

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Access to oxytocin and misoprostol for management of post-partum haemorrhage in Kenya, Uganda and Zambia: a comparison of availability, prices and affordability.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042948
Article Type:	Original research
Date Submitted by the Author:	21-Jul-2020
Complete List of Authors:	Kibira, Denis; Coalition for Health Promotion and Social Development (HEPS-Uganda), ; Utrecht University, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Division of Pharmacoepidemiology and Clinical Pharmacology Ooms , Gaby; Health Action International van den Ham, Hendrika; Utrecht University Utrecht Institute for Pharmaceutical Sciences, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Division of Pharmacoepidemiology and Clinical Pharmacology Namugambe-Kitutu, Juliet ; Mbarara University of Science and Technology, Department of Pharmacy Reed, Tim; Health Action International Leufkens, Hubert; Utrecht University, Utrecht Institute for Pharmaceutical Sciences Mantel-Teeuwisse, Aukje; Utrecht University, Utrecht Institute for Pharmaceutical Sciences
Keywords:	Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Maternal medicine < OBSTETRICS, REPRODUCTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3		
3 4	1	Access to oxytocin and misoprostol for management of post-partum haemorrhage in Kenya
5 6	2	Uganda and Zambia: a comparison of availability, prices and affordability.
7	3	Authors
8	4	Denis Kibira ^{1, 2} , Gaby Isabelle Ooms ^{1,3} , Hendrika A. van den Ham ¹ , Juliet Sanyu Namugambe-Kitutu ⁴ , Tim
9		Reed ³ , Hubert G. Leufkens ¹ , Aukje K. Mantel-Teeuwisse ¹
10	5	Reeu ² , Hubert G. Leurkens ² , Aukje K. Mantei-Teeuwisse ²
11 12	6 7	Affiliations
12	8	
14	8 9	¹ WHO Collaborating Centre for Pharmaceutical Policy and Regulation
15	9 10	Utrecht University Utrecht Institute for Pharmaceutical Sciences
16		
17	11	Universiteitsweg 99
18	12	3584 CG Utrecht, the Netherlands
19	13	² Coalition for Health Promotion and Social Development (HEPS-Uganda)
20	14 15	Plot 351A, Balintuma Road, Namirembe Hill
21	15	³ Health Action International
22 23	16	Overtoom 60 (2)
23 24	17	1054 HK Amsterdam, The Netherlands
25	18	⁴ Department of Pharmacy, Mbarara University of Science and Technology
26	19	Mbarara, Uganda
27	20	
28	21	Authors email list
29	22	DK: <u>dkibira@gmail.com/dkibira@heps.or.ug</u>
30	23	GIO: <u>Gaby@haiweb.org</u>
31	24	DK: <u>dkibira@gmail.com/dkibira@heps.or.ug</u> GIO: <u>Gaby@haiweb.org</u> HDH: <u>H.A.vandenHam@uu.nl</u> JN: <u>julietsanyu@gmail.com</u> TR: <u>Tim@haiweb.org</u> HL: <u>H.G.M.Leufkens@uu.nl</u> AM: <u>a.k.mantel@uu.nl</u>
32 33	25	JN: julietsanyu@gmail.com
33 34	26	TR: <u>Tim@haiweb.org</u>
35	27	HL: <u>H.G.M.Leufkens@uu.nl</u>
36	28	AM: <u>a.k.mantel@uu.nl</u>
37	29	
38	30	Corresponding author
39	31	Denis Kibira, MBA
40	32	WHO Collaborating Centre for Pharmaceutical Policy and Regulation
41	33	Utrecht University
42	34	Utrecht Institute for Pharmaceutical Sciences
43 44	35	Universiteitsweg 99
44 45	36	3584 CG Utrecht, the Netherlands
46	37	Coalition for Health Promotion and Social Development (HEPS-Uganda)
47	38	Plot 351A, Balintuma Road, Namirembe Hill, Kampala, Uganda
48	39	Email: <u>dkibira@gmail.com/dkibira@heps.or.ug</u>
49	40	Tel: +256701580120
50	41	Abstract word count: 291
51	42	Manuscript word count (excluding tables, figures and references): 3268
52	43	Number of tables and figures: 4
53	44	
54 55	45	Key words: Access, Oxytocin, Misoprostol, Post-partum haemorrhage
55 56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	46	Abstract
5 6	47	Objectives
7	48	This paper assesses access to oxytocin and misoprostol at health facilities to improve
8 9	49	prevention and management of postpartum haemorrhage by measuring the availability, prices
10 11	50	and affordability of the medicines in Kenya, Uganda and Zambia.
12 13	51	Design
14 15	52	The assessment used a cross-sectional design adapted from the standardized WHO/HAI
16 17	53	methodology on measuring availability, prices and affordability to medicines.
18	54	Setting
19 20	55	Data were collected in July and August 2017 from 376 health facilities from a target of 432
21 22	56	facilities across the three countries.
23 24	57	Participants
25 26	58	Health facility managers.
27 28	59	Primary and secondary outcome measures
29	60	Availability was calculated as the mean percentage of sampled medicine outlets where the
30 31	61	medicine was found on the day of data collection. Medicine prices were compared to
32 33	62	international reference prices (IRP) and expressed as median price ratios (MPRs). Affordability
34 35	63	was calculated using the number of days required to pay for a standard treatment based on the
36 37	64	daily income of the lowest-paid government worker.
38 39	65	Results
40	66	Availability of either oxytocin or misoprostol at health facilities was high; 81% in Kenya, 82% in
41 42	67	Uganda, and 76% in Zambia. Oxytocin was more available than misoprostol, and it was most
43 44	68	available in the public sector in the three countries. Availability of misoprostol was highest in
45 46	69	the public sector in Uganda (88%). Oxytocin and misoprostol were purchased by patients at
47 48	70	prices above IRP, but both medicines cost less than a day's wages and were therefore
49 50	71	affordable. Availability of misoprostol was poor in rural settings where it would be more
50 51 52	72	preferred due to lack of trained personnel and cold storage facilities required for oxytocin.

73 Conclusion

Page 4 of 23

BMJ Open

Availability and affordability of either oxytocin or misoprostol at health facilities was optimal.

75 However, countries with limited resources should explore mechanisms to optimize 76 management of PPH by improving access to misoprostol especially in rural areas.

Strengths and limitations of the study

- The WHO/HAI methodology that was used for this study is tested, reliable, standardized
 and validated for the measurement of medicine prices and availability.
 - The study provides details on availability, price, and affordability of individual medicines across three sectors (public, private and mission).
 - The methodology uses a cross-sectional design and therefore historical data trends were not traced.
- The study only used two frontline medicines for PPH, while countries may have had
 other alternative therapies including carbetocin which were not captured.
 - Findings presented here may not be used to predict country pharmaceutical supply chain but are intended to stimulate policy discussions on deliberate targeting and the use of available technologies to improve access.

Background

The risk of women dying due to pregnancy and childbirth remains a major global health challenge. In 2017 there were approximately 295,000 maternal deaths globally, of which 94% occurred in low-and middle-income countries (LMICs). Sub-Saharan Africa contributed about 66% to these deaths [1]. The global leading cause of maternal mortality is haemorrhage, accounting for 27% of all maternal deaths [2].

Postpartum haemorrhage (PPH) which occurs after childbirth accounts for most (72%) of the three forms of haemorrhage. Antepartum haemorrhage which occurs during pregnancy accounts for 24% while intrapartum haemorrhage (during childbirth) accounts for three percent [2]. PPH is responsible for 34% of maternal deaths in Kenya, 25% in Uganda and 34% in Zambia [3-5].

The World Health Organization (WHO) recommends oxytocin as the medicine of choice for management of PPH, and misoprostol as the second line alternative when injection capability is lacking and/or storage conditions for oxytocin are not met. Other uterotonics such as ergometrine and carbetocin are also recommended when use of oxytocin is not feasible [1].

The relevance of oxytocin and misoprostol to health systems was further emphasised by the United Nations Commission on Life-saving Commodities for women and children when they were listed among the 13 lifesaving, low-cost medicines with greatest proven potential to avert preventable deaths [6]. Both oxytocin and misoprostol are included in national essential medicine lists in Kenya, Uganda and Zambia [7-9].

The quality, efficacy and safety of oxytocin and misoprostol have been widely studied [11-24]. Oxytocin is temperature sensitive and should therefore be stored under refrigeration at temperatures between 2 and 8°C to prevent degradation expected at higher temperatures [11]. Degradation reduces potency and consequently the effectiveness of the medicine. Oxytocin stability through the supply chain has proven a worry to policy makers and has been a subject

of numerous investigations to ascertain guality and efficacy [12-14]. Some studies on the quality of oxytocin found analyzed samples to contain less active pharmaceutical ingredients than was claimed on label, while some samples also failed sterility tests [15-17]. LMICs with low resources may also lack facilities required for adequate storage conditions for oxytocin to ensure integrity of the product, while they may also lack trained health workers for its administration [18]. Women living among displaced populations, in conflict areas, hard to reach areas, who deliver at home or with a traditional birth attendant seldom have access to a trained health worker. Hence, they do not have access to oxytocin or if they do, it is not safely used [10]. As a result of these challenges, prevention and treatment of PPH in low-resource settings using oxytocin has not provided the desired impact [19, 20].

Misoprostol, a prostaglandin, is an alternative to oxytocin in the management of PPH. It is cheap, stable at room temperature and more convenient to administer. It can be administered sublingually, orally and vaginally [20, 21, 25, 26]. It has been demonstrated through various studies that use of misoprostol is feasible, improves uterotonic coverage, reduces incidence of PPH and that it is effective for use at community and household level in low-resource settings [21-23].

In 2015, the WHO expert committee on the selection and use of medicines recommended the addition of misoprostol for the prevention and treatment of postpartum haemorrhage when oxytocin is not available or cannot be used safely [24]. At different occasions the inclusion of misoprostol in the list of WHO recommended medicines was debated for both efficacy and safety reasons, but the 2015 decision to recommend misoprostol in addition to oxytocin for prevention of PPH was reaffirmed in 2019 by a WHO expert committee [27]. Before 2015 misoprostol was indicated by WHO for use in induction of labour and management of spontaneous and induced abortion [28]. The historical use of misoprostol for termination of pregnancies may have affected its acceptability for routine use in prevention of PPH, despite available convincing evidence of its therapeutic effect and relative safety in management of PPH. Another challenge is that the high doses of misoprostol required for post-partum haemorrhage often result in troublesome side effects such as vomiting and shivering [29].

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
~	

Further, the longer half-life of the medicine means that it stays longer in the body and has 146 potential to cause complications [30]. 147

148

These two medicines could be used complementarily to overcome challenges and barriers in 149 150 policy, health sector infrastructure and health service delivery that at the moment inhibit the optimal management of PPH [10, 31]. However, there is a knowledge gap on the accessibility of 151 both medicines in low-resource settings. This is a missed opportunity in closing the gap in the 152 reduction of maternal mortality in developing countries. This paper therefore assesses access to 153 oxytocin and misoprostol in urban and rural health facilities in Kenya, Uganda and Zambia 154 through a comparison of availability, prices and affordability of the two medicines to facilitate 155 the optimal management of PPH. 156

157

Methods 158

An assessment of availability and prices of oxytocin and misoprostol was undertaken using data 159 from Health Action International (HAI) research on sexual and reproductive health commodities 160 161 (SRHC): Measuring Prices, Availability & Affordability [32]. The data was collected in Kenya, Uganda and Zambia in July and August 2017 using a cross-sectional design with quantitative 162 methods adapted from the standardized WHO/HAI methodology [33], which has been validated 163 164 [34] and used extensively in several countries [35-37].

165

60

Patient and Public Involvement 166

The research agenda for this study was set by the multi-stakeholder platform Medicines 167 Transparency Alliance (MeTA) Councils in Kenya, Uganda and Zambia. The study protocols were 168 reviewed and approved by MeTA Councils. Data collectors were selected from the membership 169 170 of MeTA within the countries. Results were validated by stakeholders including civil society. 171 Dissemination plans were made by MeTA councils and results were disseminated to wide

country and inter-country platforms including Ministries of Health, Parliamentarians, private sector as well as civil society members to inform policy.

Data collection

For this study, the data on availability, price and affordability of the highest and lowest-priced products of oxytocin 10IU, 1ml injections and misoprostol 200 µg tablets were extracted.

In each of the three countries, six geographical areas (districts, municipalities or counties) were selected; the country's main urban centre and five other areas which were randomly selected. All survey areas were reachable within one day's travel from the country's main urban centre using a car or bus. Each survey area covered a population of between 100 000 and 250 000 people.

In each survey area, the main public hospital was selected first. Then, eight public health facilities, four each from urban and rural areas, representing levels of care at which SRHCs should be made available, were randomly selected [38]. Additionally, eight private (for profit) and eight mission sector (not for profit) health facilities (four each from urban and rural areas) that were within a three-hour drive radius of the main hospitals were selected. Thus, a total of 24 health facilities were sampled from each of the six survey areas in Kenya, Uganda and Zambia, respectively, giving a total of 144 facilities per country. The final sample per country ensured a minimum representation of 30 health facilities from the public, mission and private sectors [33].

Eight data collectors with experience of conducting medicine surveys worked in pairs of a pharmacist and a social scientist under close supervision of a qualified survey manager. Prior to data collection, the team was trained on the methodology. Data collectors used a semi-structured questionnaire administered to facility managers while physically ascertaining the availability of surveyed medicines. Availability was measured by the physical presence of a product in the outlet at the time of the survey. For each medicine surveyed, data collectors recorded the product name for both the highest and lowest-priced medicines available, the

2	
2 3	
4	
4 5	
د د	
07	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
4 5 6 7 8 11 12 13 14 15 17 18 201 223 24 25 27 28 30 32 33	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
40 47	
47 48	
48 49	
49 50	
51 52	
53	
54	
55	
56	
57	
58	
59	

200 manufacturer and unit price of the product. In the public sector in Uganda and Zambia where
201 medicines are free of charge to care seekers, prices were not recorded.

202

203 Once data collection was complete, survey data was entered into a pre-programmed Microsoft 204 Excel Workbook provided as part of the modified methodology. Data input was independently checked for errors. Additional quality control measures were executed at various stages 205 206 throughout the study by a survey manager. The survey tools were pre-tested in Uganda in 2016 207 and a field test was conducted by all data collectors prior to data collection. Each data collection team had a supervisor who cross checked the data on a daily basis for completeness, 208 209 legibility and consistency and reported to the survey manager. Prior to data entry all relayed data was checked for completeness and consistency. 210

212 Data analysis

211

The availability of oxytocin and misoprostol was calculated as the percentage of sampled medicine outlets where the medicine was found. Availability was also calculated for the presence of either oxytocin or misoprostol at a facility. Data were reported in aggregate as public, private or mission sector medicine outlets. Overall availability per sector was calculated as mean of the two medicines surveyed.

218

60

Patient prices were collected in local currency including Shillings in Uganda and Kenya, and 219 Kwacha in Zambia. The mean, minimum and maximum unit prices were calculated. To facilitate 220 221 cross-country comparisons, medicine prices obtained during the survey were expressed as 222 ratios relative to a standard set of international reference prices by dividing the mean unit price (in dollars) by the Management Sciences for Health international buyers' reference unit 223 price derived on September 25th 2018 [39]. Mean price ratios (MPRs) were calculated only for 224 225 oxytocin and misoprostol products that had price data from at least four medicine outlets. The exchange rate used to calculate MPRs was 1 USD = 102.67 Kenya Shillings (KES), 1 USD = 3667.9 226

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
ו ∡ רר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

227	Uganda Shillings (UGX), 1 USD = 8.85 Zambia Kwacha (ZMW) taken on 1 st July, 2017 prior to the
228	first day of data collection [40, 41].

