
A Methods

A.1 Data structures

We consider as input a Bifrost graph of a set of genomes G, and a set of query

sequences Q. As EnteroBase contains a standardised assembly pipeline for all short

read dataset added to the database (either through user upload or fetched from

public databases), we assume all genomes in G to be draft assemblies consisting

of a set of contigs. However, the following is equally valid for graphs build on sets

of sequencing reads.

colored DBG (cDBG) Define Kg as the set of unique k-mers (words of length

k) over an alphabet ⌃ present in a genome g 2 G. We denote K = [g2GKg.

Let C be a set of colors and cg 2 C be a unique color assigned to a genome or a

cluster of genomes respectively. Define dBG(V,E) as a de Bruijn graph, with the

set of vertices V representing all k-mers in K, i.e. V = [g2GKg. The edges in the

graph are given implicitly by two k-mer sequences overlapping in exactly in k � 1

positions, i.e. k1[2 : n] = k2[1 : n � 1]. In a colored de Bruijn graph cdBG(V,E),

each vertex v 2 V is labeled with a set of colors cv ⇢ C, consisting of all cg for

which kv 2 g.

The complexity of the colored dBG can be reduced by compacting maximal

non-branching paths into single vertices, so called unitigs. We denote the com-

pacted version of the colored de Bruijn graph as ccDBG. Note that while each

compacted vertex represents a maximal non-branching path in terms of sequence,

depending on sequencing coverage or assembly quality, we do not assume all k-mers

compacted into a single vertex to be labeled with the same set of colors.

Bifrost graphs We rely on a recently developed data structure for compacted

and colored dBGs named Bifrost [15]. Bifrost is a parallel and memory e�cient

29

tool enabling the direct construction of the compacted de Bruijn graph without

producing the intermediate uncompacted de Bruijn graph. Its software library

features a broad range of functions such as graph traversal, querying and editing

while automatically preserving the compaction property. Bifrost makes full use

of a dynamic index to update the graph with additional genomes and e�ciently

colour each k-mer of the graph with the set of genomes in which it occurs.

As our following method relies on functions defined in the Bifrost API, we

will refer to the graph required as input as Bifrost graphs. All Bifrost graphs

underlying the analysis and evaluation in Section 2 have been build with Bifrost

parameters k = 31 and m = 21, and options �r for Bifrost reference mode and

�c to include the coloring of the graph.

We built Bifrost graphs for all draft assemblies in EnteroBase up to July 2019.

Table 1 shows the time and memory requirements for the initial built of Bifrost

graphs for the two largest databases in EnteroBase September 2018. Since then,

the Salmonella Bifrost graph has been updated to now contain 190, 209 strains.

The graph and colors file for this graph have a total uncompressed size of 158.5GB

on disk.

Table 1: Time and memory requirements to build Bifrost graphs for draft assem-
blies of Salmonella and Escherichia in Enterobase as of September 2018.

Salmonella Escherichia

Input
assemblies 160k 72k

size 1.5 TB 728 GB

Bifrost
time 4 days, 15h 1 day, 15h

memory 147 GB 102 GB

Output
file size 125 GB 86 GB
unitigs >30M >32M
edges 86M 93M

For the collection of 736 Yersinia draft assemblies, we compared the build

30

time and memory requirements for BIGSI and Bifrost on standard parameters

(see Figure 8). As Yersinia is a rather conserved bacterial genus, Bifrost is able

to index these genomes more e�ciently than BIGSI.

Index computation on Yersinia draft genome assemblies

Figure 8: Benchmark comparison of Bifrost and BIGSI. We built both the Bifrost
graph and BIGSI index on subsets of 736 draft assemblies of Yersinia representa-
tive strains.

A.2 K-mer query in BlastFrost

BlastFrost accepts as input a colored Bifrost graph, consisting of a GFA file describ-

ing the graph (parameter �g) and a binary file representing the color information

for the graph (parameter �f). Query sequences are specified with parameter �q in

multiple FASTA format. As optional parameters, the number of threads (default

1) and distance parameter d (default 1) can be specified. The default analysis will

output the presence/absence analysis for each query, while parameter �e enables

subgraph extraction described below.

