Supplementary data

Supplementary Figure S1. Binding of Lung cancer cell lines were analysed for binding to recombinant Siglec-15-Fc wildtype (A) or R143A mutant (B) (each at 1 μ g/ml) precomplexed with anti-human IgG-Fc FITC (1 μ g/ml). Breast cancer cell lines were analysed for binding to Siglec-15-Fc wildtype (C) or R143A mutant (D) (each at 1 μ g/ml) precomplexed with anti-human IgG Fc-FITC (1 μ g/ml). Cells were pretreated with sialidase to determine whether Siglec-15 binding is sialic acid-dependent. Histograms are representative of three independent experiments.

Supplementary Figure S2. Three different clones of anti-sTn antibodies were incubated with K562 cells at increasing concentrations (0, 3.3, 10 and 30 μ g/ml) and tested for binding using PE-conjugated anti-mouse IgG secondary antibody. Sialidase-treated K562 cells were used as the negative control. MFI values were plotted against concentration of the anti-sTn antibody. Representative of two independent experiments.

Supplementary Figure S3. STn expression on lung (**A**) and breast (**B**) carcinoma cell lines was analysed by incubating the cells with anti-sTn antibody clone 3F1 followed by APC-conjugated anti-mouse IgG secondary antibody. K562 cells were used as a positive control and isotype-matched mouse IgG was used as a negative control. Histograms are representative of three independent experiments.

Supplementary Figure S4. (A) H460 wildtype and ST6GalNAc-I transferase-expressing cells, pretreated without or with sialidase, were tested for sTn expression using anti-sTn antibody (clone 3F1) followed by PE-conjugated anti-mouse IgG secondary antibody. (B) H460 cells were tested for expression of α 2-3-linked sialic acids using biotinylated MAL-II (2 µg/ml) followed by streptavidin-FITC. (C) H460 cells with or without pre-treatment with sialidase were incubated with Siglec-15-Fc wildtype or R143A mutant precomplexed with anti-human IgG Fc-FITC. (D) sTn expressed on the surface of K562 cells was blocked with anti-human IgG Fc-FITC. Human isotype-matched IgG precomplexed with anti-IgG Fc-FITC was used as negative control. Histograms are representative of three independent experiments.

Supplementary Figure S5. Human monocytic cell lines THP-1 and U937 stably expressing human Siglec-15 were generated using the retroviral system. Expression of Siglec-15 on these cell lines was analysed by using two mouse monoclonal antibodies (clones 25E9 and A9E8) against Siglec-15 followed by anti-mouse IgG conjugated to PE.

Supplementary Figure S6. THP-1 mock-transfected and Siglec-15-expressing cells, with or without pre-treatment with PD184352 (2 μ M) or iSYK/BI1002494 (10 μ M), were incubated with mouse anti-human Siglec-15 antibodies (6 μ g/ml) (clones 25E9 and A9E8) followed by cross-linking with anti-mouse IgG F(ab')2 secondary antibody (3 μ g/ml). Cells were fixed, permeabilised and stained using rabbit anti-ERK pT202/Y204 phosphospecific antibody followed by anti-rabbit IgG F(ab')₂-AF647 secondary antibody. Isotype-matched mouse antibody was used as the negative control. Histograms are representative of three independent experiments.

Supplementary Figure S7. THP-1 mock-transfected and Siglec-15-expressing cells, with or without pre-treatment with PD184352 (2 μ M) or iSYK/BI1002494 (10 μ M), were incubated with anti-Siglec-15 human IgG1 KO antibody (6 μ g/ml) (clone 25E09) followed by cross linking with anti-human IgG F(ab')2 secondary antibody (3 μ g/ml). Cells were fixed, permeabilised and stained using rabbit anti-ERK pT202/Y204 phosphospecific antibody followed by anti-rabbit IgG F(ab')₂-AF647 secondary antibody. Human isotype-matched antibody was used as the negative control. Histograms are representative of three independent experiments.

