Additional File 2: Further Details of the Analysis Approaches

Aalen-Johansen Estimator

The Aalen-Johansen estimator generalises the Kaplan-Meier estimator to Markov multistate
processes. It was proposed by Aalen and Johansen [1] and has been discussed in detail by
Andersen et al [2]. Following Allignol et al [3], let Ng(¢) be the number of direct transitions
a — b occurring up to time ¢ and Y,(¢) be the number of individuals in state a at the time
immediately before ¢, i.e. the number of individuals at risk of the transition a — b. The matrix
of cumulative transition hazards A(t) can be estimated by the Nelson-Aalen estimator [2]:

Ya(u)

Aw(t) = /t ANy (u) du a#b
0
Aga(t) == Auy(t)
b#a

The Aalen-Johansen estimator of the transition probabilities is then:

P(s,)= [] (I + AA(tk))
s<tp<t

Where Aflab(tk) a # b is the number of observed direct a — b transitions divided by
the number of individuals in state a at the time immediately before t,. The diagonal entries
AAaa(tk) are such that the row equals 0.

The Aalen-Johansen estimator is a matrix of step-functions, changing only at the times when
an event is observed. Expected length of stay can then be easily calculated as a summation of
rectangles.

Exponential Model

For transitions ¢ = 1, ..5, the transition rates h;(t) for the exponential model are a non-negative
constant A; > 0:

Royston-Parmar Model (4 degrees of freedom)

Royston-Parmar models utilise restricted cubic splines to model the effect of time on the log
cumulative hazard In{H;(t)} scale. A Royston-Parmar model with K knots can be fitted by
creating K — 1 derived variables [4]. For models with K = 5, there will be 4 derived variables
for each transition ¢: z;;, j = 1,...4 and 5 knots for each transition 7: k;, [ = 1,...5. The
equation for In{H;(t)} and all necessary components are [4]:

In{H;(t)} = vio + Virzi1 + Yizzi2 + Visziz + ViaZia

Zil1 = hl(t)

zij = (In(t) = kij)5 — dss(In(t) — k)3 — (1 — o) (In(t) — kis)T j=2,3,4
bij = (kis — kij) [ (kis — ka)

Where v;; are the parameters to be estimated from the data. The internal knot locations
kio, kis and k;4 were chosen as the 25", 50" and 75" centiles of the distribution of uncensored
log event times for transition ¢, respectively [4]. k;; and k;; are the boundary knots, located at
the minimum and maximum of the uncensored log event times [4]. The model described here
has 5 parameters: the 4 derived variables and the constant term. When fitting this model in
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Stata using merlin or stpm2, the user would specify 4 degrees of freedom, as the intercept
is included by default. For consistency with the programming, we have named this model
“RP(4)” (Royston-Parmar with 4 degrees of freedom) in the main text.

The transition rates involve the derivative of the cubic spline functions. See Royston and
Parmar [5] and Lambert and Royston [4] for more details on these models.

AIC Model

The “AIC” model involved choosing the distribution with the lowest AIC for each transition.
The candidate models were: exponential, Weibull, Gompertz, log-logistic, log-normal, gener-
alised gamma and Royston-Parmar models with 2 to 5 degrees of freedom. The AIC results are
given in the Results section under the subsection Transition Rates. The chosen distributions
for each transition are repeated here:

1. Transition 1: Royston-Parmer model with 4 degrees of freedom.
2. Transition 2: Generalised gamma model.

3. Transition 3: Royston-Parmer model with 4 degrees of freedom.
4. Transition 4: Log-normal model.

5. Transition 5: Generalised gamma model.

Parametrisation of the generalised gamma and log-normal distribution are given below. The
parameters to be estimated are specific to each transition ¢, but the subscript has been dropped
for easier viewing.

Generalised Gamma

The parametrisation follows the documentation in Stata for streg [6]. The transition
rate is defined as h(t) = f(t)/S(t), where the three parametrised gamma density and survivor
functions are defined as:
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Where v = |k|72, 2 = sign(k){In(t) — u}/o, u = vexp(|x|z), ®(.) is the standard normal
cumulative distribution function and I(a, z) is the incomplete gamma function. The parameter

i and ancillary parameters x and o are to be estimated from the data. For more details see
the help file for streg [6].

Log-Normal



The parametrisation follows the documentation in Stata for streg [6] and also that of
Royston [7]. The transition rates are defined as h(t) = f(t)/S(t):
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Where ®(.) is the standard normal cumulative distribution function. g is the location
parameter and o is the variance of random variable T'. For more details see Royston [7] or the
help file for streg [6].
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