229

1

Affordability was calculated using the number of days' wages it requires to pay for standard treatment or dose of treatment based on the daily income of the lowest-paid government worker (LPGW) [33]. The daily wage of a LPGW is approximately KES 411 (USD 4) in Kenya, 6255 UGX (USD 1.78) in Uganda, and ZMW 96.7 (USD 10.92) in Zambia, as per public service salary structures [42]. Treatments that required more than one day's wages to purchase were considered unaffordable [33].

236

237 Results

A total of 376 health facilities, including 120, 124 and 132 health facilities in Kenya, Uganda and

239 Zambia, respectively, were surveyed as shown in table 1.

240 Table 1: Number of facilities surveyed

	Urban	Rural	Total
Kenya			
Public	22	22	44
Private	22	20	42
Mission	19	15	34
Total	63	57	120
Uganda		•	
Public	20	22	42
Private	22	20	42
Mission	20	20	40
Total	62	62	124
Zambia			
Public	30	42	72
Private	32	5	37
Mission	6	17	23
Total	68	64	132

60

1		
2 3 4	241	
5 6 7	242	Availability across sectors
8 9	243	Figure 1 shows the availability of either oxytocin or misoprostol at the surveyed health facilities
10 11	244	in the three countries. Overall availability of either oxytocin or misoprostol met the WHO
12	245	benchmark of 80% in Kenya (81%) and Uganda (82%) but was marginally lower in Zambia (76%).
13 14	246	Availability of oxytocin was higher than misoprostol except in Uganda. Availability of either
15 16	247	oxytocin or misoprostol was comparable between the public and mission sectors.
17 18 19	248	
20 21	249	In the public sector, the three countries met the WHO benchmark for availability of oxytocin.
22 23	250	Misoprostol was only optimally available in the public sector in Uganda (88%), with availability
24 25	251	in Kenya and Zambia lower (36% and 21%, respectively). In the private sector, none of the
26	252	countries met the WHO recommended availability for misoprostol. Availability in Zambia was
27 28 29	253	especially low (24%).
30 31	254	
32 33 34 35	255	Availability in urban versus rural areas
36	256	Figure 2 shows availability in urban versus rural areas. Oxytocin was available in over 80% of all
37 38	257	public urban and rural facilities across the three countries. Optimum availability of 80% was
39 40	258	further achieved for oxytocin in Kenya mission urban facilities (89%) and in Zambia's mission
41 42	259	sector for both urban and rural facilities (83% and 94%, respectively). Optimum availability of
43 44	260	misoprostol was only achieved in Ugandan public urban and rural facilities (90% and 86%,
45 46	261	respectively).
47 48	262	
49 50	202	
51	263	In Kenya, oxytocin had a higher availability than misoprostol across all urban and rural facilities
52 53	264	in the three sectors. Availability of misoprostol was lowest in the public sector: availability in
54 55		
56 57		
58		10

urban facilities was 45%, and 27% in rural facilities. In the private sector, there was a higher availability in rural facilities than in urban facilities for both oxytocin and misoprostol.

In Uganda, the public sector was optimally stocked with both oxytocin and misoprostol across urban and rural facilities. Rural public facilities had a higher availability of oxytocin than urban public facilities. In the private sector, rural facilities also had a higher availability of oxytocin and misoprostol compared to urban facilities.

Oxytocin had a high availability in Zambia's public and mission sectors across both urban and rural facilities. Availability in the private sector was very low. Availability of misoprostol was low across the sectors and areas, with highest availability found in urban mission facilities (50%). Although both oxytocin and misoprostol were poorly available in the private sector, oxytocin was more available in rural than urban facilities, while misoprostol had a higher availability in urban facilities than in rural facilities. er.er

Prices and affordability

Oxytocin and misoprostol were free for patients in the public and mission sectors in Zambia, and in the public sector in Uganda. In Kenya's public sector, the lowest price was noted for oxytocin, with a median price ratio (MPR) of USD 0.174 (Table 2). Both misoprostol and oxytocin cost less than a day's wages for a LPGW across all countries and sectors, and can therefore be considered affordable.

Notwithstanding the sectors in which the medicines were for free, the MPRs for oxytocin and misoprostol were above one in the countries, ranging from 1.37 for misoprostol in Kenya's public sector to 29.95 for misoprostol in the private sector in Zambia. This meant that both

Table 2: Prices and affordability of misoprostol and oxytocin across countries

		Public			Private	9		Missio	n	
		Price (USD)	Mean Price Ratio	Affordability of treatment (number of day's wages)	Price (USD)	Mean Price Ratio*	Affordability of treatment (number of day's wages)	Price (USD)	Mean Price Ratio	Affordability of treatment (number of day's wages)
Kenya	Oxytocin	0.029	0.17	0.01	1.354	8.14	0.34	0.672	4.04	0.30
	Misoprostol	0.273	1.37	0.07	1.967	9.84	0.49	1.217	6.09	0.17
					$\mathbf{Q}_{\mathbf{r}}$					
Uganda	Oxytocin	0	NA	NA	0.998	5.99	0.57	0.408	2.45	0.23
	Misoprostol	0	NA	NA	0.589	2.95	0.34	0.39	1.95	0.22
Zambia	Oxytocin	0	NA	NA	0.678	4.08	0.06	NA	NA	NA
	Misoprostol	0	NA	NA	5.989	29.95	0.55	NA	NA	NA

NA=not applicable, USD=United States Dollar

BMJ Open

Discussion

This paper assesses access to oxytocin and misoprostol in urban and rural health facilities in Kenya, Uganda and Zambia through a comparison of availability, prices and affordability of the two medicines to facilitate the optimal management of PPH.

Overall, availability of uterotonics, expressed as the presence of either oxytocin or misoprostol, was high in Kenya and Uganda, and just below the WHO benchmark of 80% in Zambia. Misoprostol was markedly less available than oxytocin. Oxytocin and misoprostol were accessed by patients in the private sector at prices that were more expensive than the international reference prices. However, both medicines cost less than a day's wages, which is considered affordable. The availability of misoprostol across urban and rural areas did not show the expected pattern of having a higher availability of the medicine in rural areas, which are more prone to health system barriers for use of oxytocin.

Oxytocin availability was high in the public and mission sectors but lower in the private sector, particularly in Zambia. In the private sector, none of the countries met the WHO availability benchmark of 80% for the two medicines. Besides the public sector in Uganda, misoprostol was not optimally available in the other countries or sectors. Misoprostol had a low availability, particularly in rural areas where the medicine ought to play a major role given that facilities in these areas tend to lack adequately trained health workers and the health infrastructure required to maintain cold chain to safeguard the quality of oxytocin [18]. Its poor availability in Kenya and Zambia may be a result of slow diffusion of the intervention into the health system [43, 44]. Moreover, misoprostol has been recommended by WHO for use in PPH since 2015 after several rounds of weighing the benefits and risks, but the debate about its role in PPH prevention has continued over the years [24] [27]. The fear and stigma amongst health workers about the use of misoprostol to induce abortions may also have contributed to the situation [29]. In contrast, Uganda's efforts as an early adaptor [43, 44] to ensure availability of misoprostol through government procurement and community level distribution strategies may

explain why it has a higher availability of misoprostol, as well as lower PPH levels compared to

Urban facilities have better health infrastructure such as cold chain facilities, and also tend to

have more health workers compared to rural facilities [45-47]. It would therefore be expected

that these urban areas would have a higher availability of oxytocin and lower availability of

misoprostol than rural facilities. However, there were instances when rural facilities had a

higher availability of oxytocin and a lower availability of misoprostol. This may indicate that

stocking of oxytocin and misoprostol by health facilities does not take into consideration

challenges faced by the facilities to administer the medicines. It will require policy makers to

look into how to address context-specific barriers related to these medicines by ensuring that

they are deployed where they can have maximum impact [48, 49]. For example, efforts should

be made to deploy more misoprostol in rural areas where there is a lack of adequately trained

personnel and a lack of health infrastructure to properly use oxytocin, and to ensure that both

Kenya and Zambia (25% in Uganda versus 34% in both Kenya and Zambia) [3-5].

PPH levels across the countries are high despite health facilities having reached the WHO benchmark for availability of either oxytocin or misoprostol across the three countries. This may confirm the finding from a study by Ononge et al that despite use of uterotonics, incidence of PPH remains high [5]. It may be that some oxytocin found at health facilities may not have the quality and efficacy for optimum management of PPH [15-17]. Countries should strive for universal access as the 80% availability benchmark by WHO still leaves one in five facilities without required medicine. However, availability of a medicine alone does not guarantee that it is used, health worker beliefs and knowledge as well as necessary infrastructure such as electricity and equipment are needed to reduce PPH levels.

medicines are available to complement one another depending on circumstances.

Studies have shown that combinations of uterotonics have proven to be more effective. For
example, a misoprostol plus oxytocin combination was found to be more effective in preventing
PPH than the currently used standard of oxytocin only [50]. This argument further emphasizes

1	
2 3	348
4 5	349
6 7	343
8	350
9 10	351
11 12	352
13	353
14 15	354
16 17	355
18 19	356
20	357
21 22	
23 24	358
25 26	359
27	360
28 29	361
30 31	362
32	363
33 34	364
35 36	365
37 38	366
39	367
40 41	368
42 43	369
44 45	370
46	371
47 48	372
49 50	373
51	
52 53	374
54 55	375
56 57	
57 58	

348 that having both oxytocin and misoprostol available at the health facility could help to improve 349 PPH management.

Although oxytocin and misoprostol were affordable to patients, the private sector prices were 350 varied and more expensive compared to IRPs. For example, the MPR of misoprostol ranged 351 352 from 1.37 in Kenya to 29.95 in Zambia. This suggests that countries need to explore pricing policies to improve affordability of the medicines. 353

The WHO/HAI methodology that was used for this study is tested, reliable, standardized and 355 validated for the measurement of medicine prices and availability [34]. The study provides 356 details on availability, price, and affordability of individual medicines across three sectors 357 (public, private and mission). The methodology uses a cross-sectional design and therefore 358 359 historical data trends were not traced. The study only used two frontline medicines for PPH, while countries may have had other alternative therapies including carbetocin which were not 360 361 captured. Findings presented here may not be used to predict country pharmaceutical supply chain but are intended to stimulate policy discussions on deliberate targeting and the use of 362 available technologies to improve access. 363

59

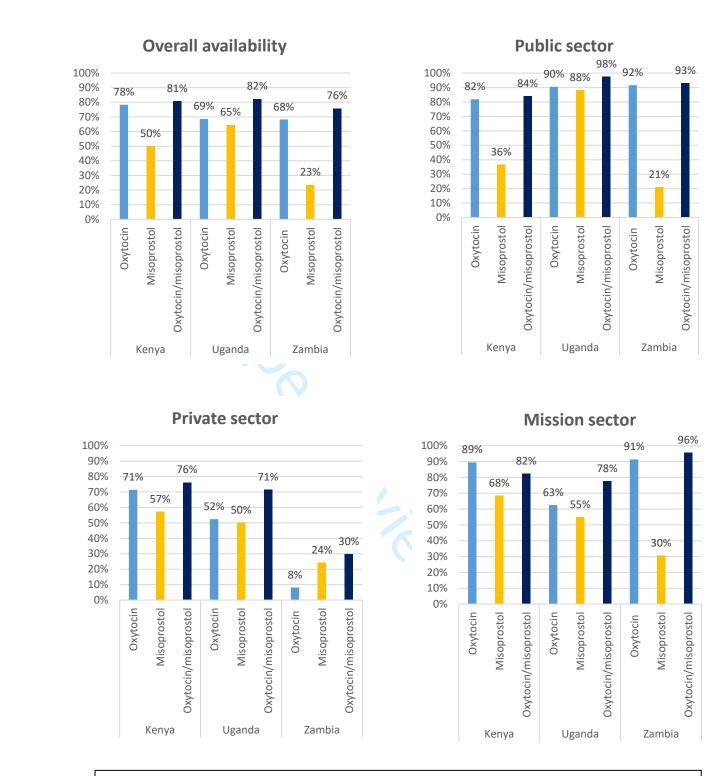
60

Conclusion 365

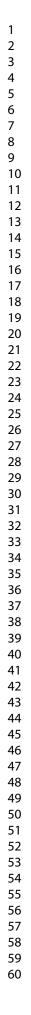
366 Oxytocin and misoprostol had optimal availability in Kenya and Uganda, and was just below the 367 WHO benchmark in Zambia. In general, oxytocin was more available than misoprostol. Oxytocin and misoprostol were purchased by patients at prices above international reference prices but 368 both medicines cost less than a day's wages for a LPGW and were therefore considered 369 370 affordable. However, there was no strategy in place that looked at which medicine could be 371 best utilized in which area. Countries with limited resources should explore mechanisms to balance access to both oxytocin and misoprostol between rural and urban areas to optimize 372 373 management of PPH.

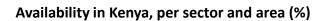
1 2		
2 3 4	376	List of abbreviations
5	377	Post-partum haemorrhage (PPH); Median price ratio (MPR); Low- and middle-income countries
6 7	378	(LMICs); Lowest-paid government worker (LPGW); sexual and reproductive health commodities
8 9	379	(SRHC); Health Action International (HAI); World Health Organisation (WHO).
10 11 12	380	
13 14 15	381	Declarations
16 17 18	382	Ethical approval and consent to participate
19 20	383	This study did not involve human subjects and did not involve direct interaction with patients
21 22	384	and therefore ethical approval was not sought. However, Ministries of Health in Uganda and
23 24	385	Zambia and Country Directors of Health in Kenya gave approval and provided introduction
25 26	386	letters to health facilities.
27 28 29	387	
30 31 32	388	Consent for publication
33 34	389	Consent for publication Not applicable
35 36 37	390	
38 39 40	391	Data sharing statement
41 42	392	The datasets used and/or analysed during the current study are available from the
43 44 45	393	corresponding author on request.
46 47 48	394	
49 50	395	Competing interests
51 52	396	All authors declare no competing interests.
53	397	
54 55	398	
56 57		
58 59		17
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

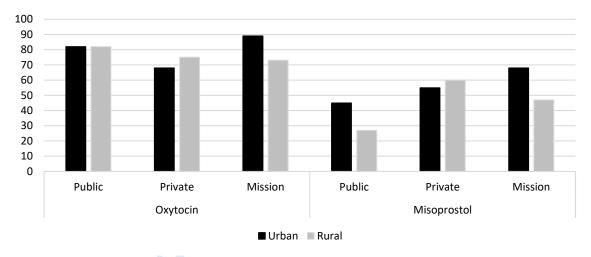
2		
3 4	399	Funding
5 6 7	400	This research was funded by Health Action International through the Health Systems Advocacy
7 8	401	Partnership.
9 10		
11	402	
12 13 14	403	Authors' contribution
15 16 17	404	DK conceptualized the project, undertook data analysis and wrote the first draft of the
18 19	405	manuscript; GO, RDH, JSN, HTR, HL and AM revised the manuscript and critically reviewed its
20	406	contents. GO contributed to data analysis. AM critically reviewed the manuscript, provided
21 22 23	407	comments and guidance on all drafts of manuscript.
24 25 26	408	
27 28	409	Acknowledgements
29 30	410	The authors acknowledge data collection teams in Kenya led by Dorothy Okemo, in Uganda led
31 32	411	by Anthony Ssebagereka and in Zambia led by Liyoka Liyoka. We appreciate Dr. Metin
33	412	Gülmezoglu for providing comments and Daphne Ssebugwawo who edited the manuscript.
34 35	413	
36 37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48		
49 50		
50		
52		
53 54		
55		
56		
57 58		18
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