Supplementary Figure S8. THP1 mock-transfected and Siglec-15-expressing cells were incubated with mouse anti-human Siglec-15 antibodies ($6 \mu g/ml$) (clones 25E9 and A9E8) followed by cross linking with anti-mouse IgG F(ab')2 secondary antibody ($3 \mu g/ml$). Cells were fixed, permeabilised and stained using rabbit anti-p38 MAPK pT180/Y182 phosphospecific antibody followed by anti-rabbit IgG F(ab')₂-AF647 secondary antibody. Isotype-matched mouse IgG was used as the negative control. Histograms are representative of two independent experiments.

Supplementary Table SI. Glycan microarray document based on MIRAGE Glycan Microarray Guidelines (doi:10.3762/mirage.3)

Classification				Guidelines					
1. Sample: Glycan	Binding Sa	mple							
Description of Sample	Sample names: Human Siglec-15 wildtype (hSiglec-15 WT) and Arg134Ala mutant (hSiglec-15 ArgR143Ala) are recombinant and were expressed as Fc-fusion proteins as described in materials methods section in the main text. Anti-sialyl Tn monoclonal antibody (anti-STn 3F1-IgG) was from SBH Sciences (USA).								
Sample modifications	Not relevan	Not relevant.							
Assay protocol	Assay proce In brief, the (2%BSA/PI with the bio complex wa blocking bu buffer (1% 7264).	Assay procedures were according established protocols (Liu et al., Methods Mol Biol. 2012)(Liu et al. 2012). In brief, the arrayed slides were blocked with 2% w/v BSA in 100 mM Phosphate Buffer Saline pH 7.4 (2%BSA/PBS). The Siglec-15 chimeras were analysed as multimers at 2 µg/ml, prepared by pre-complexing with the biotinylated goat anti-human IgG (VECTOR, BA300) at 1:1 ratio (by weight). The Siglec-15-antibody complex was prepared by pre-incubating the protein and antibody, diluted in the final required volume of blocking buffer, for 1h at 4°C. The anti-sialyl Tn antibody 3F1 was analysed at 50µg/ml prepared in binding buffer (1% BSA/PBS), followed by incubation (1h) with 10 µg/ml biotinylated anti-mouse IgG (SIGMA, B-7264).							
2. Glycan Library									
	Sixty amino terminating below, toge	-terminating g amino acids) ther with 22 re	glycans were us educing	s (aminoalkyl-, phenyl- or glycine-terminating, or nature sed to prepare neoglycolipids (NGLs). These are listed g oligosaccharides or glycosylceramides used as referer	al serine or threonine and referenced ace glycans.				
	Probe Des	ignation	Pos. ^a	Sequence ^b	Glycan sources				
		Lac-C2-N	1	Galβ-4Glcβ-0-C2-NH2	W Chai and colleagues (submitted)				
		2'FL-Gly	2	Fucα-2Galβ-4Glcβ-NH-Gly	Human milk (Likhosherstov et al. 2012)				
		B-tri-C3-N	3	Gala-3Galβ-0-C3-NH2	Elicityl				
Glycan		3'SA-Lac-C2-N 3'SA-Lac-Gly	5	NeuAca-3Galβ-4Glcβ-NH-Gly	Human milk (Likhosherstov et al. 2016)				
description for defined glycans		6'SA-Lac-Gly	6	NeuAca-6Galβ-4Glcβ-NH-Gly	Human milk (Likhosherstov et al. 2016)				
		LNFP I-Gly	7	Fucα-2Galβ-3GlcNAcβ-3Galβ-4Glcβ-NH-Gly	Human milk (Likhosherstov et al. 2012)				
		LSTb-Gly	8	Galβ-3GlcNAcβ-3Galβ-4Glcβ-NH-Gly NeuAcα-6	Human milk (Likhosherstov et al. 2016)				
		DSLNT-Gly	9	NeuAca-3Galß-3GlcNAcß-3Galß-4Glcß-NH-Gly NeuAca-6	Human milk (Likhosherstov et al. 2016)				
		DSMFLNH-Gly	10	Gal&-4GlcNAc&-6 Fuca-3 Gal&-4Glc&-NH-Gly NeuAca-3Gal&-3GlcNAc&-3 NeuAca-6	Human milk (Likhosherstov et al. 2016)				
		ChitoBiose-Gly	11	GlcNAcβ-4GlcNAcβ-NH-Gly	Chitin (Nishimura et al. 1989)				
	F	uc(3)GlcNAc-Gly	12	GlcNAcβ-NH-Gly Fucα-3	Chemical synthesis (Likhosherstov et al. 2015)				

