
   

Supplementary Methods 

Cell line and standard culture medium 

Androgen-dependent LNCaP human prostate carcinoma cells (from the American Type Culture 

Collection) were cultured at 37 °C, 5 % CO2 in RPMI medium (Gibco) supplemented with 10 % fetal 

bovine serum (Vitrocell), 4.5 g/L glucose, 1.5 g/L sodium hydrogen carbonate, 2.4 g/L HEPES, 1 % 

sodium pyruvate and penicillin (100 U/ml)/streptomycin (100 U/ml). Cells were grown until reaching 

approximately 50 % confluence, the standard medium was replaced by RPMI supplemented with 

charcoal-stripped fetal bovine serum (CSS, Sigma-Aldrich), which was changed twice, once every 24 

h, totaling 48 h of hormone starvation. Subsequently, hormone-starved cells were subjected to 

different treatments as described under Materials and Methods in the main text. 

Native RNA-binding protein immunoprecipitation (RIP) followed by RT-qPCR 

For native RIP with LNCaP cells [1], CSS-supplemented medium was renewed, 10 nM synthetic 

androgen analog R1881 (Methyltrienolone, Sigma-Aldrich) or vehicle (ethanol) were added, cells 

were incubated for additional 24 h, and processed as described in the Magna RIP RNA-Binding 

Protein Immunoprecipitation Kit (Millipore). After those 24 h, the number of cells was 

approximately 2 x 107 for each antibody assay in each biological replicate, as estimated by Neubauer 

chamber cell counting. Cells were washed twice with ice-cold PBS, collected by cell scraper and 

centrifuged at 1500 rpm for 5 min at 4 °C. Cells pellets were resuspended in RIP lysis buffer as 

described in the Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore). Subsequent 

RIP steps were performed according to the manufacturer's instructions. Merck-Millipore antibodies 

used were anti-SUZ12 (03-179), anti-EZH2 (17-662), non-immunized mouse IgG (12-371), anti-AR 

(06-680) and non-immunized rabbit IgG (PP64B). Co-immunoprecipitated RNAs and in parallel the 

RNAs in the input samples were extracted with TRIzol (Invitrogen) followed by purification with 

RNeasy Micro kit (Qiagen) according to the manufacturer's instructions; RNA was eluted in 25 µl 

DEPC water. The use of Human Gene RNVU1-19 – variant U1 small nuclear 19 (snRNA U1-19), 

RefSeq NR_104086 [2] as negative control was based on the Magna RIP RNA-Binding Protein 

Immunoprecipitation Kit (Millipore, USA) protocol. Using the Primer3 online tool [3] we have 

designed primer pairs specific for RNVU1-18 and RNVU1-19, and we measured their expression 

levels in LNCaP along with the expression level of snRNA U1 obtained with the primers from the 

Magna RIP kit. We chose RNVU1-19, which had in the input fraction a Ct value range (18.5 – 20.0) 

that was in the same range of values of GAPDH (17.2 – 19.0) and ACTB (18.0 – 19.3), and lower 

than the Ct values of PVT1 (26.5 – 28.5) in the input. 

Cell fractionation 

For LNCaP cells fractionation, CSS-supplemented medium was renewed, 10 nM R1881(or vehicle) 

was added, cells were incubated for an additional 24 h, and processed for subcellular fractionation by 

differential centrifugation [4]. After nuclear and cytosolic fractions separation, RNA from each 

fraction was extracted with TRIzol (Invitrogen) followed by purification with RNeasy Micro kit 

(Qiagen) according to the manufacturer's instructions. RNA expression levels were measured by 

Real-time RT-qPCR as described below. GAPDH was used as a cytosolic marker, and snRNA U1-19 

was used as a nuclear marker, according to Yu et al. 2018 [5]. Three biological replicates of each 

condition, with three technical replicates of qPCR per sample were assayed. 
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Chromatin immunoprecipitation (ChIP) followed by qPCR 

PVT1 was silenced by knockdown as described above, except that 900 pmol GapmeR was used (a 

pool of PVT1_2 and PVT1_5 (450 pmol each), or scrambled oligo at 900 pmol). After 24 h 

incubation, 10 nM R1881 was added, cells were incubated for additional 24 h, and processed with the 

Magna ChIP A/G kit (17-10085, Millipore) according to the manufacturer’s instructions. Thus, 

culture medium was replaced with 20 mL crosslinking buffer (50 mM Hepes-KOH, pH 7.5, 100 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA) and crosslinking was carried with 1% formaldehyde for 10 min 

at room temperature. The reaction was stopped by incubation for 5 min with 125 mM glycine. Cells 

were washed twice with ice-cold PBS, once with ice-cold PBS supplemented with protease inhibitors 

and the cell pellet was rapidly frozen in liquid nitrogen. Cells were thawed on ice and processed with 

the Magna ChIP A/G kit (17-10085, Millipore) according to the manufacturer’s instructions. 

Chromatin was fragmented using the Covaris S2 sonicator in a 130 μL tube under the following 

conditions: duty cycle 2 %, intensity 3, cycles per burst 200, time 480 s. ChIP was performed with 5 

μg of each of the antibodies from Millipore: anti-H3K27ac (07-360), anti-H3K27me3 (07-449). 

Three biological replicates were assayed for each antibody.  