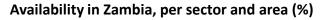

References

- 1. World Health Organization, *Trends in maternal mortality: 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division*, 2019: Geneva.
- 2. Say L, et al., *Global causes of maternal death; a WHO systematic analysis.* Lancet Global Health, 2014. **2** (6): p. E323-33.
- 3. PSI, *Improving Maternal Health: Preventing Post-Partum Hemorrhage in Rural Zambia*, 2014: Washington D.C.
- 4. Kinuthia, K., M. Stephenson, and E. Maogoto, *Management of postpartum hemorrhage in a rural hospital in Kenya: a best practice implementation project.* JBI Database System Rev Implement Rep, 2019. **17**(2): p. 248-258.
- 5. Ononge, S., et al., *Incidence and risk factors for postpartum hemorrhage in Uganda.* Reproductive Health, 2016. **13**(38).
- 6. United Nations, United Nations Commission on Life-saving Commodities for Women and Children; Commissioner's Report 2012, United Nations: New York.
- 7. Ministry of Health, Kenya Essential Medicines List 2016, 2016: Nairobi, Kenya.
- 8. Ministry of Health, Essentail Medicines and Health Supplies List of Uganda, 2016.
 - 9. Ministry of Health, Zambia Essential Medicines List, 2013.
 - 10. Tran, D.N. and L.A. Bero, *Barriers and facilitators to the quality use of essential medicines for maternal health in low–resource countries: An Ishikawa framework.* J Global Health, 2015. **5**(1).
- 11. World Health Organisation, *Recommendations for the prevention and treatment of postpartum haemorrhage.*, 2012, Department of Reproductive Health: Geneva.
- 12. De Groot, A.N., et al., *Oxytocin and desamino-oxytocin tablets are not stable under simulated tropical conditions.* Journal of Clinical Pharmacy 1995. **20**(2): p. 115-119.
- 13. Hogerzeil, H.V., et al., *Stability of essential drugs during shipment to the tropics*. BMJ, 1992. **304**(6821): p. 210-212.
- 14. Nazerali, H. and H.V. Hogerzeil, *The quality of essential drugs in rural Zimbabwe: controlled longitudinal study*. BMJ, 1998. **317**(7157): p. 512-13.
- 15. Karikari -Boateng, E., *Post-market quality surveillance project maternal health care products on the Ghanaian market*, 2013, Ghana Food and Drugs Authority: Accra.
- 16. Torloni, M.R., et al., *Quality of oxytocin available in low- and middle-income countries: a systemic review of the literature.* BJOG, 2016. **123**(13): p. 2076–86.
- 17. Stanton, C., et al., *Accessibility and potency of uterotonic drugs purchased by simulated clients in four districts in India.* BMC Pregnancy and Childbirth 2014. **14**(386): p. Page 2 of 12.
- Anyakora, C., et al., Quality medicines in maternal health: Results of Oxytocin, Misoprostol, Magnesium sulphate and Calcium Gluconate Quality Audits. BMC Pregnancy and Childbirth 2018. 18(1): p. 44.
- 19. Hofmeyr, G.J., S. Ferreira, and V.C. Nikodem, *Misoprostol for treating postpartum haemorrhage: a randomized controlled trial* BMC Pregnancy and Childbirth, 2004. **4**(16).
- 20. Alfirevic, A., et al., *Prevention of postpartum hemorrhage with misoprostol* Int J Gynecol Obstet, 2007. **99(Suppl 2)**: p. 198–201.
- Smith, J.M., et al., Advance distribution of misoprostol for prevention of postpartum haemorrhage at home births in two districts of Liberia. BMC Pregnancy and Childbirth, 2014.
 14: p. 189.


2		
3	22.	McCormick, M.I., et al., Averting maternal death and disability: Prevention of postpartum
4		haemorrhage in low resource settings. International Journal of Obstetrics and Gynaecology,
5		2002. 77 : p. 267-275.
6 7	23.	Smith, J.M., et al., Misoprostol for postpartum haemorrhage prevention at home birth: an
8		integrative review of global implementation experience todate. BMC Pregnancy and Childbirth
9		2013. 13 (44).
10	24.	WHO, The selection and use of essential medicines. Report of the WHO Expert Committee 2015
11		(including the 19th WHO Model List of essential medicines and the 5th WHO Model List of
12		essential medicines for children), 2015.
13	25.	Caliskan, E., et al., <i>Oral misoprostol for third stage of labour: a randomised trial.</i> Obstet Gynecol,
14	25.	
15	20	2003. 101 (5): p. 921-8.
16	26.	El-Refaey, H., et al., Use of oral misoprostol in the prevention of postpartum haemorrhage
17		Obstet Gynecol, 1997. 104 (3): p. 336-9.
18	27.	World Health Organization, The Selection and Use of Essential Medicines 2019. Report of the
19		22nd WHO Expert Committee on the Selection and Use of Essential Medicines, 1-5 April 2019,
20		2019: Geneva.
21	28.	Tang, J., et al., WHO recommendations for misoprostol use for obstetric and gynaecologic
22 23		indications. 2013. 121 (2): p. 186-9.
25 24	29.	Chong, Y.S., L.L. Su, and S. Arulkumaran, Misoprostol: A Quarter Century of Use, Abuse, and
25		Creative Misuse. Obstetrical and Gynecological Survey. 2004. 59(2): p. 128-140.
26	30.	Theunissen, F.J., L. Chinery, and V.P. Yeshita, Current research on carbetocin and implications for
27		prevention of postpartum haemorrhage. BMC Reproductive Health, 2018. 15(1): p. 94.
28	31.	Jhpiego, Accelovate. Brief: how can we increase global utilization of oxytocin for treatment of
29		postpartum hemorrhage, 2015, Jhpiego: Baltimore.
30	32.	HAI, Sexual & Reproductive Health Commodities: Measuring Prices, Availability & Affordability;
31		Methodology & Data Entry Manual 2017: Amsterdam.
32		
33	33.	WHO/HAI, Measuring medicine prices, availability, affordability and price components. 2nd
34		ed2008, Geneva, Switzerland: World Health Organization.
35	34.	Madden, J.M., et al., Measuring medicine prices in Peru: validation of key aspects of WHO/HAI
36		survey methodology. Rev Panam Salud Publica, 2010. 27 (4): p. 291-9.
37 38	35.	Cameron, A., et al., Switching from originator brand medicines to generic equivalents in selected
30 39		developing countries: how much could be saved? Value Health, 2012. 15(5): p. 664-73.
40	36.	Anson, A., et al., Availability, prices and affordability of the World Health Organization's
41		essential medicines for children in Guatemala. Global Health, 2012. 8: p. 22.
42	37.	Cameron, A., et al., Mapping the availability, price, and affordability of antiepileptic drugs in 46
43		<i>countries.</i> Epilepsia, 2012. 53 (6): p. 962-9.
44	38.	Ministry of Health, Package of Basic Health Services for Uganda, Ministry of Health, Editor 1997,
45		Ministry of Health: Kampala, Uganda.
46	39.	Management Sciences for Health. International Drug Price Indicator Guide. 2014 [cited 2016
47	55.	May 5th]; Available from:
48		http://erc.msh.org/mainpage.cfm?file=1.0.htm&module=DMP&language=English.
49	40.	Bank of Uganda. Exchange Rates. 2016 [cited 2016 April 22nd]; Available from:
50	40.	
51 52	4.4	https://www.bou.or.ug/bou/collateral/exchange_rates.html
53	41.	oanda. Available from: https://www.oanda.com/currency/converter/.
54	42.	Uganda Ministry of Public Service, New salary scales for public servants for FY 2014/15, 2014,
55		Uganda Ministry of Public Service: Kampala, Uganda.
56		
57		
58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


43. Sharp, B.E. and S.A. Miller, *Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies*. Environ. Sci. Technol, 2016. **50**(6): p. 2771–2781.


- 44. Gonzalez, L., M. Aebersold, and C. Fenske, *Diffusion of Innovation: Faculty Barriers to Adoption.* Comput Inform Nurs, 2014. **32**(5): p. 201-4.
- 45. Henning-Smith, C., et al., *Rural-Urban Differences in Medicare Quality Outcomes and the Impact of Risk Adjustment.* Med Care, 2017. **55**(1): p. 823-829.
- 46. Alhassan, R.K. and E. Nketiah-Amponsah, *Frontline staff motivation levels and health care quality in rural and urban primary health facilities: a baseline study in the Greater Accra and Western regions of Ghana.* 2016.
- 47. Alghanem, F. and J.M. Clements, *Narrowing performance gap between rural and urban hospitals for acute myocardial infarction care.* . Am J Emerg Med, 2019. **pii: S0735-6757**(19): p. 30250-5.
- 48. Braddick, L., et al., A mixed-methods study of barriers and facilitators to the implementation of postpartum hemorrhage guidelines in Uganda. Int J Gynecol Obstet, 2016. **132**(1): p. 89-93.
- 49. Morris, J.L. and S. Khatun, *Clinical guidelines-the challenges and opportunities: What we have learned from the case of misoprostol for postpartum hemorrhage.* Int J Gynecol Obstet, 2019. **144**(1): p. 122-127.
- 50. Gallos, I.D., et al., Which drug is best for reducing excessive blood loss after birth. Cochrane Database Syst Rev, 2018(4).


Fig 1: Availability of oxytocin and misoprostol across sectors in Kenya, Uganda and Zambia

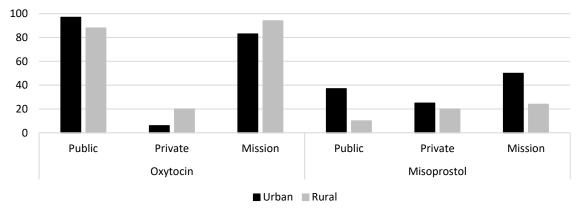


Figure 2: Availability of oxytocin and misoprostol in urban and rural facilities across countries

BMJ Open

Access to oxytocin and misoprostol for management of post-partum haemorrhage in Kenya, Uganda and Zambia: a cross-sectional assessment of availability, prices and affordability.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042948.R1
Article Type:	Original research
Date Submitted by the Author:	26-Oct-2020
Complete List of Authors:	Kibira, Denis; Utrecht University, Utrecht Centre for Pharmaceutical Policy and Regulation, Division of Pharmacoepidemiology and Clinical Pharmacology; Coalition for Health Promotion and Social Development (HEPS-Uganda) Ooms , Gaby; Health Action International van den Ham, Hendrika; Utrecht University Utrecht Institute for Pharmaceutical Sciences, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Division of Pharmacoepidemiology and Clinical Pharmacology Namugambe-Kitutu, Juliet ; Mbarara University of Science and Technology, Department of Pharmacy Reed, Tim; Health Action International Leufkens, Hubert; Utrecht University, Utrecht Institute for Pharmaceutical Sciences Mantel-Teeuwisse, Aukje; Utrecht University, Utrecht Institute for Pharmaceutical Sciences
Primary Subject Heading :	Reproductive medicine
Secondary Subject Heading:	Health policy, Global health, Obstetrics and gynaecology
Keywords:	Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Maternal medicine < OBSTETRICS, REPRODUCTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

or management of post-partum haemorrhage in Kenya,
assessment of availability, prices and affordability.
drika A. van den Ham ¹ , Juliet Sanyu Namugambe ⁴ , Tim Reed ³ ,
wisse ¹
and Regulation
es
Development (HEPS-Uganda)
l
rsity of Science and Technology
g
-
ical Policy and Regulation
es l
Development (HEPS-Uganda)
II, Kampala, Uganda
r.ug
igures and references): 3373
Bares and references, 5575
Post-partum haemorrhage
1
/bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	46	Abstract
5	47	Background
6 7	48	The World Health Organisation (WHO) recommends use of oxytocin and misoprostol as the two
8 9	49	frontline medicines for management of postpartum haemorrhage (PPH). This paper assesses
10 11	50	access to oxytocin and misoprostol at health facilities to improve prevention and management
12 13	51	of PPH by measuring their availability, prices and affordability in Kenya, Uganda and Zambia.
14 15	52	
16 17	53	Methods
18	54	An assessment was undertaken using data from Health Action International (HAI) research on
19 20	55	sexual and reproductive health commodities. Data was collected from 376 health facilities in
21 22	56	July and August 2017 using a cross-sectional design adapted from the standardized WHO/HAI
23 24	57	methodology.
25 26	58	Availability was calculated as mean percentage of sampled medicine outlets where medicine
27 28	59	was found on the day of data collection. Medicine prices were compared to international
29 30	60	reference prices (IRP) and expressed as median price ratios (MPRs). Affordability was calculated
31	61	using number of days required to pay for a standard treatment based on the daily income of
32 33	62	the lowest-paid government worker.
34 35	63	
36 37	64	Results
38 39	65	Availability of either oxytocin or misoprostol at health facilities was high; 81% in Kenya, 82% in
40 41	66	Uganda, and 76% in Zambia. Oxytocin was more available than misoprostol, and it was most
42	67	available in the public sector in the three countries. Availability of misoprostol was highest in
43 44	68	the public sector in Uganda (88%). Oxytocin and misoprostol were purchased by patients at
45 46	69	prices above IRP, but both medicines cost less than a day's wages and were therefore
47 48	70	affordable. Availability of misoprostol was poor in rural settings where it would be more
49 50	71	preferred due to lack of trained personnel and cold storage facilities required for oxytocin.
51 52	72	
53	73	
54 55	74	
56 57		
58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	75	Conclusion
5	76	Availability and affordability of either oxytocin or misoprostol at health facilities met the WHO
7	77	benchmark of 80%. However, countries with limited resources should explore mechanisms to
8 9	78	optimize management of PPH by improving access to misoprostol especially in rural areas.
10 11	79	
12 13 14	80	Strengths and limitations of this study
15	81	• The WHO/HAI methodology that was used for this study is tested, reliable, standardized
16 17	82	and validated for the measurement of medicine prices and availability.
18 19	83	• The study provides details on availability, price, and affordability of individual medicines
20 21	84	across three sectors (public, private and mission).
22 23	85	• The methodology uses a cross-sectional design and therefore historical data trends were
24 25	86	not traced.
26 27	87	• The study only used two frontline medicines for PPH, while countries may have had
28	88	other alternative therapies including carbetocin which were not captured.
29 30	89	In Zambia we surveyed 23 mission facilities which was below the 30 facilities per sector
31 32	90	30 recommended by the methodology.
33 34	91	
35 36	92	Key questions
37 38		
39 40	93	What is known?
41 42	94	The quality, efficacy and safety of oxytocin and misoprostol for management of post-
43	95	partum haemorrhage have been widely studied.
44 45	96	• There is a knowledge gap on the accessibility of oxytocin and misoprostol in low-resource
46 47	97	settings.
48 49 50	98	What are the new findings?
51 52	99	• Availability of either oxytocin or misoprostol was high in Kenya and Uganda and just below
53 54	100	the WHO benchmark of 80% in Zambia.
55 56	101	• Both medicines cost less than a day's wages, which is considered affordable.
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	102	• The stocking of oxytocin and misoprostol by health facilities did not take into consideration
5	103	challenges faced by the facilities to administer the medicines which may explain why
6 7	104	management of post-partum heamorrhage has remained a problem.
8 9 10 11	105	What do the new findings imply?
12	106	Policy makers should look into how to address context-specific barriers to ensure that
13 14	107	medicines are adequately deployed for maximum benefit.
15 16	108	• Countries with limited resources should explore mechanisms to balance access to both
17 18	109	oxytocin and misoprostol between rural and urban areas to optimize management of PPH.
19 20 21 22 23 24 25 26 27 28 20 31 32 33 34 35 37 38 90 41 42 34 45 46 47 48 90 51 52 54 55 67 58 90		Countries with limited resources should explore mechanisms to balance access to both oxytocin and misoprostol between rural and urban areas to optimize management of PPH.