FUE(B)(DetAils-CB) 13 Proceeding (PER)-Processing (PER)-Procesing (PER)-Processing (PER)-Processing (PER)-Processing (P				-	
DFucil, 8(GMAAC-50) 14 Proceeding Status St		Fuc(6)GlcNAc-Gly	13	Fuca-6GlcNAcβ-NH-Gly	Chemical synthesis (Likhosherstov et al. 2015)
Mano City Mano City Mano City Mano City City City City City City City Mano City 10 Mano City Mano City City City City City City City City City Cit		DFuc(3,6)GlcNAc-Gly	14	Fuca-6GlcNAcβ-NH-Gly Fuca-3	Chemical synthesis (Likhosherstov et al. 2015)
Mand Gip Mark of the standard math of standard math		Man5-Gly	15	Manα-6 Manα-3Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-NH-Gly Manα-3	Chicken egg white (Piskarev et al. 1990)
NA2-Gly ordinate: State-Instance-In		Man6-Gly	16	Manα-6 Manα-3Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-NH-Gly Manα-2Manα-3	Chicken egg white (Piskarev et al. 1990)
Math Math Math Math Math Math Chicken egg while (Piskare via 11900) SM1a-C3N 19 balls-delt/Math-/Math delt/Math Chicken-egg while (Piskare via 11900) Chicken egg while (Piskare via 11900) SM1a-C3N 19 balls-delt/Math delt/Math Will and delt/Math Will and delt/Math SM1a(ZS)-C3N 20 balls-delt/Math Will and delt/Math Will and delt/Math Will and delt/Math GMMAGD/N 21 datimac=-her SideX SideX Mill and delt/Math SideX GMMAGD/N 22 datimac=-her Will and delt/Math SideX Mill and delt/Math SideX GMMAGP/SF 24 datimac=-her Will and delt/Math Colleagues delt/Math SideX SideX GMAAGP/SF 26 datimac=-delt Will and delt/Math Colleagues delt/Math SideX SideX GMAAGP/SF 26 datimac=-delt/Math Colleagues delt/Math Will and colleagues delt/Math SideX SideX GMAAGP/SF 26 datimac=-delt/Adt Will and		NA2-Gly	17	Galβ-4GlcNAcβ-2Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-NH-Gly Galβ-4GlcNAcβ-2Manα-3	Chicken egg white (Piskarev et al. 1990)
SM1a-C3-N 19 613 - 368:1K-02-4-0.11 - 401/02-003-1007 W C Data and colleagues (automitted) SM1a(2S)-C3-N 20 30-3 30-3 W C Data and colleagues (automitted) GailNace-CN 21 50-36/20-0-23-302 W C Data and colleagues (automitted) GailNace-CN 21 50-36/20-0-23-302 Sussaw Research GailNace-CN 22 51-362 Sussaw Research GailNace-Set 22 51-362 Sussaw Research GailNace-Set 24 1318/0-10-257 W C Data and colleagues (automitted) GailNace-Set 24 1318/0-10-257 W C Data and colleagues (automitted) GailNace-Trix 25 51/86/0 0 for and colleagues (automitted) GailNace-Trix 25 51/86/0 0 for and colleagues (automitted) GiolNace-Trix 27 0.088/0 0 for and colleag		NA2F-Gly	18	Galβ-4GlcNAcβ-2Manα-6 Fucα-6 Manβ-4GlcNAcβ-4GlcNAcβ-NH-Gly Galβ-4GlcNAcβ-2Manα-3	Chicken egg white (Piskarev et al. 1990)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		SM1a-C3-N	19	Galβ-3GalNAcβ-4Galβ-4Glcβ-0-C3-NH2 SU-3	W Chai and colleagues (submitted)