Real-time quantitative PCR 

qPCR was performed with primers specific for each gene as described in Supplementary Table S1 

and cDNA from the RIP or expression assays (diluted 1:5 to 1:7) or DNA from the ChIP assay. The 

LightCycler 480 II equipment (Roche) and SYBR Green I Master Mix (Roche) were used. Three 

biological replicates were assayed in three technical replicates each. The delta-Ct (ΔCt) method was 

used, and the geometric mean Ct of constitutive genes GAPDH and ACTB was used as normalizer in 

gene expression assays. In RIP and ChIP assays, the amount of RNA or DNA in the input sample 

(before immunoprecipitation, measured in an aliquot corresponding to 10 % and 1 % of the volume, 

respectively) was used as normalizer. 

Genome-wide gene expression analysis in LNCaP cells under PVT1 silencing  

Agilent SurePrint G3 Human Gene Expression v3 (8 x 60k, G4851C) microarrays were used. Total 

RNA (200 ng) was obtained as described in the main text in item PVT1 knockdown, and RNA 

samples with a minimum RNA Integrity Number (RIN) >8 were used.    

Four biological replicates were assayed. Total RNA was converted to cRNA with Cy3 or Cy5 

fluorophores by means of the Low Input Quick Amp Labeling Two Color kit (Agilent). Two 

technical replicates were generated with dye-swap of Cy3 and Cy5 fluorophores for each condition 

studied. Hybridization was performed according to Agilent's instructions for two-color microarray. 

Slides were scanned on the SureScan Microarray Scanner (Agilent) with a resolution of 2 μm. Data 

extraction was performed with Feature Extraction software (Agilent) and the ISPosAndSignif flag 

was used to filter low intensity signal probes. All genes whose signals were not detected in the four 

replicates of at least one of the two experimental conditions were excluded. The intensity values of 

each transcript across the arrays were normalized by the quantile method [6]. For genes with multiple 

probes, the mean intensity among all probes showing significant change was used to represent the 

intensity of that gene. 

Significance Analysis of Microarrays (SAM) statistical test [7] was used with cutoff q-value ≤0.01 

(i.e., a False Discovery Rate ≤1%) [8]. Genes with q-value ≤0.01 and |log2fold-change| >1 were 
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considered significantly differentially expressed. The z-score was calculated for each gene in each 

sample, and it represents the number of standard deviations below or above the mean intensity of that 

gene across the various conditions that were compared; a z-scores non-supervised hierarchical 

clustering heatmap was plotted with Spotfire (TIBCO).  

Gene Ontology analyses were performed with DAVID [9], in order to find the statistically significant 

enriched ontology terms of differentially expressed genes, using the Benjamini-Hochberg corrected 

p-value threshold of p <0.05. 

Gene expression correlation in the TCGA dataset  

The TCGA prostate adenocarcinoma (TCGA-PRAD) dataset was used and PVT1-related disease-free 

survival analysis was done with TANRIC tool [10]. To test the 121-gene-set as a tumor risk 

classifier, we implemented a machine learning Random Forest algorithm in python Scikit-Learn 

(v.0.20.2) [11] with gene expression data from all TCGA-PRAD tumors as input. 

Thus, the legacy level 3 data of Prostate adenocarcinoma (PRAD) from The Cancer Genome Atlas 

(TCGA) cohort were obtained from Firehose (http://gdac.broadinstitute.org). The SurvExpress [12] 

webtool was used to automatically convert gene IDs annotated in the Agilent microarrays for the 160 

genes of interest (that were de-repressed by PVT1 knockdown in LNCaP cells) into the gene IDs of 

the TCGA-PRAD RNA-seq data. Out of the 160 genes, a total of 121 were retrieved by SurvExpress 

in the TCGA-PRAD dataset (Supplementary Table S5). Normalized RNA-seq data of 499 TCGA-

PRAD samples (“illuminahiseq_rnaseqv2-RSEM_genes_normalized”) and clinical classification 

were used for further analysis. 

In order to create a predictive profile using the 121 genes that were up regulated in LNCaP after 

PVT1 silencing, we divided the TCGA prostate cancer samples in two different groups (classes), 

namely class 0 = intermediate-risk tumors, and class 1 = high-risk tumors. This separation was 

created using the National Comprehensive Cancer Network (NCCN) criteria. Intermediate risk: PSA 

is between 10 and 20 ng/mL, Gleason score of 7 and Classification from the TNM system T2b or 

T2c. High-risk: PSA > 20 ng/mL, Gleason score of 8 to 10, Classification from the TNM system T3a 

or T3b or T4. The final dataset is comprised of a total of 293 samples, where 119 samples represent 

intermediate risk tumors, and 174 high risk tumors. 

The normalized expression levels of the 121 genes were used as features in a Random Forest 

machine learning classification model with the number of trees equal to 10k and the maximum depth 

5 (the maximum number of nodes in a decision tree). The Gini Impurity metric (Gini importance 

score) was used to construct the trees [13]. The model was trained and evaluated using the 5-cross-

validation approach, where 5 different models were created using for each model an 80%/20% 

(train/validation) ratio. Each of the 5 validation runs was comprised of a set of different patient 

samples. 

The classification performance of the model was estimated by calculating the ROC area under the 

curve that was generated by plotting at various classification threshold settings the False Positive 

Rate (X-axis) and the True Positive Rate (TPR) (Y-axis), as given by the following equations: 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

http://gdac.broadinstitute.org)/
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𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Where, TP = true positives, TN = true negatives, FP = false positives and FN= false negatives. 

After training the models, we also extracted the most predictive top 10 features (genes). This 

procedure was performed by averaging the Gini Impurity decrease between the two different groups 

for each feature, in the 5 different models. Intuitively, this measurement can estimate how well the 

intermediate-risk and high-risk tumors can be separated when a specific feature (gene) is used to 

create tree leaves.  

The Random Forest model, Feature extraction and 5-cross-validation analyses were performed using 

the python Scikit-Learn (Version 0.20.2) library [11].  
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