ACE-2-interacting domain of SARS-CoV-2 (AIDS) peptide suppresses inflammation to reduce fever and protect lungs and heart in mice: Implications for COVID-19 therapy

Ramesh K. Paidi^{1,*}, Malabendu Jana^{1,*}, Rama K. Mishra², Debashis Dutta¹, Sumita Raha¹, and Kalipada Pahan^{1,3}

¹Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; ²Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA; ³Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA

*First two authors have equal contribution to the work.

Running title: AIDS peptide for COVID-19

<u>Corresponding author</u>: Kalipada Pahan, Ph.D. Department of Neurological Sciences Rush University Medical Center 1735 West Harrison St Suite Cohn 310 Chicago, IL 60612 Tel: (312) 563-3592; Fax: (312) 563-3571 Email: <u>Kalipada_Pahan@rush.edu</u> Legend to supplementary figures:

Figure S1. Dose-dependent induction of IL-6 and IL-1 β by recombinant SARS-CoV-2 spike S1 in human A549 lung cells. Human A549 lung cells were stimulated with different doses of recombinant SARS-CoV-2 spike S1 under serum-free condition for 4 h followed by monitoring the mRNA expression of IL-6 and IL-1 β by semi-quantitative RT-PCR (A) and real-time PCR (B, IL-6; C, IL-1 β). In parallel experiment, cells were also stimulated with boiled SARS-CoV-2 spike S1. In this case, SARS-CoV-2 spike S1 was boiled for 5 min. Results are mean \pm SD of three independent experiments. *** p < 0.001.

Figure S2. Suppression of SARS-CoV-2 spike S1-mediated expression of IL-6 and IL-1 β in human A549 lung cells by neutralizing antibodies against spike S1. Human A549 lung cells pretreated with different concentrations of either anti-spike S1 antibody or control IgG for 5 min were stimulated with 1 ng/ml recombinant SARS-CoV-2 spike S1 under serum-free condition for 4 h followed by monitoring the mRNA expression of IL-6 and IL-1 β by semi-quantitative RT-PCR (A) and real-time PCR (B, IL-6; C, IL-1 β). Results are mean \pm SD of three independent experiments. *** p < 0.001.

Figure S3. Effect of wtAIDS and mAIDS peptides on the mRNA expression of IL-6 and IL-1 β in SARS-CoV-2 spike S1-, poly IC-, HIV tat-, and flagellin-stimulated human A549 lung cells. Human A549 lung cells pretreated with different concentrations of wtAIDS and mAIDS peptides for 15 min were stimulated with recombinant SARS-CoV-2 spike S1 (A), polyIC (B), HIV-1 Tat- (C), and flagellin (D) under serum-free condition for 4 h followed by monitoring the mRNA expression of IL-6 and IL-1 β by semi-quantitative RT-PCR. Results represent three independent experiments.

Figure S4. Schematic presentation of different cardiac parameters.

Figure S5. Intranasal delivery of wtAIDS peptide improves locomotor activities in a mouse model of COVID-19. Six-eight week old C57/BL6 mice (n=6) of both sexes were treated intranasally with wtAIDS or mAIDS peptides (100 ng/mouse/d). After 10 min, mice were intoxicated with recombinant SARS-CoV-2 spike S1 (50 ng/mouse/d) via intranasal route. After 7d of treatment, mice were tested for general locomotor activities (A, heat map; B, distance travelled; C, velocity; D, cumulative duration; E, rotorod latency). Results are mean \pm SEM of six mice per group. *p < 0.05; **p < 0.01; ***p < 0.001.

Figure S6. Intranasal delivery of wtAIDS peptide in a treatment paradigm improves locomotor activities in a mouse model of COVID-19. Six-eight week old C57/BL6 mice (n=5) of both sexes were treated intranasally with wtAIDS peptide (100 ng/mouse/d) from 1 d after intoxication of SARS-CoV-2 spike S1 (50 ng/mouse/d). After 7d of wtAIDS treatment, mice were tested for general locomotor activities (A, heat map; B, distance travelled; C, velocity; D, cumulative duration; E, rotorod latency). Results are mean \pm SEM of five mice per group. **p < 0.01; ***p < 0.001.

Spike S1 (ng/ml)
0
0.2
0.5
1.0
10
20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</th

Figure S1

Figure S2

Figure S3

Figure S5

50

Spike S1 + wtAIDS

Spike S1

Figure S6

100-

Control

Table S1. Lung injury scoring system

		Score per field		
	Parameter	0	1	2
Α.	Neutrophils in the alveolar space	None	1-5	>5
В.	Neutrophils in the interstitial space	None	1-5	>5
C.	Hyaline membranes	None	1	>1
D.	Proteinaceous debris filling the airspace	None	1	>1
E.	Alveolar Septal thickening	< 2x	2X-4X	>4x

Lung Injury Score = $[(20 \times A) + (14 \times B) + (7 \times C) + (7 \times D) + (2 \times E)]/$ (number of fields × 100)