GailAcq-On 21 GailAcq-One-One Elicity GailAcq-Ser 23 GailAcq-One-One Sease Research GailAcq-Tr 23 GailAcq-One-One Worka and colleagues (solunited) GailAcq-For 24 GailAcq-One-See Worka and colleagues (solunited) GailAcq-One-See Worka and colleagues (solunited) Worka and colleagues (solunited) GailAcq-On-Thr CailAcq-On-Thr Worka and colleagues (solunited) GailAcq-On-Thr CailAcq-On-Thr Worka and colleagues (solunited) GilAcq-Ser 26 Cl0RAcq-On-Thr Worka and colleagues (solunited) GilAcq-On-Thr Ustacq-On-Thr Worka and colleagues (solunited) Worka and colleagues (solunited) STn-Ser 28 Instacq-On-Ser Worka and colleagues (solunited) Worka and colleagues (solunited) STn-Thr 29 Instacq-On-Ser Destri Lab Core 1-Ser Orka and colleagues (solunited) SA1(2-3)-Core 1-Ser 32 Instacq-On-Ser Worka and colleagues (solunited) Core 2-GailAccq-On-Ser Worka and colleagues (solunited) SA1(2-6)-Core 1-Ser 34 Salabacq-On-Se		SM1a(2S)-C3-N	20	Galβ-3GalNAcβ-4Galβ-4Glcβ-0-C3-NH2 SU-2	W Chai and colleagues (submitted)
GaiNAcci-Ser 22 GaiNAcci-Ser 23 GaiNAcci-Ser 24 GaiNAcci-Ser 24 GaiNAcci-Ser 24 GaiNAcci-Ser W Chai and colleagues (submitted) GaiNAcci-Thr 23 GaiNAcci-Ser 24 GaiNAcci-Ontr W Chai and colleagues (submitted) GaiNAcci-Thr 25 GaiNAcci-Ontr W Chai and colleagues (submitted) W Chai and colleagues (submitted) GiCNAcci-Ser 26 GicNaci-Ontr W Chai and colleagues (submitted) W Chai and colleagues (submitted) GiCNAcji-Ser 26 GicNacji-Ontr Colleagues (submitted) W Chai and colleagues (submitted) STn-Ser 28 MeaAcci-GaiNAcci-Ontr W Chai and colleagues (submitted) W Chai and colleagues (submitted) STn-Thr 29 MeaAcci-GaiNacci-Ontr W Chai and colleagues (submitted) W Chai and colleagues (submitted) SA1(2-3)-Core 1-Ser 30 Gail-SdaiNacci-Ontr W Chai and colleagues (submitted) SA1(2-3)-Core 1-Ser 32 VeiAcci-GailNacci-Ontr W Chai and colleagues (submitted) SA1(2-6)-Core 1-Ser 33 MeaAcci-GailNacci-Ontr W Chai and colleagues (submitted)		GalNAcα-ON	21	GalNAcq-O-NH2	Elicity
GailNaceThr 23 GailNace-0-7bx Worker Booth Lab GailNacp-Ser 24 GailNacp-0-9ex Schmitted) Colleagues GailNacp-Thr 25 GailNacp-0-7bx W Chai and colleagues Colleagues GailNacp-Thr 25 GailNacp-0-7bx W Chai and colleagues Colleagues GicNAcp-Thr 26 GitNacp-0-7bx W Chai and colleagues Colleagues GicNAcp-Thr 27 GitNacp-0-7bx W Chai and colleagues Colleagues GicNAcp-Thr 27 GitNacp-0-7bx W Chai and colleagues Colleagues STn-Ser 28 