Background

The risk of women dying due to pregnancy and childbirth remains a major global health challenge. In 2017 there were approximately 295,000 maternal deaths globally, of which 94% occurred in low-and middle-income countries (LMICs). Sub-Saharan Africa contributed about 66% to these deaths [1]. The global leading cause of maternal mortality is haemorrhage, accounting for 27% of all maternal deaths [2].

Postpartum haemorrhage (PPH) which occurs after childbirth accounts for most (72%) of the three forms of haemorrhage. Antepartum haemorrhage which occurs during pregnancy accounts for 24% while intrapartum haemorrhage (during childbirth) accounts for three percent [2]. PPH is responsible for 34% of maternal deaths in Kenya, 25% in Uganda and 34% in Zambia [3-5].

The World Health Organization (WHO) recommends oxytocin as the medicine of choice for management of PPH, and misoprostol as the second line alternative when injection capability is lacking and/or storage conditions for oxytocin are not met. Other uterotonics such as ergometrine and carbetocin are also recommended when use of oxytocin is not feasible [1].

The relevance of oxytocin and misoprostol to health systems was further emphasised by the United Nations Commission on Life-saving Commodities for women and children when they were listed among the 13 lifesaving, low-cost medicines with greatest proven potential to avert preventable deaths [6]. Both oxytocin and misoprostol are included in national essential medicine lists in Kenya, Uganda and Zambia [7-9].

The quality, efficacy and safety of oxytocin and misoprostol have been widely studied [10-23]. Oxytocin is temperature sensitive and should therefore be stored under refrigeration at temperatures between 2 and 8°C to prevent degradation expected at higher temperatures[10]. Degradation reduces potency and consequently the effectiveness of the medicine. Oxytocin stability through the supply chain has proven a worry to policy makers and has been a subject

Page 7 of 23

BMJ Open

of numerous investigations to ascertain guality and efficacy [11-13]. Some studies on the quality of oxytocin found analyzed samples to contain less active pharmaceutical ingredients than was claimed in the label, while some samples also failed sterility tests [14-16]. LMICs with low resources may also lack facilities required for adequate storage conditions for oxytocin to ensure integrity of the product, while they may also lack trained health workers for its administration [17]. Women living among displaced populations, in conflict areas, hard to reach areas, who deliver at home or with a traditional birth attendant seldom have access to a trained health worker. Hence, they do not have access to oxytocin or if they do, it is not safely used [24]. As a result of these challenges, prevention and treatment of PPH in low-resource settings using oxytocin has not provided the desired impact [18, 19].

Misoprostol, a prostaglandin, is an alternative to oxytocin in the management of PPH. It is cheap, stable at room temperature and more convenient to administer. It can be administered sublingually, orally and vaginally [19, 20, 25, 26]. It has been demonstrated through various studies that use of misoprostol is feasible, improves uterotonic coverage, reduces incidence of PPH and that it is effective for use at community and household level in low-resource settings [20-22].

In 2015, the WHO expert committee on the selection and use of medicines recommended the addition of misoprostol for the prevention and treatment of postpartum haemorrhage when oxytocin is not available or cannot be used safely [23]. At different occasions the inclusion of misoprostol in the list of WHO recommended medicines was debated for both efficacy and safety reasons, but the 2015 decision to recommend misoprostol in addition to oxytocin for prevention of PPH was reaffirmed in 2019 by a WHO expert committee [27]. Before 2015 misoprostol was indicated by WHO for use in induction of labour and management of spontaneous and induced abortion [28]. The historical use of misoprostol for termination of pregnancies may have affected its acceptability for routine use in prevention of PPH, despite available convincing evidence of its therapeutic effect and relative safety in management of PPH. Another challenge is that the high doses of misoprostol required for post-partum haemorrhage often result in troublesome side effects such as vomiting and shivering [29].

Further, the longer half-life of the medicine means that it stays longer in the body and haspotential to cause complications [30].

These two medicines could be used complementarily to overcome challenges and barriers in policy, health sector infrastructure and health service delivery that at the moment inhibit the optimal management of PPH [24, 31]. However, there is a knowledge gap on the accessibility of both medicines in low-resource settings. This is a missed opportunity in closing the gap in the reduction of maternal mortality in developing countries. This paper therefore assesses access to oxytocin and misoprostol in urban and rural health facilities in Kenya, Uganda and Zambia through a cross-sectional assessment of availability, prices and affordability at the patient level of the two medicines to facilitate the optimal management of PPH.

177 Methods

A secondary assessment of availability and prices of oxytocin and misoprostol was undertaken using data from Health Action International (HAI) research on sexual and reproductive health commodities (*SRHC*): *Measuring Prices, Availability & Affordability* [32]. The data was collected in Kenya, Uganda and Zambia in July and August 2017 using a cross-sectional design with quantitative methods adapted from the standardized WHO/HAI methodology [33], which has been validated [34] and used extensively in several countries [35-37].

185 Patient and Public Involvement

The research agenda for this study was set by the multi-stakeholder platform Medicines Transparency Alliance (MeTA) Councils in Kenya, Uganda and Zambia. The study protocols were reviewed and approved by MeTA Councils. Data collectors were selected from the membership of MeTA within the countries. Results were validated by stakeholders including civil society. Dissemination plans were made by MeTA councils and results were disseminated to wide country and inter-country platforms including Ministries of Health, Parliamentarians, private sector as well as civil society members to inform policy.

1		
2 3 4	193	
5 6	194	Data collection
7 8	195	For this study, the data on availability, price and affordability of the highest and lowest-priced
9 10	196	products of oxytocin 10IU, 1ml injections and misoprostol 200 μg tablets were extracted.
11 12	197	In each of the three countries, six geographical areas (districts, municipalities or counties) were
13 14	198	selected; the country's main urban centre and five other areas which were randomly selected.
15 16	199	All survey areas were reachable within one day's travel from the country's main urban centre
17 18	200	using a car or bus. Each survey area covered a population of between 100 000 and 250 000
19	201	people.
20 21	202	
22 23	203	The WHO/HAI methodology prescribes a minimum of 30 health facilities from each of the
24 25	204	sectors, i.e. public, private and mission sectors, giving a minimum total of 90 facilities per
26 27	205	country [33]. In each survey area, the main public hospital was selected first. Then, eight public
28 29	206	health facilities, four each from urban and rural areas, representing levels of care at which
30	207	SRHCs should be made available, were randomly selected [38]. Additionally, eight private (for
31 32	208	profit) and eight mission sector (not for profit) health facilities (four each from urban and rural
33 34	209	areas) that were within a three-hour drive radius of the main hospitals were selected. Thus, a
35 36	210	total of 24 health facilities were sampled from each of the six survey areas in Kenya, Uganda
37 38	211	and Zambia, respectively, giving a total of 144 facilities per country.
39 40	212	
41	213	Eight data collectors with experience of conducting medicine surveys worked in pairs of a
42 43	214	pharmacist and a social scientist under close supervision of a qualified survey manager. Prior to
44 45	215	data collection, the team was trained on the methodology. Data collectors used a semi-
46 47	216	structured questionnaire administered to facility managers while physically ascertaining the
48 49	217	availability of surveyed medicines. Availability was measured by the physical presence of a
50 51	218	product in the outlet at the time of the survey. For each medicine surveyed, data collectors
52	219	recorded the product name for both the highest and lowest-priced medicines available, the
53 54	220	manufacturer and unit price of the product. In the public sector in Uganda and Zambia where
55 56	221	medicines are free of charge to care seekers, prices were not recorded.
57 58		8

2		
3 4	222	
5 6	223	Once data collection was complete, survey data was entered into a pre-programmed Microsoft
7 8 9	224	Excel Workbook provided as part of the modified methodology. Data input was independently
	225	checked for errors. Additional quality control measures were executed at various stages
10 11	226	throughout the study by a survey manager. The survey tools were pre-tested in Uganda in 2016
12 13 14 15	227	and a field test was conducted by all data collectors prior to data collection. Each data
	228	collection team had a supervisor who cross checked the data on a daily basis for completeness,
16	229	legibility and consistency and reported to the survey manager. Prior to data entry all relayed
17 18	230	data was checked for completeness and consistency.
19 20	231	
21 22 23 24	232	Data analysis
25 26 27 28 29	233	The availability of oxytocin and misoprostol was calculated as the percentage of sampled
	234	medicine outlets where the medicine was found. Availability was also calculated for the
	235	presence of either oxytocin or misoprostol at a facility. Data were reported in aggregate as
30 31	236	public, private or mission sector medicine outlets. Overall availability per sector was calculated
32 33	237	as mean of the two medicines surveyed.
34 35		
36 37	238	
37 38 39	239	Patient prices were collected in local currency including Shillings in Uganda and Kenya, and
40	240	Kwacha in Zambia. The mean, minimum and maximum unit prices were calculated. To facilitate
41 42	241	cross-country comparisons, medicine prices obtained during the survey were expressed as
43 44	242	ratios relative to a standard set of international reference prices by dividing the mean unit
45 46	243	price (in dollars) by the Management Sciences for Health international buyers' reference unit
47 48	244	price derived on September 25 th 2018 [39]. Mean price ratios (MPRs) were only calculated for
49 50	245	oxytocin and misoprostol products that had price data from at least four medicine outlets per
51	246	sector [33]. The exchange rate used to calculate MPRs was 1 USD = 102.67 Kenya Shillings (KES),
52 53	247	1 USD = 3667.9 Uganda Shillings (UGX), 1 USD = 8.85 Zambia Kwacha (ZMW) taken on 1 st July,
54 55	248	2017 prior to the first day of data collection [40, 41].
56 57		
58 59		9
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4 5	249	
6 7	250	Affordability was calculated using the number of days' wages it requires to pay for standard
8	251	treatment or dose of treatment based on the daily income of the lowest-paid government
9 10	252	worker (LPGW) [33]. The daily wage of a LPGW is approximately KES 411 (USD 4) in Kenya, 6255
11 12	253	UGX (USD 1.78) in Uganda, and ZMW 96.7 (USD 10.92) in Zambia, as per public service salary
13 14	254	structures [42]. Treatments that required more than one day's wages to purchase were
15 16	255	considered unaffordable [33].
17 18 19	256	
20 21 22	257	Results
23 24	258	A total of 376 health facilities, including 120, 124 and 132 health facilities in Kenya, Uganda and
25 26 27	259	Zambia, respectively, were surveyed as shown in figure 1 and 2.
28 29	260	
30 31 32	261	Availability across sectors
33	262	Figure 1 shows the availability of either oxytocin or misoprostol at the surveyed health facilities
34 35	263	in the three countries. Overall availability of either oxytocin or misoprostol met the WHO
36 37	264	benchmark of 80% in Kenya (81%) and Uganda (82%) but was marginally lower in Zambia (76%).
38 39	265	Availability of oxytocin was higher than misoprostol except in Uganda. Availability of either
40 41	266	oxytocin or misoprostol was comparable between the public and mission sectors.
42 43 44	267	
45 46	268	In the public sector, the three countries met the WHO benchmark for availability of oxytocin.
47 48	269	Misoprostol was only optimally available in the public sector in Uganda (88%), with availability
49	270	in Kenya and Zambia lower (36% and 21%, respectively). In the private sector, none of the
50 51	271	countries met the WHO recommended availability for misoprostol. Availability in Zambia was
52 53	272	especially low (24%).
54 55 56	273	
57 58		10
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	274	
5 6 7	275	Availability in urban versus rural areas
8 9 10 11	276	Figure 2 shows availability in urban versus rural areas. Oxytocin was available in over 80% of all
	277	public urban and rural facilities across the three countries. Optimum availability of 80% was
12 13	278	further achieved for oxytocin in Kenya mission urban facilities (89%) and in Zambia's mission
14 15	279	sector for both urban and rural facilities (83% and 94%, respectively). Optimum availability of
16 17	280	misoprostol was only achieved in Ugandan public urban and rural facilities (90% and 86%,
18 19	281	respectively).
20 21 22	282	
23 24	283	In Kenya, oxytocin had a higher availability than misoprostol across all urban and rural facilities
25	284	in the three sectors. Availability of misoprostol was lowest in the public sector: availability in
26 27 28 29	285	urban facilities was 45%, and 27% in rural facilities. In the private sector, there was a higher
	286	availability in rural facilities than in urban facilities for both oxytocin and misoprostol.
30 31	200	availability in tural facilities than in urban facilities for both oxytocin and misoprostor.
32 33	287	
34 35	288	In Uganda, the public sector was optimally stocked with both oxytocin and misoprostol across
36 37	289	urban and rural facilities. Rural public facilities had a higher availability of oxytocin than urban
38 39	290	public facilities. In the private sector, rural facilities also had a higher availability of oxytocin and
40	291	misoprostol compared to urban facilities.
41 42	_	
43 44	292	
45 46		
47	293	Oxytocin had a high availability in Zambia's public and mission sectors across both urban and
48 49	294	rural facilities. Availability in the private sector was very low. Availability of misoprostol was low
50 51	295	across the sectors and areas, with highest availability found in urban mission facilities (50%).
52	296	Although both oxytocin and misoprostol were poorly available in the private sector, oxytocin
53 54	297	was more available in rural than urban facilities, while misoprostol had a higher availability in
55 56	298	urban facilities than in rural facilities.
57 58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

1						
2 3 4	299					
5 6 7	300	Prices and afford	ability			
8 9 10	301	Oxytocin and mis	soprostol were	free for patients in the p	ublic and mission secto	ors in Zambia,
10 11	302	and in the public	sector in Ugar	nda. In Kenya's public see	ctor, the lowest price v	was noted for
12 13	303	oxytocin, with a	median price	ratio (MPR) of USD 0.1	74 (Table 1). Both mis	soprostol and
14 15	304	oxytocin cost les	s than a day's	wages for a LPGW acros	s all countries and sec	tors, and can
16 17	305	therefore be cons	sidered affordat	ble.		
18 19 20	306					
21 22	307	Notwithstanding	the sectors in y	which the medicines were	for from the MDRs for	ovutacin and
23		-				-
24 25	308	•		the countries, ranging fi		•
26 27	309			prostol in the private sec		
28	310	misoprostol and	oxytocin were	accessed by patients a	t prices that were mo	ore expensive
29 30	311	compared	to	international	reference	prices.
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 						
56 57 58						12
59		-				12
60		FC	n peer review only	- http://bmjopen.bmj.com/sit	erabout/guidelines.xntml	

Table 1: Prices and affordability of misoprostol and oxytocin across countries

		Public			Private	9		Missio	n	
		Price (USD)	Mean Price Ratio	Affordability of treatment (number of day's wages)	Price (USD)	Mean Price Ratio*	Affordability of treatment (number of day's wages)	Price (USD)	Mean Price Ratio	Affordability of treatment (number of day's wages)
Kenya	Oxytocin	0.029	0.17	0.01	1.354	8.14	0.34	0.672	4.04	0.30
	Misoprostol	0.273	1.37	0.07	1.967	9.84	0.49	1.217	6.09	0.17
					$\mathbf{Q}_{\mathbf{r}}$					
Uganda	Oxytocin	0	NA	NA	0.998	5.99	0.57	0.408	2.45	0.23
	Misoprostol	0	NA	NA	0.589	2.95	0.34	0.39	1.95	0.22
Zambia	Oxytocin	0	NA	NA	0.678	4.08	0.06	NA	NA	NA
	Misoprostol	0	NA	NA	5.989	29.95	0.55	NA	NA	NA

NA=not applicable, USD=United States Dollar

312 Discussion

This paper assesses access to oxytocin and misoprostol in urban and rural health facilities in Kenya, Uganda and Zambia through a cross-sectional assessment of availability, prices and affordability at the patient level of the two medicines to facilitate the optimal management of PPH.

