Supporting Information for:

Capture and Release of Singlet Oxygen in Coordination-Driven Self-Assembled Organoplatinum(II) Metallacycles

Yan-Qin He,^{†,‡,⊥} Werner Fudickar,^{§,⊥} Jian-Hong Tang,^{*,‡} Heng Wang,["] Xiaopeng Li,["] Jun Han,[†] Zhengping Wang,[†] Min Liu,[†] Yu-Wu Zhong,[#] Torsten Linker,^{*,§} and Peter J. Stang *^{,‡}

[†]Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 252000, China

[‡]Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States

[§]Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany

^{*dl*}Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States

[#]Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[⊥]These authors contributed equally to this work

*Email: u6014248@utah.edu linker@uni-potsdam.de stang@chem.utah.edu

Table of Contents

1. Experimental Characterization Data	S2-S5
2. Photooxygenations monitored by UV/vis spectroscopy	S6
3. Theoretical calculation results	S7-S9
4. Singlet oxygen trapping experiments	S10
5. ESI-TOF-MS Spectra	S11

1. Experimental Characterization Data

Figure S1. ¹H NMR spectrum of **4** in Acetone-d₆ at 295 K.

Figure S2. ³¹P{¹H} NMR spectrum of **4** in Acetone- d_6 at 295 K.

Figure S3. ESI-TOF-MS data for **4**. (a) ESI-TOF-MS full spectrum. (b) experimental data (upper, blue) and (c) predicted isotope distribution (below, black) of $[\mathbf{M} - 70\text{Tf}]^{7+}$.

Figure S4. ¹H NMR spectrum of **5** in Acetone-d₆ at 295 K.

Figure S5. ${}^{31}P{}^{1}H$ NMR spectrum of **5** in Acetone-d₆ at 295 K.

Figure S6. ESI-TOF-MS data for **5**. (a) ESI-TOF-MS full spectrum. (b) experimental data (upper, blue) and (c) predicted isotope distribution (below, black) of $[\mathbf{M} - 70\text{Tf}]^{7+}$.

Figure S7. Partial ¹³C NMR (500 MHz, acetone-d₆, 298 K) of complexes 4, 5', 5.

Figure S8. ESI-TOF-MS data for 5'.

2. Photooxygenations monitored by UV/vis spectroscopy.

For the comparative study of the kinetics of complex 4, ligand 1 and cationic species 1-Me²⁺, 10 mL of a mother-solution of methylene blue in CD₃OD was prepared, where an absorbance maximum at 660 nm was adjusted to ~0.8. This solution was then distributed over three quartz cuvettes, to which the three compounds were added from corresponding stock solutions. The concentration of all three compounds was $5x10^{-5}$ M. After the first UV/vis spectra were recorded, each sample was irradiated with LED light (660 nm, 3 W per sample) and a spectrum measured thereafter. For the decay curves in the main text the λ_{max} values of 392 nm (4), 390 nm (1) and 395 nm (1-Me²⁺) were taken.

Figure S9. UV/vis absorbance spectra of solutions $(5x10^{-5} \text{ M})$ of a) complex **4**; b) ligand **1**; and c) the cationic species **1-Me²⁺** in the presence of the sensitizer methylene blue $(5x10^{-6} \text{ M})$ in methanol-d₄ during irradiation.

Figure S10. ³¹P{¹H} NMR spectrum of **6** in CD₂Cl₂ at 295 K. (a) before irradiation, (b) after 30 min irradiation.

3. Theoretical calculation results

Table S1. TDDFT results of the ground state of complex 6 (transitions with f<0.01 are not shown).

Sn	λ/nm	f	transitions and their coefficients
1	442	0.082	HOMO→LUMO (0.359)
			HOMO→LUMO+1 (0.504)
			HOMO→LUMO+2 (0.339)
3	431	0.037	HOMO→LUMO (-0.318)
			HOMO→LUMO+1 (0.485)
			HOMO→LUMO+2 (-0.389)
5	401	0.033	HOMO–1→LUMO (0.368)
			HOMO–1→LUMO+1 (0.597)
9	383	0.224	HOMO–1→LUMO (0.592)
			HOMO-1→LUMO+1 (-0.371)

Figure S11. Theoretical and experimental UV/vis spectra of the ligand 1 and the complexes 5 and 6.

	1	6	1-Me ²⁺
N1	-0.405	-0.448	-0.364
C2	0.181	0.268	0.355
C3	-0.009	0.034	0.042
C4	0.018	0.014	0.049
C5	-0.070	-0.076	-0.057
C6	0.106	0.121	0.119
C7	-0.051	-0.064	-0.058
C8	0.001	0.031	0.058

Figure S12. Mulliken charge populations (Q/e) of the ligand 1, complex 6 and the cationic species 1-Me²⁺.

4. Singlet oxygen trapping experiments

To determine the amount of ${}^{1}O_{2}$, three trapping experiments with the trap DPBF were performed. For each run the EPO was mixed with the trap in a 10 mL glass flask and dissolved in 2 mL toluene-d₈. From each solution an aliquot of 50 uL was taken, diluted to 4 mL and the DPBF absorbance at 416 nm was measured giving $A416_{before}$. The solutions were subjected to three cycles of freeze-pump-and-thaw in order to remove atmospheric oxygen and then sealed with a stopper. The flasks were kept overnight at a temperature of 100 °C. The solutions were transferred to a flask and diluted to 5 mL, then 125 uL were taken and diluted to 4 mL to measure the DPBF absorbance giving $A416_{after}$. The difference between the absorbances of these two spectra allows to calculate the amount of DPBF, which reacted with ${}^{1}O_{2}$:

 $n(\text{DPBF}_{\text{oxidized}}) = (A416_{before} - A416_{after})/A416_{before} * n(\text{DPBF}_{\text{total}})$

The percentage of ¹O₂ generated per EPO gives : $\phi(^{1}O_{2}) = n(\text{DPBF}_{\text{oxidized}})/n(EPO)$. Note that n(EPO)=1/6 n(5)

The results are summarized in Table S2:

Table S2. Summary of the results of the transfer experiments using the trapDBPF

run	n(EPO)/mol	n(DPBF _{total})/mol	n(DPBF _{oxidized})	$\phi(^1O_2)$
1	1.99x10 ⁻⁶	1.03×10^{-5}	5.58×10^{-7}	0.28
2	3.85x10 ⁻⁶	8.8x10 ⁻⁶	1.08x10 ⁻⁶	0.28
3	6.22×10^{-6}	8.9x10 ⁻⁶	1.64×10^{-6}	0.27

Figure S13. ESI-TOF-MS data for 4'.