts for the minor conformation (symmetric) denoted with ' of the bis-aza PF1022A analog (8) in CDCl₃ referenced to the residual CHCl₃ shift in the solvent set to 7.28 ppm.

		Ηα	Ηβ	Нγ	Ηδ	Ηε	Hζ	HMe
Lac ¹	_	4.98	1.06	-	-	-	•	-
MIn ²		-	3.69, 3.57	2.05	0.97, 0.87	-	-	3.11
Phl ³		5.60	3.16	-	7.34	7.34	7.29	-
MIn ⁴		-	3.64, 2.98	1.55	0.89, 0.88	-	-	3.23
Lac⁵		5.59	1.38	-	-	-	-	-
Mle ⁶		5.46	1.72	1.36	0.95, 0.92	-	-	2.96
Phl ⁷		5.72	3.19, 3.10	-	7.32	7.32	7.28	-
Mle ⁸		5.22	1.58, 1.49	0.90	0.82, 0.81	-	-	2.98
	С	Сα	Сβ	Сү	Сδ	Cε	Сζ	CMe
Lac1	174.2	69.3	16.1	-	-	-	-	-
MIn ²	154.7	-	58.2	26.9	19.4, 18.8	-	-	34.7
Phl ³	169.7	72.6	37.1	134.8	129.3	128.4	127.1	-
MIn ⁴	153.9	-	57.0	27.0	18.9, 19.2	-	-	38.1
Lac⁵	172.3	67.9	16.6	-	-	-	-	-
Mle ⁶	169.9	53.9	37.4	24.9	22.4, 19.8	-	-	29.7
Phl ⁷	171.9	70.9	37.5	135.1	129.4	128.3	127.0	-
Mle ⁸	171.2	54.1	36.1	23.8	22.2, 20.3	-	-	30.5

Table S 6. Assignment of the major conformation of the bis-aza PF1022A analog (8) in CD₃OH referenced to the residual CH₃OH shift in the solvent set to 3.33 ppm.

	Mle² N	Mle² Nα	Mle ⁴ N	Mle⁴ Nα	Mle ⁶ N	Mle ⁸ N	Mle ²⁶ N	Mle ⁴⁸ N	Mor N
PF1022A	107.4	-	110.6	-	104.8	112.6	110.2	111.4	-
PF1022A CD ₃ OH	110.5	-	114.2	-	107.2	115.6	n.d.	n.d.	-
Emodepside	107.4	-	110.7	-	104.9	112.7	110.3	111.3	103.1
CDCI ₃									
Emodepside	110.6	-	114.6	-	107.3	115.9	n.d.	n.d.	103.0
CD ₃ OH									
bis-aza PF1022A analogue	95.2	122.5	94.5	123.9	104.1	112.7	n.d.	n.d.	-
bis-aza PF1022A analogue	96.3	122.5	96.8	123.6	106.5	115.2	n.d.	n.d.	-
CD₃OH									

Table S 7. ¹⁵N chemical shifts of 1, 2 and 8 in CDCl₃ and CD₃OH. n.d. indicates signals that could not be detected.

Identification of Additional Conformers Based on Exchange, Exemplified for Compound 1

Figure S 4. Detail of ROESY spectrum showing the exchange between $Mle^2 H\alpha$ and $Mle^{26} H\alpha$ as well as $Mle^6 H\alpha$ and $Mle^{26} H\alpha$ of PF1022A (1) in chloroform (blue). ROE-peaks (red) have opposite phase relative to the diagonal whereas EXSY peaks have the same phase (black). Based on additional exchange peaks to $Mle^2 H\alpha$, at least two additional conformers with very low intensity could be identified.

Figure S 5. Volumes extracted from the CPMG ¹³C HSQC spectra plotted against the echo time to obtain the corresponding T_2 relaxation times for PF1022A (1) in chloroform. The plots were created with Prism.

Extracted Volumes and M_0 Values Used for Calculation of Site-to-Site Exchange Rates for compounds 1 (A), 2 (B), 8 (C) and 11 (D) in chloroform:

$$A = \begin{pmatrix} \frac{77.9}{1} & \frac{1.52}{1.5} & \frac{1.55}{1.5} \\ \frac{1.59}{1} & \frac{236}{1.5} & \frac{0}{1.5} \\ \frac{1.75}{1} & \frac{0}{1.5} & \frac{200}{1.5} \end{pmatrix} \quad B = \begin{pmatrix} \frac{65.8}{1} & \frac{0.93}{1.8} & \frac{1.18}{1.8} \\ \frac{1.00}{1} & \frac{232}{1.8} & \frac{0}{1.8} \\ \frac{1.32}{1} & \frac{0}{1.8} & \frac{216}{1.8} \end{pmatrix}$$

$$C = \begin{pmatrix} \frac{12.9}{1} & \frac{0.50}{9.8} \\ \frac{0.46}{1} & \frac{387}{9.8} \end{pmatrix} \qquad D = \begin{pmatrix} \frac{95}{1} & \frac{1.58}{1.5} & \frac{1.7}{1.5} \\ \frac{2.41}{1} & \frac{235}{1.5} & \frac{0}{1.5} \\ \frac{1.82}{1} & \frac{0}{1.5} & \frac{218}{1.5} \end{pmatrix}$$

MSM Building

Figure S 6. (Left): Implied timescales for the MSM of the symmetric subset of PF1022A (1) in chloroform. Six slow transitions were observed. (Right): The seven conformational states of the symmetric subset plotted with the second and third TICA element. The first TICA element describes mainly the dihedral undergoing *cis-trans* isomerization and is thus not relevant for the symmetric subset.