3 317

Overall, availability of uterotonics, expressed as the presence of either oxytocin or misoprostol, was high in Kenya and Uganda, and just below the WHO benchmark of 80% in Zambia. Misoprostol was markedly less available than oxytocin. Oxytocin and misoprostol were accessed by patients in the private sector at prices that were more expensive than the international reference prices. However, both medicines cost less than a day's wages, which is considered affordable. The availability of misoprostol across urban and rural areas did not show the expected pattern of having a higher availability of the medicine in rural areas, which are more prone to health system barriers for use of oxytocin.

⁹ 326

Oxytocin availability was high in the public and mission sectors but lower in the private sector, particularly in Zambia. In the private sector, none of the countries met the WHO availability benchmark of 80% for the two medicines. Besides the public sector in Uganda, misoprostol was not optimally available in the other countries or sectors. Misoprostol had a low availability, particularly in rural areas where the medicine ought to play a major role given that facilities in these areas tend to lack adequately trained health workers and the health infrastructure required to maintain cold chain to safeguard the quality of oxytocin [17]. Its poor availability in Kenya and Zambia may be a result of slow diffusion of the intervention into the health system [43, 44]. Moreover, misoprostol has been recommended by WHO for use in PPH since 2015 after several rounds of weighing the benefits and risks, but the debate about its role in PPH prevention has continued over the years [23, 27]. The fear and stigma amongst health workers about the use of misoprostol to induce abortions may also have contributed to the situation [29]. In contrast, Uganda's efforts as an early adaptor [43, 44] to ensure availability of misoprostol through government procurement and community level distribution strategies may

explain why it has a higher availability of misoprostol, as well as lower PPH levels compared to
Kenya and Zambia (25% in Uganda versus 34% in both Kenya and Zambia) [3-5].

Urban facilities have better health infrastructure such as cold chain facilities, and also tend to have more health workers compared to rural facilities [45-47]. It would therefore be expected that these urban areas would have a higher availability of oxytocin and lower availability of misoprostol than rural facilities. However, there were instances when rural facilities had a higher availability of oxytocin and a lower availability of misoprostol. This may indicate that stocking of oxytocin and misoprostol by health facilities does not take into consideration challenges faced by the facilities to administer the medicines. It will require more research in this area to better understand the data and for policy makers to look into how to address context-specific barriers related to these medicines by ensuring that they are deployed where they can have maximum impact [48, 49]. For example, efforts should be made to deploy more misoprostol in rural areas where there is a lack of adequately trained personnel and a lack of health infrastructure to properly use oxytocin, and to ensure that both medicines are available to complement one another depending on circumstances.

PPH levels across the countries are high despite health facilities having reached the WHO benchmark for availability of either oxytocin or misoprostol across the three countries. This may confirm the finding from a study by Ononge et al that despite use of uterotonics, incidence of PPH remains high [5]. It may be that some oxytocin found at health facilities may not have the quality and efficacy for optimum management of PPH [14-16]. Countries should strive for universal access as the 80% availability benchmark by WHO still leaves one in five facilities without required medicine. However, availability of a medicine alone does not guarantee that it is used, health worker beliefs and knowledge as well as necessary infrastructure such as electricity and equipment are needed to reduce PPH levels.

> 368 Studies have shown that combinations of uterotonics have proven to be more effective. For 369 example, a misoprostol plus oxytocin combination was found to be more effective in preventing

Page 17 of 23

BMJ Open

PPH than the currently used standard of oxytocin only [50]. This argument further emphasizes
that having both oxytocin and misoprostol available at the health facility could help to improve
PPH management.

Although oxytocin and misoprostol were affordable to patients, the private sector prices were varied and more expensive compared to IRPs. For example, the MPR of misoprostol ranged from 1.37 in Kenya to 29.95 in Zambia. Therefore, even though availability met the WHO benchmark, individual patients may still be confronted with unavailability in the public sector, pushing them to seek care in the private sector where they may not be able to afford the prices of medicines. This suggests that countries need to explore pricing policies to improve affordability of the medicines.

The WHO/HAI methodology that was used for this study is tested, reliable, standardized and validated for the measurement of medicine prices and availability [34]. The study provides details on availability, price, and affordability of individual medicines across three sectors (public, private and mission). The methodology uses a cross-sectional design and therefore historical data trends were not traced. The study only used two frontline medicines for PPH, while countries may have had other alternative therapies including carbetocin which were not captured. The number of mission facilities surveyed in Zambia (23) was below the minimum (30) recommended for the methodology per sector [33]. The findings presented here may not be used to predict country pharmaceutical supply chain but are intended to stimulate policy discussions on deliberate targeting and the use of available technologies to improve access.

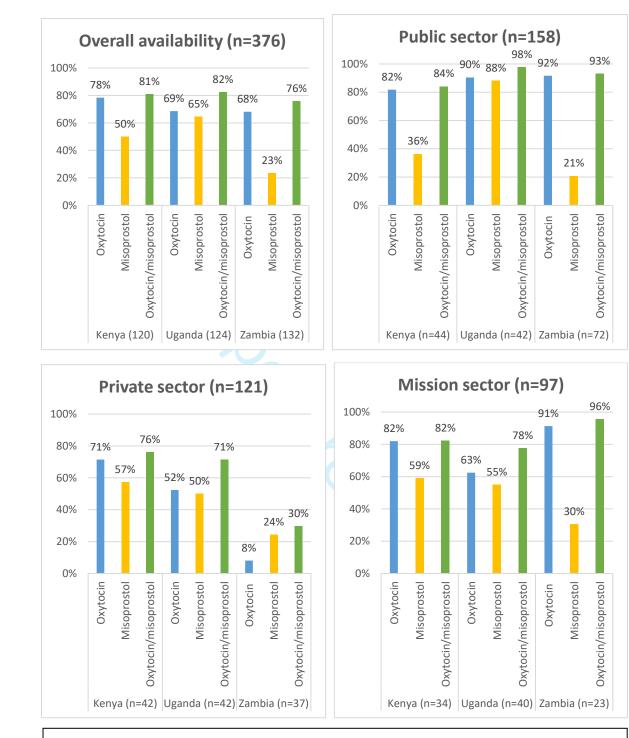
3 391

392 Conclusion

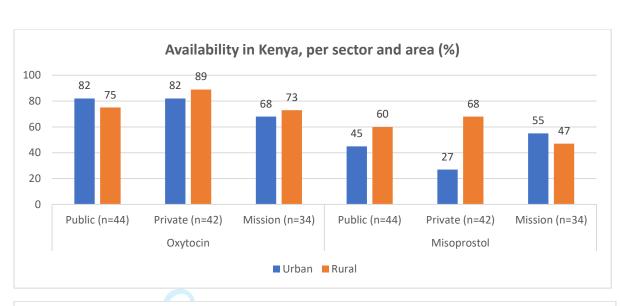
Availability of oxytocin and misoprostol met the WHO benchmark in Kenya and Uganda but was just below the WHO benchmark in Zambia. In general, oxytocin was more available than misoprostol. Oxytocin and misoprostol were purchased by patients at prices above international reference prices but both medicines cost less than a day's wages for a LPGW and were therefore considered affordable. However, there was no strategy in place that looked at which medicine could be best utilized in which area. Countries with limited resources should

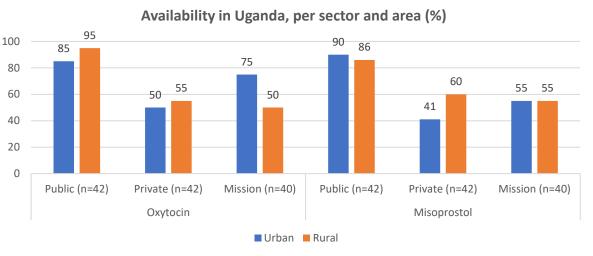
3 4	399	explore mechanisms to balance access to both oxytocin and misoprostol between rural and
5 6	400	urban areas to optimize management of PPH.
7 8	401	List of abbreviations
9 10	402	Post-partum haemorrhage (PPH); Median price ratio (MPR); Low- and middle-income countries
11 12	403	(LMICs); Lowest-paid government worker (LPGW); sexual and reproductive health commodities
13 14	404	(SRHC); Health Action International (HAI); World Health Organisation (WHO).
15 16 17	405	
18 19 20	406	Declarations
21 22 23	407	Ethical approval and consent to participate
24 25	408	This study did not involve human subjects and did not involve direct interaction with patients
26	409	and therefore ethical approval was not sought. However, Ministries of Health in Uganda and
27 28	410	Zambia and Country Directors of Health in Kenya gave approval and provided introduction
29 30 31	411	letters to health facilities.
32 33 34	412	
35 36 37	413	Consent for publication
38 39 40	414	Not applicable
41 42 43	415	
44 45	416	Availability of data and materials
46 47	417	The datasets used and/or analysed during the current study are available from the
48 49 50	418	corresponding author on request.
51 52 53	419	
54 55	420	Competing interests
56 57	421	All authors declare no competing interests.
58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4 5	422	
6 7	423	Funding
8 9 10	424	This research was funded by Health Action International through the Health Systems Advocacy
10 11 12	425	Partnership.
13 14	426	
15 16 17 18	427	Authors' contribution
19 20	428	DK conceptualized the project, undertook data analysis and wrote the first draft of the
21 22	429	manuscript; GOI contributed to data analysis; GOI, HDH, JN, TR, HL and AM revised the
23	430	manuscript and critically reviewed its contents. GO contributed to data analysis. AM critically
24 25 26	431	reviewed the manuscript, provided comments and guidance on all drafts of manuscript.
27 28 29	432	
30 31	433	Acknowledgements
32 33	434	The authors acknowledge data collection teams in Kenya led by Dorothy Okemo, in Uganda led
34 35	435	by Anthony Ssebagereka and in Zambia led by Liyoka Liyoka. We appreciate Dr. Metin
36	436	Gülmezoglu for providing comments and Daphne Ssebugwawo who edited the manuscript.
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	437	
57 58 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


References

- 1. World Health Organization, *Trends in maternal mortality: 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division,* 2019: Geneva.
- 2. Say L, et al., *Global causes of maternal death; a WHO systematic analysis.* Lancet Global Health, 2014. **2** (6): p. E323-33.
- 3. PSI, Improving Maternal Health: Preventing Post-Partum Hemorrhage in Rural Zambia, 2014: Washington D.C.
- 4. Kinuthia, K., M. Stephenson, and E. Maogoto, *Management of postpartum hemorrhage in a rural hospital in Kenya: a best practice implementation project.* JBI Database System Rev Implement Rep, 2019. **17**(2): p. 248-258.
- 5. Ononge, S., et al., *Incidence and risk factors for postpartum hemorrhage in Uganda.* Reproductive Health, 2016. **13**(38).
- 6. United Nations, United Nations Commission on Life-saving Commodities for Women and Children; Commissioner's Report 2012, United Nations: New York.
- 7. Ministry of Health, *Kenya Essential Medicines List 2016*, 2016: Nairobi, Kenya.
- 8. Ministry of Health, *Essentail Medicines and Health Supplies List of Uganda*, 2016.
- 9. Ministry of Health, *Zambia Essential Medicines List*, 2013.
- 10. World Health Organisation, *Recommendations for the prevention and treatment of postpartum haemorrhage.*, 2012, Department of Reproductive Health: Geneva.
- 11. De Groot, A.N., et al., *Oxytocin and desamino-oxytocin tablets are not stable under simulated tropical conditions.* Journal of Clinical Pharmacy 1995. **20**(2): p. 115-119.
- 12. Hogerzeil, H.V., et al., *Stability of essential drugs during shipment to the tropics*. BMJ, 1992. **304**(6821): p. 210-212.
- 13. Nazerali, H. and H.V. Hogerzeil, *The quality of essential drugs in rural Zimbabwe: controlled longitudinal study.* BMJ, 1998. **317**(7157): p. 512-13.
- 14. Karikari -Boateng, E., *Post-market quality surveillance project maternal health care products on the Ghanaian market*, 2013, Ghana Food and Drugs Authority: Accra.
- 15. Torloni, M.R., et al., *Quality of oxytocin available in low- and middle-income countries: a systemic review of the literature.* BJOG, 2016. **123**(13): p. 2076–86.
- 16. Stanton, C., et al., *Accessibility and potency of uterotonic drugs purchased by simulated clients in four districts in India*. BMC Pregnancy and Childbirth 2014. **14**(386): p. Page 2 of 12.
- 17. Anyakora, C., et al., *Quality medicines in maternal health: Results of Oxytocin, Misoprostol, Magnesium sulphate and Calcium Gluconate Quality Audits.* BMC Pregnancy and Childbirth 2018. **18**(1): p. 44.
- 18. Hofmeyr, G.J., S. Ferreira, and V.C. Nikodem, *Misoprostol for treating postpartum haemorrhage: a randomized controlled trial* BMC Pregnancy and Childbirth, 2004. **4**(16).
- 19. Alfirevic, A., et al., *Prevention of postpartum hemorrhage with misoprostol* Int J Gynecol Obstet, 2007. **99(Suppl 2)**: p. 198–201.
- 20. Smith, J.M., et al., Advance distribution of misoprostol for prevention of postpartum haemorrhage at home births in two districts of Liberia. BMC Pregnancy and Childbirth, 2014.
 14: p. 189.
- 21. McCormick, M.I., et al., Averting maternal death and disability: Prevention of postpartum haemorrhage in low resource settings. International Journal of Obstetrics and Gynaecology, 2002. **77**: p. 267-275.


