
Additional File 2: Further Details of the Analysis Approaches

Aalen-Johansen Estimator

The Aalen-Johansen estimator generalises the Kaplan-Meier estimator to Markov multistate
processes. It was proposed by Aalen and Johansen [1] and has been discussed in detail by
Andersen et al [2]. Following Allignol et al [3], let Nab(t) be the number of direct transitions
a → b occurring up to time t and Ya(t) be the number of individuals in state a at the time
immediately before t, i.e. the number of individuals at risk of the transition a→ b. The matrix
of cumulative transition hazards A(t) can be estimated by the Nelson-Aalen estimator [2]:

Âab(t) =

∫ t

0

dNab(u)

Ya(u)
du a 6= b

Âaa(t) =−
∑
b 6=a

Âab(t)

The Aalen-Johansen estimator of the transition probabilities is then:

P̂(s, t) =
∏

s<tk≤t

(
I +4Â(tk)

)
Where 4Âab(tk) a 6= b is the number of observed direct a → b transitions divided by

the number of individuals in state a at the time immediately before tk. The diagonal entries
4Âaa(tk) are such that the row equals 0.

The Aalen-Johansen estimator is a matrix of step-functions, changing only at the times when
an event is observed. Expected length of stay can then be easily calculated as a summation of
rectangles.

Exponential Model

For transitions i = 1, ..5, the transition rates hi(t) for the exponential model are a non-negative
constant λi ≥ 0:

hi(t) = λi

Royston-Parmar Model (4 degrees of freedom)

Royston-Parmar models utilise restricted cubic splines to model the effect of time on the log
cumulative hazard ln{Hi(t)} scale. A Royston-Parmar model with K knots can be fitted by
creating K − 1 derived variables [4]. For models with K = 5, there will be 4 derived variables
for each transition i: zij, j = 1, ...4 and 5 knots for each transition i: kil, l = 1, ...5. The
equation for ln{Hi(t)} and all necessary components are [4]:

ln{Hi(t)} = γi0 + γi1zi1 + γi2zi2 + γi3zi3 + γi4zi4

zi1 = ln(t)

zij = (ln(t)− kij)3+ − φij(ln(t)− ki1)3+ − (1− φij)(ln(t)− ki5)3+ j = 2, 3, 4

φij = (ki5 − kij)/(ki5 − ki1)

Where γij are the parameters to be estimated from the data. The internal knot locations
ki2, ki3 and ki4 were chosen as the 25th, 50th and 75th centiles of the distribution of uncensored
log event times for transition i, respectively [4]. ki1 and ki5 are the boundary knots, located at
the minimum and maximum of the uncensored log event times [4]. The model described here
has 5 parameters: the 4 derived variables and the constant term. When fitting this model in
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Stata using merlin or stpm2, the user would specify 4 degrees of freedom, as the intercept
is included by default. For consistency with the programming, we have named this model
“RP(4)” (Royston-Parmar with 4 degrees of freedom) in the main text.

The transition rates involve the derivative of the cubic spline functions. See Royston and
Parmar [5] and Lambert and Royston [4] for more details on these models.

AIC Model

The “AIC” model involved choosing the distribution with the lowest AIC for each transition.
The candidate models were: exponential, Weibull, Gompertz, log-logistic, log-normal, gener-
alised gamma and Royston-Parmar models with 2 to 5 degrees of freedom. The AIC results are
given in the Results section under the subsection Transition Rates. The chosen distributions
for each transition are repeated here:

1. Transition 1: Royston-Parmer model with 4 degrees of freedom.

2. Transition 2: Generalised gamma model.

3. Transition 3: Royston-Parmer model with 4 degrees of freedom.

4. Transition 4: Log-normal model.

5. Transition 5: Generalised gamma model.

Parametrisation of the generalised gamma and log-normal distribution are given below. The
parameters to be estimated are specific to each transition i, but the subscript has been dropped
for easier viewing.

Generalised Gamma
The parametrisation follows the documentation in Stata for streg [6]. The transition

rate is defined as h(t) = f(t)/S(t), where the three parametrised gamma density and survivor
functions are defined as:

f(t) =


γγ

σt
√
γΓ(γ)

exp(z
√
γ − u) κ 6= 0

1

σt
√

2π
exp(−z2/2) κ = 0

S(t) =


1− I(γ, u) κ > 0

1− Φ(z) κ = 0

I(γ, u) κ < 0

Where γ = |κ|−2, z = sign(κ){ln(t) − µ}/σ, u = γexp(|κ|z), Φ(.) is the standard normal
cumulative distribution function and I(a, x) is the incomplete gamma function. The parameter
µ and ancillary parameters κ and σ are to be estimated from the data. For more details see
the help file for streg [6].

Log-Normal
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The parametrisation follows the documentation in Stata for streg [6] and also that of
Royston [7]. The transition rates are defined as h(t) = f(t)/S(t):

f(t) =
1

tσ
√

2π
exp

(
−1

2

[
ln(t)− µ

σ

]2)

S(t) = 1− Φ

(
ln(t)− µ

σ

)
Where Φ(.) is the standard normal cumulative distribution function. µ is the location

parameter and σ2 is the variance of random variable T . For more details see Royston [7] or the
help file for streg [6].
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