State	Stationary distribution [%]	Estimated free energy [kT]
1	3.1	3.5
2	6.5	2.7
3	7.4	2.6
4	11.3	2.2
5	11.9	2.1
6	16.5	1.8
7	43.2	0.8

Table S 8. Stationary distribution and corresponding free energies of the seven conformational states in the MSM of the symmetric subset of PF1022A (1) in chloroform.

Titration of Emodepside with KSCN. General Procedure for the Fitting of Titration Data.

Figure S 7. H α region of ¹H NMR spectra of 5 mM emodepside (2) in CD₃OH at different KSCN concentrations. Chemical shift changes were observed for the symmetric conformation, best seen for the signal of the H α proton in residue Phm³⁷ (blue labels). In addition, a change in the ratio between the symmetric and asymmetric conformation is observed. Also the asymmetric conformation shows small chemical shift changes at high salt concentrations.

The concentration of the symmetric conformation in dependence of the salt concentration was fitted with the following equation (damped logistic growth function):

$$[P_{free}] = [P_{all}] - ([P_{all}] - [P_0]) * e^{\frac{-a*[S]}{[S]+b}}$$

where $[P_{free}]$ is the concentration of the free symmetric peptide, $[P_{all}]$ the total peptide concentration, $[P_0]$ the symmetric peptide concentration without salt, [S] the salt concentration, and *a* and *b* are the fitting parameters.

The chemical shift change in dependence of the salt concentration was fitted using the following equations assuming a fast equilibrium between the free symmetric species, the 1:1 complex and a 2:1 complex:

$$\delta_{obs} = \delta_P - \frac{(\delta - \delta_{PS}) * [S_{tot}] * K_1 * [P_{free}] + 2 * (\delta_P - \delta_{P2S}) * [S_{tot}] * K_1 * K_2 * [P_{free}]^2}{P_0 * (1 + K_1 * [P_{free}] + K_1 * K_2 * [P_{free}]^2)}$$

$$0 = K_1 * K_2 * [P_{free}]^3 + K_1 * (2 * K_2 * [S_{tot}] - K_2 * [P_{tot}] + 1) * [P_{free}]^2$$

$$+ (K_1 * ([S_{tot}] - [P_{tot}]) + 1) * [P_{free}] - [P_{tot}]$$
with $K_1 = \frac{[PS]}{[P_{free}][S]}$ and $K_2 = \frac{[P_2S]}{[PS][S]}$

where δ_{obs} corresponds to the observed chemical shift, δ_P is the chemical shift of the symmetric free peptide, δ_{PS} is the chemical shift of the 1:1 symmetric peptide-cation complex (*PS*), δ_{P2S} the shift of the 2:1 symmetric peptide-cation complex (*P*₂*S*), [*P*_{tot}] the total concentration of the peptide (all symmetric species), directly determined from the integral of the signal of the symmetric species in ¹H NMR spectrum, [*S*_{tot}] is the total salt concentration, [*P*_{free}] the free symmetric peptide concentration, and *K*₁ and *K*₂ are the equilibrium constants for the 1:1 and the 2:1 complexes. Fitting was done with R.

Experimental Results for mono-iodine analog (11):

Table S 9. Ratio between asymmetric and symmetric conformer in CD₃OH and CDCl₃ for compounds 11.

Compound	Conformer ratio in CD₃OH (asymmetric : symmetric)	Conformer ratio in CDCl ₃ (asymmetric : symmetric)
Mono-iodo analog (11)	5:1	3:1

Table S 10. Exchange rates between asymmetric and symmetric conformers of **11** in CDCl₃ determined from EASY-ROESY experiment with mixing time of 100 ms.

Compound	k₁ [s⁻¹]	k ₂ [s ⁻¹]	k _{ex} [s ⁻¹]
Mono-iodo analog (11)	0.17	0.09	0.26

Table S 11. Change in ratio between asymmetric and symmetric conformer without salt and after addition of a 25-fold excess of CsSCN in CD₃OH.

Figure S 8. Titration of 5 mM mono-iodine analog (**11**) with CsSCN in CD₃OH while the total volume was kept constant. (Left): Change in concentration of the symmetric conformation upon the addition of CsSCN. The data points were fitted with a damped logistic growth function. (Right): Change of the chemical shift of the averaged signal of PhII³ and PhII⁷ H α proton of the symmetric conformation as a function of the salt concentration.

Permeability Data PAMPA for compounds 1, 2 and 8

Table S 12. PAMPA results of compounds **1**, **2** and **8** with and without the addition of 100 mM KCl. Carbamazepine was used as control for the PAMPA and showed permeabilities between 7.94 and 11.1 * 10^{-6} cm s⁻¹ and recovery rates between 85.4 and 199.9 %.

Compound	Average Permeability with standard deviation in brackets [10 ⁻⁶ cm s ⁻¹]	Average Recovery Rate [%]
PF1022A (1)	0.06 [0.03]	18.4
Emodepside (2)	0.00 [0.00]	78.7
Bis-aza analog (8)	0.08 [0.03]	26.2
PF1022A (1) + 100 mM KCl	0.02 [0.01]	57.4
Emodepside (2) + 100 mM KCl	0.00 [0.00]	27.3
Bis-aza analog (8) + 100 mM KCl	0.00 [0.00]	6.8