BMJ Open


2		
3	22.	Smith, J.M., et al., Misoprostol for postpartum haemorrhage prevention at home birth: an
4		integrative review of global implementation experience todate. BMC Pregnancy and Childbirth
5		2013. 13 (44).
6	23.	World Health Organisation, The selection and use of essential medicines. Report of the WHO
7 8	-	Expert Committee 2015(including the 19th WHO Model list of essentail medicines and the5th
o 9		WHO Model list of essential medicines for children), 2015: Geneva.
9 10	24.	Tran, D.N. and L.A. Bero, Barriers and facilitators to the quality use of essential medicines for
10	24.	maternal health in low–resource countries: An Ishikawa framework. J Global Health, 2015. 5(1).
12	25.	Caliskan, E., et al., Oral misoprostol for third stage of labour: a randomised trial. Obstet Gynecol,
13	25.	
14	20	2003. 101 (5): p. 921-8.
15	26.	El-Refaey, H., et al., Use of oral misoprostol in the prevention of postpartum haemorrhage
16		Obstet Gynecol, 1997. 104 (3): p. 336-9.
17	27.	World Health Organization, The Selection and Use of Essential Medicines 2019. Report of the
18		22nd WHO Expert Committee on the Selection and Use of Essential Medicines, 1-5 April 2019,
19		2019: Geneva.
20	28.	Tang, J., et al., WHO recommendations for misoprostol use for obstetric and gynaecologic
21		indications. 2013. 121 (2): p. 186-9.
22	29.	Chong, Y.S., L.L. Su, and S. Arulkumaran, Misoprostol: A Quarter Century of Use, Abuse, and
23		Creative Misuse. Obstetrical and Gynecological Survey. 2004. 59(2): p. 128-140.
24 25	30.	Theunissen, F.J., L. Chinery, and V.P. Yeshita, Current research on carbetocin and implications for
25		prevention of postpartum haemorrhage. BMC Reproductive Health, 2018. 15(1): p. 94.
27	31.	Jhpiego, Accelovate. Brief: how can we increase global utilization of oxytocin for treatment of
28		postpartum hemorrhage, 2015, Jhpiego: Baltimore.
29	32.	HAI, Sexual & Reproductive Health Commodities: Measuring Prices, Availability & Affordability;
30	01	Methodology & Data Entry Manual 2017: Amsterdam.
31		
32	33.	WHO/HAI, Measuring medicine prices, availability, affordability and price components, 2008:
33		Geneva, Switzerland.
34	34.	Madden, J.M., et al., Measuring medicine prices in Peru: validation of key aspects of WHO/HAI
35		survey methodology. Rev Panam Salud Publica, 2010. 27(4): p. 291-9.
36	35.	Cameron, A., et al., Switching from originator brand medicines to generic equivalents in selected
37		developing countries: how much could be saved? Value Health, 2012. 15(5): p. 664-73.
38 39	36.	Anson, A., et al., Availability, prices and affordability of the World Health Organization's
39 40		essential medicines for children in Guatemala. Global Health, 2012. 8: p. 22.
40 41	37.	Cameron, A., et al., Mapping the availability, price, and affordability of antiepileptic drugs in 46
42	571	countries. Epilepsia, 2012. 53 (6): p. 962-9.
43	38.	Ministry of Health Uganda, Package of Basic Health Services for Uganda, 1997: Kampala,
44	50.	Uganda.
45	39.	Management Sciences for Health, International Drug Price Indicator Guide 2014 Edition, 2015,
46	59.	Management Sciences for Health, <i>International Drug Price Malculor Guide 2014 Edition</i> , 2013, MSH: Medford, Mass.
47	40	·
48	40.	Bank of Uganda. <i>Exchange rates</i> . 2016 [cited 2016 22nd April 2016]; Available from:
49		https://www.bou.or.ug/bou/bouwebsite/ExchangeRates/.
50	41.	oanda. Available from: https://www.oanda.com/currency/converter/.
51	42.	Ministry of Public Sevice Uganda, New Salary Structures for Public Servants for FY 2014/15,
52		2014: Kampala, Uganda.
53	43.	Sharp, B.E. and S.A. Miller, Potential for Integrating Diffusion of Innovation Principles into Life
54		Cycle Assessment of Emerging Technologies. Environ. Sci. Technol, 2016. 50(6): p. 2771–2781.
55 56		
56 57		
57		20
58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 44. Gonzalez, L., M. Aebersold, and C. Fenske, *Diffusion of Innovation: Faculty Barriers to Adoption.* Comput Inform Nurs, 2014. **32**(5): p. 201-4.
- 45. Henning-Smith, C., et al., *Rural-Urban Differences in Medicare Quality Outcomes and the Impact of Risk Adjustment.* Med Care, 2017. **55**(1): p. 823-829.
- 46. Alhassan, R.K. and E. Nketiah-Amponsah, *Frontline staff motivation levels and health care quality in rural and urban primary health facilities: a baseline study in the Greater Accra and Western regions of Ghana.* 2016.
- 47. Alghanem, F. and J.M. Clements, *Narrowing performance gap between rural and urban hospitals for acute myocardial infarction care.* . Am J Emerg Med, 2019. **pii: S0735-6757**(19): p. 30250-5.
- 48. Braddick, L., et al., *A mixed-methods study of barriers and facilitators to the implementation of postpartum hemorrhage guidelines in Uganda*. Int J Gynecol Obstet, 2016. **132**(1): p. 89-93.
- 49. Morris, J.L. and S. Khatun, *Clinical guidelines-the challenges and opportunities: What we have learned from the case of misoprostol for postpartum hemorrhage.* Int J Gynecol Obstet, 2019. **144**(1): p. 122-127.
- 50. Gallos, I.D., et al., Which drug is best for reducing excessive blood loss after birth. Cochrane Database Syst Rev, 2018(4).

Fig 1: Availability of oxytocin and misoprostol across sectors in Kenya, Uganda and Zambia

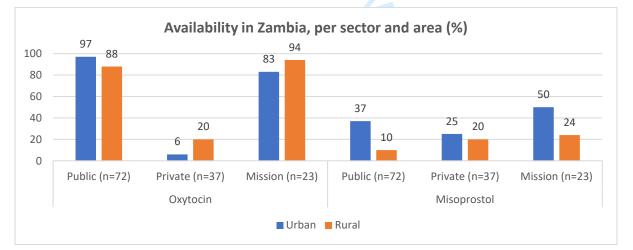


Figure 2: Availability of oxytocin and misoprostol in urban and rural facilities across countries

BMJ Open

Access to oxytocin and misoprostol for management of post-partum haemorrhage in Kenya, Uganda and Zambia: a cross-sectional assessment of availability, prices and affordability.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042948.R2
Article Type:	Original research
Date Submitted by the Author:	09-Dec-2020
Complete List of Authors:	Kibira, Denis; Utrecht University, Utrecht Centre for Pharmaceutical Policy and Regulation, Division of Pharmacoepidemiology and Clinical Pharmacology; Coalition for Health Promotion and Social Development (HEPS-Uganda) Ooms , Gaby; Health Action International van den Ham, Hendrika; Utrecht University Utrecht Institute for Pharmaceutical Sciences, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Division of Pharmacoepidemiology and Clinical Pharmacology Namugambe-Kitutu, Juliet ; Mbarara University of Science and Technology, Department of Pharmacy Reed, Tim; Health Action International Leufkens, Hubert; Utrecht University, Utrecht Institute for Pharmaceutical Sciences Mantel-Teeuwisse, Aukje; Utrecht University, Utrecht Institute for Pharmaceutical Sciences
Primary Subject Heading :	Reproductive medicine
Secondary Subject Heading:	Health policy, Global health, Obstetrics and gynaecology
Keywords:	Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Maternal medicine < OBSTETRICS, REPRODUCTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3			
4	1	Access to oxytocin and misoprostol for management of post-partum haemorrhage in Keny	a.
5	2	Uganda and Zambia. A cross-sectional assessment of availability, prices and affordability.	
6 7			
8	3	Authors	_
9	4	Denis Kibira ^{1, 2} , Gaby Isabelle Ooms ^{1,3} , Hendrika A. van den Ham ¹ , Juliet Sanyu Namugambe ⁴ , Tim Reec	, ³
10	5	Hubert G. Leufkens ¹ , Aukje K. Mantel-Teeuwisse ¹	
11	6		
12	7	Affiliations	
13	8	¹ Utrecht Centre for Pharmaceutical Policy and Regulation	
14	9	Utrecht Institute for Pharmaceutical Sciences	
15 16	10	Utrecht University	
17	11	Universiteitsweg 99 🔨 🔪	
18	12	3584 CG Utrecht, the Netherlands	
19	13	² Coalition for Health Promotion and Social Development (HEPS-Uganda)	
20	14	Plot 351A, Balintuma Road, Namirembe Hill	
21	15	³ Health Action International	
22	16	Overtoom 60 (2)	
23	17	1054 HK Amsterdam, The Netherlands	
24	18	⁴ Department of Pharmacy, Mbarara University of Science and Technology	
25	19	Mbarara, Uganda	
26	20		
27 28	21	Authors email list	
28 29	22	DK: <u>dkibira@gmail.com/dkibira@heps.or.ug</u>	
30	23	GIO: <u>Gaby@haiweb.org</u>	
31	24	HDH: <u>H.A.vandenHam@uu.nl</u>	
32	25	JN: julietsanyu@gmail.com	
33	26	TR: Tim@haiweb.org	
34	27	HL: H.G.M.Leufkens@uu.nl	
35	28	AM: a.k.mantel@uu.nl	
36	29		
37 38	30	Corresponding author	
38 39	31	Denis Kibira, MBA	
40	32	WHO Collaborating Centre for Pharmaceutical Policy and Regulation	
41	33	Utrecht University	
42	34	Utrecht Institute for Pharmaceutical Sciences	
43	35	Universiteitsweg 99	
44	36	3584 CG Utrecht, the Netherlands	
45	37	Coalition for Health Promotion and Social Development (HEPS-Uganda)	
46	38	Plot 351A, Balintuma Road, Namirembe Hill, Kampala, Uganda	
47	39	Email: <u>dkibira@gmail.com/dkibira@heps.or.ug</u>	
48 49	40	Tel: +256701580120	
49 50	40	Abstract word count: 283	
51	42	Manuscript word count (excluding tables, figures and references): 3373	
52	42	Number of tables and figures: 3	
53	45 44	Number of tables and lightes. 5	
54		Keywarde Assass Outagin Miconrestal Dest partum beamarrhage	
55	45	Key words: Access, Oxytocin, Misoprostol, Post-partum haemorrhage	
56			
57			
58			1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
00			

46	Abstract
47	Objective
48	To assess access (availability and affordability) to oxytocin and misoprostol at health facilities in
49	Kenya, Uganda and Zambia to improve prevention and management of postpartum haemorrhage
) 1 50	(PPH).
$\frac{2}{3}$ 51	
52	Design
53	The assessment was undertaken using data from Health Action International (HAI) research on
54	sexual and reproductive health commodities based on a cross-sectional design adapted from the
55	standardized WHO/HAI methodology.
56	
57	Setting
58	Data was collected from 376 health facilities in in Kenya, Uganda and Zambia in July and August
59	2017.
60	
61	Outcome measures
62	Availability was calculated as mean percentage of sampled medicine outlets where medicine was
63	found on the day of data collection. Medicine prices were compared to international reference
64	prices (IRP) and expressed as median price ratios (MPRs). Affordability was calculated using
65	number of days required to pay for a standard treatment based on the daily income of the lowest-
66	paid government worker.
67	
68	Results
69	Availability of either oxytocin or misoprostol at health facilities was high; 81% in Kenya, 82% in
70	Uganda, and 76% in Zambia. Oxytocin was more available than misoprostol, and it was most
71	available in the public sector in the three countries. Availability of misoprostol was highest in the
72	public sector in Uganda (88%). Oxytocin and misoprostol were purchased by patients at prices
73	above IRP, but both medicines cost less than a day's wages and were therefore affordable.
	1
	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1

2		
3 4	74	Availability of misoprostol was poor in rural settings where it would be more preferred due to
5 6	75	lack of trained personnel and cold storage facilities required for oxytocin.
7 8 9	76	
10 11	77	Conclusion
12 13 14 15 16	78	Availability and affordability of either oxytocin or misoprostol at health facilities met the WHO
	79	benchmark of 80%. However, countries with limited resources should explore mechanisms to
	80	optimize management of PPH by improving access to misoprostol especially in rural areas.
17 18	81	
19 20	82	Strengths and limitations of this study
21 22	83	• The WHO/HAI methodology that was used for this study is tested, reliable, standardized
23 24	84	and validated for the measurement of medicine prices and availability.
25 26	85	• The study provides details on availability, price, and affordability of individual medicines
27 28	86	across three sectors (public, private and mission).
29 30	87	• The methodology uses a cross-sectional design and therefore historical data trends were
31 32	88	not traced.
33	89	• The study only used two frontline medicines for PPH, while countries may have had
34 35	90	other alternative therapies including carbetocin which were not captured.
36 37	91	In Zambia we surveyed 23 mission facilities which was below the 30 facilities per sector
38 39 40	92	30 recommended by the methodology.
40 41 42	93	
43		
44 45		
46		
47 48		
49		
50		
51 52		
53		
54		
55 56		
56 57		
58		1
59		

BMJ Open

1	
2	
3	
4	
5	
6	
7 8	
o 9	
) 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22 23	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
38 39	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 53	
53 54	
54 55	
55 56	
57	
58	
59	

95 Background

The risk of women dying due to pregnancy and childbirth remains a major global health challenge.
In 2017 there were approximately 295,000 maternal deaths globally, of which 94% occurred in
low-and middle-income countries (LMICs). Sub-Saharan Africa contributed about 66% to these
deaths [1]. The global leading cause of maternal mortality is haemorrhage, accounting for 27% of
all maternal deaths [2].

Postpartum haemorrhage (PPH) which occurs after childbirth accounts for most (72%) of the three forms of haemorrhage. Antepartum haemorrhage which occurs during pregnancy accounts for 24% while intrapartum haemorrhage (during childbirth) accounts for three percent [2]. PPH is responsible for 34% of maternal deaths in Kenya, 25% in Uganda and 34% in Zambia [3-5].

The World Health Organization (WHO) recommends oxytocin as the medicine of choice for management of PPH, and misoprostol as the second line alternative when injection capability is lacking and/or storage conditions for oxytocin are not met. Other uterotonics such as ergometrine and carbetocin are also recommended when use of oxytocin is not feasible [1].

The relevance of oxytocin and misoprostol to health systems was further emphasised by the United Nations Commission on Life-saving Commodities for women and children when they were listed among the 13 lifesaving, low-cost medicines with greatest proven potential to avert preventable deaths [6]. Both oxytocin and misoprostol are included in national essential medicine lists in Kenya, Uganda and Zambia [7-9].

3 114

60

The quality, efficacy and safety of oxytocin and misoprostol have been widely studied [10-23]. Oxytocin is temperature sensitive and should therefore be stored under refrigeration at temperatures between 2 and 8°C to prevent degradation expected at higher temperatures[10]. Degradation reduces potency and consequently the effectiveness of the medicine. Oxytocin stability through the supply chain has proven a worry to policy makers and has been a subject of numerous investigations to ascertain quality and efficacy [11-13]. Some studies on the quality of

oxytocin found analyzed samples to contain less active pharmaceutical ingredients than was claimed in the label, while some samples also failed sterility tests [14-16]. LMICs with low resources may also lack facilities required for adequate storage conditions for oxytocin to ensure integrity of the product, while they may also lack trained health workers for its administration [17]. Women living among displaced populations, in conflict areas, hard to reach areas, who deliver at home or with a traditional birth attendant seldom have access to a trained health worker. Hence, they do not have access to oxytocin or if they do, it is not safely used [24]. As a result of these challenges, prevention and treatment of PPH in low-resource settings using oxytocin has not provided the desired impact [18, 19].

Misoprostol, a prostaglandin, is an alternative to oxytocin in the management of PPH. It is cheap, stable at room temperature and more convenient to administer. It can be administered sublingually, orally and vaginally [19, 20, 25, 26]. It has been demonstrated through various studies that use of misoprostol is feasible, improves uterotonic coverage, reduces incidence of PPH and that it is effective for use at community and household level in low-resource settings [20-22].

In 2015, the WHO expert committee on the selection and use of medicines recommended the addition of misoprostol for the prevention and treatment of postpartum haemorrhage when oxytocin is not available or cannot be used safely [23]. At different occasions the inclusion of misoprostol in the list of WHO recommended medicines was debated for both efficacy and safety reasons, but the 2015 decision to recommend misoprostol in addition to oxytocin for prevention of PPH was reaffirmed in 2019 by a WHO expert committee [27]. Before 2015 misoprostol was indicated by WHO for use in induction of labour and management of spontaneous and induced abortion [28]. The historical use of misoprostol for termination of pregnancies may have affected its acceptability for routine use in prevention of PPH, despite available convincing evidence of its therapeutic effect and relative safety in management of PPH. Another challenge is that the high doses of misoprostol required for post-partum haemorrhage often result in troublesome side effects such as vomiting and shivering [29]. Further, the longer half-life of the medicine means that it stays longer in the body and has potential to cause complications [30].

These two medicines could be used complementarily to overcome challenges and barriers in policy, health sector infrastructure and health service delivery that at the moment inhibit the optimal management of PPH [24, 31]. However, there is a knowledge gap on the accessibility of both medicines in low-resource settings. This is a missed opportunity in closing the gap in the reduction of maternal mortality in developing countries. This paper therefore assesses access to oxytocin and misoprostol in urban and rural health facilities in Kenya, Uganda and Zambia through a cross-sectional assessment of availability, prices and affordability at the patient level of the two medicines to facilitate the optimal management of PPH.

Methods

A secondary assessment of availability and prices of oxytocin and misoprostol was undertaken using data from Health Action International (HAI) research on sexual and reproductive health commodities (SRHC): Measuring Prices, Availability & Affordability [32]. The data was collected in Kenya, Uganda and Zambia in July and August 2017 using a cross-sectional design with quantitative methods adapted from the standardized WHO/HAI methodology [33], which has been validated [34] and used extensively in several countries [35-37].