Given a set of query sequences Q, we apply the same value k used to build

the underlying Bifrost graph to derive a set of unique k-mers Kq for each q 2 Q.

As the search for each query against the graph is considered independently, we

simplify the following description by describing the search for a single query q.

31

We load the pre-computed Bifrost graph back into memory using the Bifrost

API function respectively.

For each k 2 Kq ordered in ascending position of their occurrence in q, we

query the Bifrost graph for the unitig the k-mer appears in. This results in a

binary hit sequence bc for each color hit by any k-mer in the query (1 indicating

the k-mer has been found in a unitig colored by c, 0 indicating absence). Note

that a k �mer compacted in a unitig does not have to contain all colors present

in the whole unitig due to e.g. sequencing coverage or assembly quality. In order

to reduce computation steps, we assume two query k-mers located on the same

unitig to be labeled with the same set of colors.

In order to increase the sensitivity of the k-mer based query search, we im-

plement an inexact search by additionally querying for matches of k-mers in the

d-neighborhood of a query k-mer k, with d being an input distance parameter that

can be chosen by the user:

N �
d (k) = {k2 : �(k, k2)  d ^ |k2| = k}

Note that the considered neighborhood is restricted to sequences of length k as

this value is fixed to query the Bifrost graph. Depending on the size of the query

and the value for d, this will increase the number of queried k-mers significantly.

Our experiments however showed only small increase in run time for queries up to

2000bp and d = 2, while the sensitivity increased.

Given a hit sequence bc, we estimate an alignment score for the query against

color c by measuring the length of 0 runs. We assume that a single substitution

will cause k k-mers to be missed, hence we divide the number of 0s in contiguous

runs by k. We use a standard score for matches of 1 and mismatches of �2. From

this estimated alignment score, we calculate a p-value using the BLAST formula.

32

Algorithm 1 BlastFrost: k-mer presence/absence query
Require: BlastFrost graph G, query sequence q, distance d
Kq k �mers(q)
for i 2 [1..|Kq|] do

u G.find(Kq[i])
if u.empty()d > 1 then

N �
d (k) = {k2 : �(k, k2)  d ^ |k2| = k}

for k0 inN �
d do

u G.find(Kq[i])
end for

end if
Cu u.getUnitigColors()
for c 2 Cu do

bc[i] = 1
end for

end for

Subgraph extraction For each query q 2 Q, the previous step identified a list

of unitigs that were found in the k-mer search for a subset of colors Cq 2 C. We

define Uc as the set of unitigs that have been found for color c. For each c 2 Cq,

we aim to complete a path in the graph that is pre-sketched by the k-mer hits.

A perfect hit of a query q against a color c in the graph will result in an already

complete path, whereas variation between the query and the graph genome will

cause gaps in the graph path respectively.

In order to avoid unnecessary graph traversal, we first cluster colors in Cq with

the same unitig sets, assuming that multiple colors can represent the same query

variant and therefore follow the same paths in the graph. However, colors being

grouped together initially can diverge during any step of the graph traversal and

will require a subsequent separate path traversal.

For each cluster of colors, we start with the first listed unitig u. Note that this

unitig does not have to contain first k-mer in the query. We follow successors of u

in the graph in a depth-first search, adding them to the unitig list and comparing

33

against the current cluster of colors, until we traverse a unitig that is already in

the set of identified unitigs for this cluster of colors or until we hit a extension

limit. If this limit is hit, we remove all colors from the list of query hits and do

not report a subgraph. The extension ends successfully if we find the last unitig

identified by a k-mer hit.

Concatenating the extracted path unitigs, considering their overlap of length

k� 1 at their ends, gives the sequence underlying the identified path in the graph.

The length of this sequence can be shorter than the initial query,as the first or

last unitig do not have to align with the first or last k-mer in the query. We

subsequently extend the path to the left or right until the length of the path

sequence is equal to the query length or until the path for the current color cluster

becomes ambiguous, i.e. there are more than one preceding or succeeding unitigs

found for the current color.

34