Patient and Public Involvement

The research agenda for this study was set by the multi-stakeholder platform Medicines Transparency Alliance (MeTA) Councils in Kenya, Uganda and Zambia. The study protocols were reviewed and approved by MeTA Councils. Data collectors were selected from the membership of MeTA within the countries. Results were validated by stakeholders including civil society. Dissemination plans were made by MeTA councils and results were disseminated to wide country and inter-country platforms including Ministries of Health, Parliamentarians, private sector as well as civil society members to inform policy.

Data collection

For this study, the data on availability, price and affordability of the highest and lowest-priced products of oxytocin 10IU, 1ml injections and misoprostol 200 µg tablets were extracted.

In each of the three countries, six geographical areas (districts, municipalities or counties) were selected; the country's main urban centre and five other areas which were randomly selected. All survey areas were reachable within one day's travel from the country's main urban centre using a car or bus. Each survey area covered a population of between 100 000 and 250 000 people.

> The WHO/HAI methodology prescribes a minimum of 30 health facilities from each of the sectors, i.e. public, private and mission sectors, giving a minimum total of 90 facilities per country [33]. In each survey area, the main public hospital was selected first. Then, eight public health facilities, four each from urban and rural areas, representing levels of care at which SRHCs should be made available, were randomly selected [38]. Additionally, eight private (for profit) and eight mission sector (not for profit) health facilities (four each from urban and rural areas) that were within a three-hour drive radius of the main hospitals were selected. Thus, a total of 24 health facilities were sampled from each of the six survey areas in Kenya, Uganda and Zambia, respectively, giving a total of 144 facilities per country.

Eight data collectors with experience of conducting medicine surveys worked in pairs of a pharmacist and a social scientist under close supervision of a qualified survey manager. Prior to data collection, the team was trained on the methodology. Data collectors used a semi-structured questionnaire administered to facility managers while physically ascertaining the availability of surveyed medicines. Availability was measured by the physical presence of a product in the outlet at the time of the survey. For each medicine surveyed, data collectors recorded the product name for both the highest and lowest-priced medicines available, the manufacturer and unit price of the product. In the public sector in Uganda and Zambia where medicines are free of charge to care seekers, prices were not recorded.

Once data collection was complete, survey data was entered into a pre-programmed Microsoft Excel Workbook provided as part of the modified methodology. Data input was independently checked for errors. Additional quality control measures were executed at various stages throughout the study by a survey manager. The survey tools were pre-tested in Uganda in 2016 and a field test was conducted by all data collectors prior to data collection. Each data collection team had a supervisor who cross checked the data on a daily basis for completeness, legibility and consistency and reported to the survey manager. Prior to data entry all relayed data was checked for completeness and consistency.

214 Data analysis

The availability of oxytocin and misoprostol was calculated as the percentage of sampled medicine outlets where the medicine was found. Availability was also calculated for the presence of either oxytocin or misoprostol at a facility. Data were reported in aggregate as public, private or mission sector medicine outlets. Overall availability per sector was calculated as mean of the two medicines surveyed.

Patient prices were collected in local currency including Shillings in Uganda and Kenya, and Kwacha in Zambia. The mean, minimum and maximum unit prices were calculated. To facilitate cross-country comparisons, medicine prices obtained during the survey were expressed as ratios relative to a standard set of international reference prices by dividing the mean unit price (in dollars) by the Management Sciences for Health international buyers' reference unit price derived on September 25th 2018 [39]. Mean price ratios (MPRs) were only calculated for oxytocin and misoprostol products that had price data from at least four medicine outlets per sector [33]. The exchange rate used to calculate MPRs was 1 USD = 102.67 Kenya Shillings (KES), 1 USD = 3667.9 Uganda Shillings (UGX), 1 USD = 8.85 Zambia Kwacha (ZMW) taken on 1st July, 2017 prior to the first day of data collection [40, 41].

56 231

Affordability was calculated using the number of days' wages it requires to pay for standard treatment or dose of treatment based on the daily income of the lowest-paid government worker (LPGW) [33]. The daily wage of a LPGW is approximately KES 411 (USD 4) in Kenya, 6255 UGX (USD 1.78) in Uganda, and ZMW 96.7 (USD 10.92) in Zambia, as per public service salary structures [42]. Treatments that required more than one day's wages to purchase were considered unaffordable [33]. Results A total of 376 health facilities, including 120, 124 and 132 health facilities in Kenva, Uganda and Zambia, respectively, were surveyed as shown in figure 1 and 2. Availability across sectors Figure 1 shows the availability of either oxytocin or misoprostol at the surveyed health facilities in the three countries. Overall availability of either oxytocin or misoprostol met the WHO benchmark of 80% in Kenya (81%) and Uganda (82%) but was marginally lower in Zambia (76%). Availability of oxytocin was higher than misoprostol except in Uganda. Availability of either oxytocin or misoprostol was comparable between the public and mission sectors. In the public sector, the three countries met the WHO benchmark for availability of oxytocin. Misoprostol was only optimally available in the public sector in Uganda (88%), with availability in Kenya and Zambia lower (36% and 21%, respectively). In the private sector, none of the countries met the WHO recommended availability for misoprostol. Availability in Zambia was especially low (24%).

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

257 Availability in urban versus rural areas

Figure 2 shows availability in urban versus rural areas. Oxytocin was available in over 80% of all public urban and rural facilities across the three countries. Optimum availability of 80% was further achieved for oxytocin in Kenya mission urban facilities (89%) and in Zambia's mission sector for both urban and rural facilities (83% and 94%, respectively). Optimum availability of misoprostol was only achieved in Ugandan public urban and rural facilities (90% and 86%, respectively).

264

In Kenya, oxytocin had a higher availability than misoprostol across all urban and rural facilities in the three sectors. Availability of misoprostol was lowest in the public sector: availability in urban facilities was 45%, and 27% in rural facilities. In the private sector, there was a higher availability in rural facilities than in urban facilities for both oxytocin and misoprostol.

269

In Uganda, the public sector was optimally stocked with both oxytocin and misoprostol across
urban and rural facilities. Rural public facilities had a higher availability of oxytocin than urban
public facilities. In the private sector, rural facilities also had a higher availability of oxytocin and
misoprostol compared to urban facilities.

274

Oxytocin had a high availability in Zambia's public and mission sectors across both urban and
rural facilities. Availability in the private sector was very low. Availability of misoprostol was low
across the sectors and areas, with highest availability found in urban mission facilities (50%).
Although both oxytocin and misoprostol were poorly available in the private sector, oxytocin was
more available in rural than urban facilities, while misoprostol had a higher availability in urban
facilities than in rural facilities.

282 Prices and affordability

Oxytocin and misoprostol were free for patients in the public and mission sectors in Zambia, and in the public sector in Uganda. In Kenya's public sector, the lowest price was noted for oxytocin, with a median price ratio (MPR) of USD 0.174 (Table 1). Both misoprostol and oxytocin cost less than a day's wages for a LPGW across all countries and sectors, and can therefore be considered affordable.

Notwithstanding the sectors in which the medicines were for free, the MPRs for oxytocin and misoprostol were above one in the countries, ranging from 1.37 for misoprostol in Kenya's public sector to 29.95 for misoprostol in the private sector in Zambia. This meant that both misoprostol and oxytocin were accessed by patients at prices that were more expensive compared to international reference prices.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1: Prices and affordability of misoprostol and oxytocin across countries

		Public			Private	2		Missio	n	
		Price (USD)	Mean Price Ratio	Affordability of treatment (number of day's wages)	(USD)	Mean Price Ratio*	Affordability of treatment (number of day's wages)	(USD)	Mean Price Ratio	Affordability of treatment (number of day's wages)
Kenya	Oxytocin	0.029	0.17	0.01	1.354	8.14	0.34	0.672	4.04	0.30
	Misoprostol	0.273	1.37	0.07	1.967	9.84	0.49	1.217	6.09	0.17
Uganda	Oxytocin	0	NA	NA	0.998	5.99	0.57	0.408	2.45	0.23
	Misoprostol	0	NA	NA	0.589	2.95	0.34	0.39	1.95	0.22
Zambia	Oxytocin	0	NA	NA	0.678	4.08	0.06	NA	NA	NA
	Misoprostol	0	NA	NA	5.989	29.95	0.55	NA	NA	NA

NA=not applicable, USD=United States Dollar

294 Discussion

This paper assesses access to oxytocin and misoprostol in urban and rural health facilities in Kenya, Uganda and Zambia through a cross-sectional assessment of availability, prices and affordability at the patient level of the two medicines to facilitate the optimal management of PPH.

3 299

Overall, availability of uterotonics, expressed as the presence of either oxytocin or misoprostol, was high in Kenya and Uganda, and just below the WHO benchmark of 80% in Zambia. Misoprostol was markedly less available than oxytocin. Oxytocin and misoprostol were accessed by patients in the private sector at prices that were more expensive than the international reference prices. However, both medicines cost less than a day's wages, which is considered affordable. The availability of misoprostol across urban and rural areas did not show the expected pattern of having a higher availability of the medicine in rural areas, which are more prone to health system barriers for use of oxytocin.

9 308

Oxytocin availability was high in the public and mission sectors but lower in the private sector, particularly in Zambia. In the private sector, none of the countries met the WHO availability benchmark of 80% for the two medicines. Besides the public sector in Uganda, misoprostol was not optimally available in the other countries or sectors. Misoprostol had a low availability, particularly in rural areas where the medicine ought to play a major role given that facilities in these areas tend to lack adequately trained health workers and the health infrastructure required to maintain cold chain to safeguard the quality of oxytocin [17]. Its poor availability in Kenya and Zambia may be a result of slow diffusion of the intervention into the health system [43, 44]. Moreover, misoprostol has been recommended by WHO for use in PPH since 2015 after several rounds of weighing the benefits and risks, but the debate about its role in PPH prevention has continued over the years [23, 27]. The fear and stigma amongst health workers about the use of misoprostol to induce abortions may also have contributed to the situation [29]. In contrast, Uganda's efforts as an early adaptor [43, 44] to ensure availability of misoprostol through government procurement and community level distribution strategies may explain why it has a

1 2

BMJ Open

3
4
5
6
7
8
8 9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60

higher availability of misoprostol, as well as lower PPH levels compared to Kenya and Zambia
(25% in Uganda versus 34% in both Kenya and Zambia) [3-5].

Urban facilities have better health infrastructure such as cold chain facilities, and also tend to 326 327 have more health workers compared to rural facilities [45-47]. It would therefore be expected that these urban areas would have a higher availability of oxytocin and lower availability of 328 329 misoprostol than rural facilities. However, there were instances when rural facilities had a higher availability of oxytocin and a lower availability of misoprostol. This may indicate that stocking of 330 oxytocin and misoprostol by health facilities does not take into consideration challenges faced 331 332 by the facilities to administer the medicines. It will require more research in this area to better 333 understand the data and for policy makers to look into how to address context-specific barriers related to these medicines by ensuring that they are deployed where they can have maximum 334 335 impact [48, 49]. For example, efforts should be made to deploy more misoprostol in rural areas where there is a lack of adequately trained personnel and a lack of health infrastructure to 336 properly use oxytocin, and to ensure that both medicines are available to complement one 337 another depending on circumstances. 338

339

349

PPH levels across the countries are high despite health facilities having reached the WHO 340 benchmark for availability of either oxytocin or misoprostol across the three countries. This may 341 confirm the finding from a study by Ononge et al that despite use of uterotonics, incidence of 342 PPH remains high [5]. It may be that some oxytocin found at health facilities may not have the 343 quality and efficacy for optimum management of PPH [14-16]. Countries should strive for 344 universal access as the 80% availability benchmark by WHO still leaves one in five facilities 345 346 without required medicine. However, availability of a medicine alone does not guarantee that it 347 is used, health worker beliefs and knowledge as well as necessary infrastructure such as electricity and equipment are needed to reduce PPH levels. 348

350 Studies have shown that combinations of uterotonics have proven to be more effective. For 351 example, a misoprostol plus oxytocin combination was found to be more effective in preventing 352 PPH than the currently used standard of oxytocin only [50]. This argument further emphasizes
353 that having both oxytocin and misoprostol available at the health facility could help to improve
354 PPH management.

Although oxytocin and misoprostol were affordable to patients, the private sector prices were varied and more expensive compared to IRPs. For example, the MPR of misoprostol ranged from 1.37 in Kenya to 29.95 in Zambia. Therefore, even though availability met the WHO benchmark, individual patients may still be confronted with unavailability in the public sector, pushing them to seek care in the private sector where they may not be able to afford the prices of medicines. This suggests that countries need to explore pricing policies to improve affordability of the medicines.

The WHO/HAI methodology that was used for this study is tested, reliable, standardized and validated for the measurement of medicine prices and availability [34]. The study provides details on availability, price, and affordability of individual medicines across three sectors (public, private and mission). The methodology uses a cross-sectional design and therefore historical data trends were not traced. The study only used two frontline medicines for PPH, while countries may have had other alternative therapies including carbetocin which were not captured. The number of mission facilities surveyed in Zambia (23) was below the minimum (30) recommended for the methodology per sector [33]. The findings presented here may not be used to predict country pharmaceutical supply chain but are intended to stimulate policy discussions on deliberate targeting and the use of available technologies to improve access.

43 373

45 374 **Conclusion**

Availability of oxytocin and misoprostol met the WHO benchmark in Kenya and Uganda but was just below the WHO benchmark in Zambia. In general, oxytocin was more available than misoprostol. Oxytocin and misoprostol were purchased by patients at prices above international reference prices but both medicines cost less than a day's wages for a LPGW and were therefore considered affordable. However, there was no strategy in place that looked at which medicine could be best utilized in which area. Countries with limited resources should explore mechanisms

1 2		
- 3 4	381	to balance access to both oxytocin and misoprostol between rural and urban areas to optimize
5 6	382	management of PPH.
7 8	383	List of abbreviations
9 10	384	Post-partum haemorrhage (PPH); Median price ratio (MPR); Low- and middle-income countries
11 12	385	(LMICs); Lowest-paid government worker (LPGW); sexual and reproductive health commodities
13 14	386	(SRHC); Health Action International (HAI); World Health Organisation (WHO).
15 16 17	387	
18 19 20	388	Declarations
21 22 23	389	Ethical approval and consent to participate
23 24 25	390	This study did not involve human subjects and did not involve direct interaction with patients and
26	391	therefore ethical approval was not sought. However, Ministries of Health in Uganda and Zambia
27 28	392	and Country Directors of Health in Kenya gave approval and provided introduction letters to
29 30 31	393	health facilities.
32 33 34	394	
35 36	395	Consent for publication
37 38 39	396	Not applicable
40 41 42	397	
43 44 45	398	Availability of data and materials
46 47	399	The datasets used and/or analysed during the current study are available from the corresponding
48 49 50	400	author on request.
51 52 53	401	
54	402	Competing interests
55 56	403	All authors declare no competing interests.
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	404	
4 5	404	
6 7 8	405	Funding
9	406	This research was funded by Health Action International through the Health Systems Advocacy
10 11 12	407	Partnership.
13 14 15	408	
16 17 18	409	Authors' contribution
19 20	410	DK conceptualized the project, undertook data analysis and wrote the first draft of the
21	411	manuscript; GOI contributed to data analysis; GOI, HDH, JN, TR, HL and AM revised the
22 23	412	manuscript and critically reviewed its contents. GO contributed to data analysis. AM critically
24 25 26	413	reviewed the manuscript, provided comments and guidance on all drafts of manuscript.
27 28 29	414	
30 31	415	Acknowledgements
32 33	416	The authors acknowledge data collection teams in Kenya led by Dorothy Okemo, in Uganda led
34 35	417	by Anthony Ssebagereka and in Zambia led by Liyoka Liyoka. We appreciate Dr. Metin
36 37	418	Gülmezoglu for providing comments and Daphne Ssebugwawo who edited the manuscript.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	419	
58 59 60		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

References

- 1. World Health Organization, *Trends in maternal mortality: 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division*, 2019: Geneva.
- 2. Say L, et al., *Global causes of maternal death; a WHO systematic analysis.* Lancet Global Health, 2014. **2** (6): p. E323-33.
 - 3. PSI, Improving Maternal Health: Preventing Post-Partum Hemorrhage in Rural Zambia, 2014: Washington D.C.
 - 4. Kinuthia, K., M. Stephenson, and E. Maogoto, *Management of postpartum hemorrhage in a rural hospital in Kenya: a best practice implementation project.* JBI Database System Rev Implement Rep, 2019. **17**(2): p. 248-258.
- 5. Ononge, S., et al., *Incidence and risk factors for postpartum hemorrhage in Uganda*. Reproductive Health, 2016. **13**(38).
- 6. United Nations, United Nations Commission on Life-saving Commodities for Women and Children; Commissioner's Report 2012, United Nations: New York.
- 7. Ministry of Health, *Kenya Essential Medicines List 2016*, 2016: Nairobi, Kenya.
- 8. Ministry of Health, *Essentail Medicines and Health Supplies List of Uganda*, 2016.
- 9. Ministry of Health, *Zambia Essential Medicines List*, 2013.
- 10. World Health Organisation, *Recommendations for the prevention and treatment of postpartum haemorrhage.*, 2012, Department of Reproductive Health: Geneva.
- 11. De Groot, A.N., et al., *Oxytocin and desamino-oxytocin tablets are not stable under simulated tropical conditions.* Journal of Clinical Pharmacy 1995. **20**(2): p. 115-119.
- 12. Hogerzeil, H.V., et al., *Stability of essential drugs during shipment to the tropics*. BMJ, 1992. **304**(6821): p. 210-212.
- 13. Nazerali, H. and H.V. Hogerzeil, *The quality of essential drugs in rural Zimbabwe: controlled longitudinal study.* BMJ, 1998. **317**(7157): p. 512-13.
- 14. Karikari -Boateng, E., *Post-market quality surveillance project maternal health care products on the Ghanaian market*, 2013, Ghana Food and Drugs Authority: Accra.
- 15. Torloni, M.R., et al., *Quality of oxytocin available in low- and middle-income countries: a systemic review of the literature.* BJOG, 2016. **123**(13): p. 2076–86.
- 16. Stanton, C., et al., Accessibility and potency of uterotonic drugs purchased by simulated clients in four districts in India. BMC Pregnancy and Childbirth 2014. **14**(386): p. Page 2 of 12.
- Anyakora, C., et al., Quality medicines in maternal health: Results of Oxytocin, Misoprostol, Magnesium sulphate and Calcium Gluconate Quality Audits. BMC Pregnancy and Childbirth 2018.
 18(1): p. 44.
- 18. Hofmeyr, G.J., S. Ferreira, and V.C. Nikodem, *Misoprostol for treating postpartum haemorrhage: a randomized controlled trial* BMC Pregnancy and Childbirth, 2004. **4**(16).
- 19. Alfirevic, A., et al., *Prevention of postpartum hemorrhage with misoprostol* Int J Gynecol Obstet, 2007. **99(Suppl 2)**: p. 198–201.
- 20. Smith, J.M., et al., Advance distribution of misoprostol for prevention of postpartum haemorrhage at home births in two districts of Liberia. BMC Pregnancy and Childbirth, 2014. **14**: p. 189.
- McCormick, M.I., et al., Averting maternal death and disability: Prevention of postpartum haemorrhage in low resource settings. International Journal of Obstetrics and Gynaecology, 2002.
 77: p. 267-275.

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28 29

30

31

32 33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

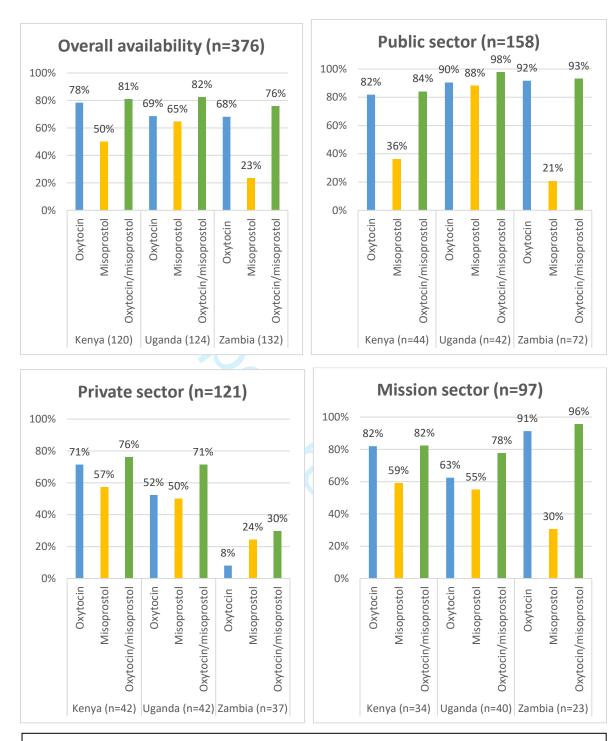
49

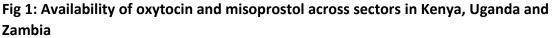
50

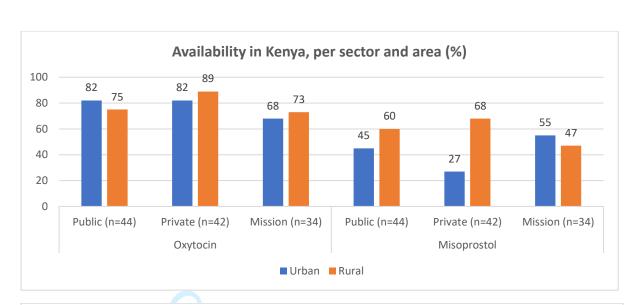
51 52

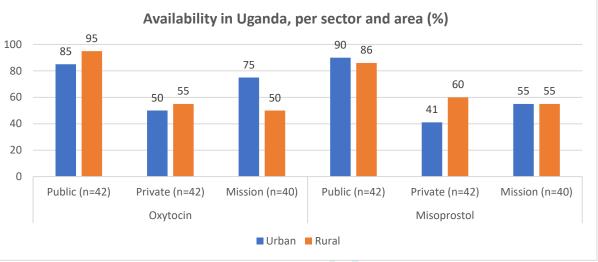
53

54


55


56 57 58


59


- 22. Smith, J.M., et al., Misoprostol for postpartum haemorrhage prevention at home birth: an integrative review of global implementation experience todate. BMC Pregnancy and Childbirth 2013. 13(44). 23. World Health Organisation, The selection and use of essential medicines. Report of the WHO Expert Committee 2015(including the 19th WHO Model list of essentail medicines and the5th WHO Model list of essential medicines for children), 2015: Geneva. 24. Tran, D.N. and L.A. Bero, Barriers and facilitators to the quality use of essential medicines for maternal health in low-resource countries: An Ishikawa framework. J Global Health, 2015. 5(1). 25. Caliskan, E., et al., Oral misoprostol for third stage of labour: a randomised trial. Obstet Gynecol, 2003. 101(5): p. 921-8. 26. El-Refaey, H., et al., Use of oral misoprostol in the prevention of postpartum haemorrhage Obstet Gynecol, 1997. 104(3): p. 336-9. 27. World Health Organization, The Selection and Use of Essential Medicines 2019. Report of the 22nd WHO Expert Committee on the Selection and Use of Essential Medicines, 1-5 April 2019, 2019: Geneva. 28. Tang, J., et al., WHO recommendations for misoprostol use for obstetric and gynaecologic indications. 2013. 121(2): p. 186-9. 29. Chong, Y.S., L.L. Su, and S. Arulkumaran, Misoprostol: A Quarter Century of Use, Abuse, and Creative Misuse. Obstetrical and Gynecological Survey. 2004. 59(2): p. 128-140. 30. Theunissen, F.J., L. Chinery, and V.P. Yeshita, *Current research on carbetocin and implications for* prevention of postpartum haemorrhage. BMC Reproductive Health, 2018. 15(1): p. 94. 31. Jhpiego, Accelovate. Brief: how can we increase global utilization of oxytocin for treatment of postpartum hemorrhage, 2015, Jhpiego: Baltimore. 32. HAI, Sexual & Reproductive Health Commodities: Measuring Prices, Availability & Affordability; Methodology & Data Entry Manual 2017: Amsterdam. 33. WHO/HAI, Measuring medicine prices, availability, affordability and price components, 2008: Geneva, Switzerland. 34. Madden, J.M., et al., Measuring medicine prices in Peru: validation of key aspects of WHO/HAI survey methodology. Rev Panam Salud Publica, 2010. 27(4): p. 291-9. 35. Cameron, A., et al., Switching from originator brand medicines to generic equivalents in selected developing countries: how much could be saved? Value Health, 2012. 15(5): p. 664-73. Anson, A., et al., Availability, prices and affordability of the World Health Organization's essential 36. medicines for children in Guatemala. Global Health, 2012. 8: p. 22. 37. Cameron, A., et al., Mapping the availability, price, and affordability of antiepileptic drugs in 46 countries. Epilepsia, 2012. 53(6): p. 962-9. 38. Ministry of Health Uganda, Package of Basic Health Services for Uganda, 1997: Kampala, Uganda. 39. Management Sciences for Health, International Drug Price Indicator Guide 2014 Edition, 2015, MSH: Medford, Mass. 40. Bank of Uganda. Exchange rates. 2016 [cited 2016 22nd April 2016]; Available from: https://www.bou.or.ug/bou/bouwebsite/ExchangeRates/. oanda. Available from: https://www.oanda.com/currency/converter/. 41. 42. Ministry of Public Sevice Uganda, New Salary Structures for Public Servants for FY 2014/15, 2014: Kampala, Uganda. 43. Sharp, B.E. and S.A. Miller, Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies. Environ. Sci. Technol, 2016. 50(6): p. 2771–2781. 44. Gonzalez, L., M. Aebersold, and C. Fenske, Diffusion of Innovation: Faculty Barriers to Adoption. Comput Inform Nurs, 2014. 32(5): p. 201-4. 1
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 45. Henning-Smith, C., et al., Rural-Urban Differences in Medicare Quality Outcomes and the Impact of Risk Adjustment. Med Care, 2017. 55(1): p. 823-829. 46. Alhassan, R.K. and E. Nketiah-Amponsah, Frontline staff motivation levels and health care quality in rural and urban primary health facilities: a baseline study in the Greater Accra and Western regions of Ghana. 2016. 47. Alghanem, F. and J.M. Clements, Narrowing performance gap between rural and urban hospitals for acute myocardial infarction care. . Am J Emerg Med, 2019. pii: S0735-6757(19): p. 30250-5. Braddick, L., et al., A mixed-methods study of barriers and facilitators to the implementation of 48. postpartum hemorrhage guidelines in Uganda. Int J Gynecol Obstet, 2016. 132(1): p. 89-93. 49. Morris, J.L. and S. Khatun, Clinical guidelines-the challenges and opportunities: What we have learned from the case of misoprostol for postpartum hemorrhage. Int J Gynecol Obstet, 2019. (1): p. 122-127. 50. Gallos, I.D., et al., Which drug is best for reducing excessive blood loss after birth. Cochrane Database Syst Rev, 2018(4). Toppet eviewony

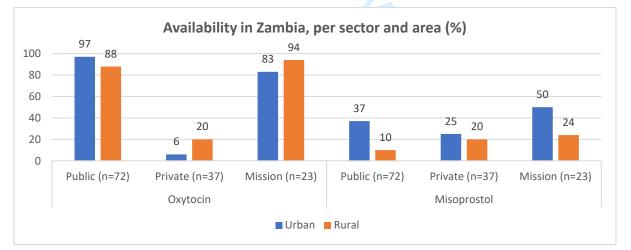


Figure 2: Availability of oxytocin and misoprostol in urban and rural facilities across countries

	Item	Available		Pag
	No		Recommendation	No
Title and abstract	1	Yes	(a) Indicate the study's design with a commonly used term in the	1
			title or the abstract	
			(b) Provide in the abstract is an informative and balanced	2
			summary of what was done and what was found	
		Intro	oduction	
Background/rationale	2	Yes	Explain the scientific background and rationale for the	5-7
			investigation being reported	
Objectives	3	Yes	State specific objectives, including any prespecified hypotheses	7
		Met	hods	
Study design	4	Yes	Present key elements of study design early in the paper	7
Setting	5	Yes	Describe the setting, locations, and relevant dates, including	8
0			periods of recruitment, exposure, follow-up, and data collection	
Participants	6	Yes	(<i>a</i>) Give the eligibility criteria, and the sources and methods of	8
1			selection of participants	
Variables	7	Yes	Clearly define all outcomes, exposures, predictors, potential	9
			confounders, and effect modifiers. Give diagnostic criteria, if	
			applicable	
Data sources/	8*	Yes	For each variable of interest, give sources of data and details of	8-9
measurement	Ũ	1.00	methods of assessment (measurement). Describe comparability	0)
			of assessment methods if there is more than one group	
Bias	9	N/A	Describe any efforts to address potential sources of bias	N/A
Study size	10	Yes	Explain how the study size was arrived at	8
Quantitative variables	11	Yes	Explain how quantitative variables were handled in the analyses.	9-10
Quantitative variables	11	105	If applicable, describe which groupings were chosen and why	7 10
Statistical methods	12	N/A	(<i>a</i>) Describe all statistical methods, including those used to	_
Statistical methods	12	14/24	control for confounding	
			(b) Describe any methods used to examine subgroups and	
			interactions	
			(c) Explain how missing data were addressed	
			(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
			(<u>e</u>) Describe any sensitivity analyses	
	1.0*	Resu		
Participants	13*	N/A	(a) Report numbers of individuals at each stage of study—eg	-
			numbers potentially eligible, examined for eligibility, confirmed	
			eligible, included in the study, completing follow-up, and	
			analysed	
			(h) China nanagang tan nan nantisingtian at saal stage	
			(b) Give reasons for non-participation at each stage	
			(c) Consider use of a flow diagram	
Participants Descriptive data	14*	Yes	(c) Consider use of a flow diagram(a) Give characteristics of study participants (eg demographic,	9
Descriptive data	14*	Yes	(c) Consider use of a flow diagram	9

Page 25 of 24

Outcome data	15*	Yes	Report numbers of outcome events or summary measures	1
				1
Main results	16	N/A	(a) Give unadjusted estimates and, if applicable, confounder-	-
			adjusted estimates and their precision (eg, 95% confidence	
			interval). Make clear which confounders were adjusted for and	
			why they were included	
			(b) Report category boundaries when continuous variables were	-
			categorized	
			(c) If relevant, consider translating estimates of relative risk into	-
			absolute risk for a meaningful time period	
Other analyses	17	N/A	Report other analyses done-eg analyses of subgroups and	-
			interactions, and sensitivity analyses	
		D	iscussion	
Key results	18	Yes	Summarises key results with reference to study objectives	14
Limitations	19	Yes	Discusses limitations of the study, taking into account sources of	1
			Spotential bias or imprecision. Discuss both direction and	
			magnitude of any potential bias	
Interpretation	20	Yes	Give a cautious overall interpretation of results considering	14
			objectives, limitations, multiplicity of analyses, results from	1
			similar studies, and other relevant evidence	
Generalisability	21	No	Discuss the generalisability (external validity) of the study	-
			results	
		0	ther information	
Funding	22	Yes	Gives the source of funding and the role of the funders for the	1
			present study and, if applicable, for the original study on which	
			the present article is based	

*Give information separately for exposed and unexposed groups.

N/A- Not applicable

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.