Heukor-GailNace-0-flax W Chai and colleagues Colleagues STn-Thr 29 Heukor-GailNace-0-flax W Chai and colleagues Colleagues Core 1-Ser 30 Cail-FlaxInace-0-flax W Chai and colleagues Colleagues SA1(2-3)-Core 1-Thr 31 Heukor-GailNace-0-flax W Chai and colleagues Colleagues SA1(2-3)-Core 1-Thr 33 Heukor-GailNace-0-flax W Chai and colleagues Colleagues		GalNAcq-Ser	22	GalNAcq-O-Ser	Sussey Research
GBINAGE-INF 2.3 BailAcci-0-Thr Dettal Lab GBINACB-Ser 2.4 GailNacp-0-Ger W Chai and colleagues (submitted) GBINACB-Thr 2.5 GailNacp-O-Thr W Chai and colleagues (submitted) GBINACB-Thr 2.5 GailNacp-O-Thr W Chai and colleagues (submitted) GICNACB-Ser 2.6 GailNacp-O-Thr W Chai and colleagues (submitted) GICNACB-Thr 2.7 GicNacp-O-Thr W Chai and colleagues (submitted) STn-Ser 2.8 NeuAco-GailNaca-O-Ser Colleagues (submitted) Core 1-Thr 2.9 NeuAco-GailNaca-O-Thr W Chai and colleagues (submitted) Core 1-Thr 3.1 Gail-Tabilitae-O-Ser W Chai and colleagues Core 1-Thr 3.1 Gail-Tabilitae-O-Thr Staces Research W Chai and colleagues SA1(2-3)-Core 1-Ser 3.2 NeuAco-GailNaco-O-Ser W Chai and colleagues SA1(2-3)-Core 1-Thr 3.1 Stacker-StallAco-O-Ser Colleagues (submitted) SA1(2-3)-Core 1-Thr 3.1 Stacker-O-Thr Stacker-GailAco-O-Ser SA1(2-3)-Core 1-Thr 3.1 Stacker-O-			22		
GalNAcβ-Ser 24 GalNAcβ-O-Bec W Chai and colleagues (submitted) GalNAcβ-Thr 25 GalNacβ-O-Thr Colleagues (submitted) GloNAcβ-Ser 26 GalNacβ-O-Thr W Chai and colleagues (submitted) GloNAcβ-Ser 26 GloNacβ-O-Thr W Chai and colleagues (submitted) GloNAcβ-Thr 27 cloNacβ-O-Thr W Chai and colleagues (submitted) STn-Ser 28 NeuAco-GalNAco-O-Thr W Chai and colleagues (submitted) Core 1-Ser 20 GalP-GalNaco-O-Ser W Chai and colleagues (submitted) Core 1-Ser 30 GalP-GalNaco-O-Thr Colleagues (submitted) Core 1-Ser 30 GalP-GalNaco-O-Thr Colleagues (submitted) SA1(2-3)-Core 1-Ser 32 NeuAco-ScalP-GalNaco-O-Thr Colleagues (submitted) SA1(2-3)-Core 1-Ser 34 NeuAco-ScalP-GalNaco-O-Thr Colleagues (submitted) SA1(2-6)-Core 1-Ser 34 NeuAco-ScalP-GalNaco-O-Thr Colleagues (submitted) SA1(2-6)-Core 1-Ser 34 GalP-GalNaco-O-Thr Hurran urine (ParkKinen and Finne 1983) SA1(2-6)-Core 1-Ser 34 </td <td></td> <td>GaiNAca-Thr</td> <td>23</td> <td>GalNAca-O-Thr</td> <td>Dextra Lab</td>		GaiNAca-Thr	23	GalNAca-O-Thr	Dextra Lab
GaiNAcβ-Thr 25 GailNacβ-O-Thr W Chall and colleagues (submitted) GicNAcβ-Ser 26 GicNAcβ-O-Ser W Chall and colleagues (submitted) GicNAcβ-Thr 27 GicNAcβ-O-Thr W Chall and colleagues (submitted) STn-Ser 28 NeuAca-6GaINAca-O-Thr W Chall and colleagues (submitted) STn-Ser 28 NeuAca-6GaINAca-O-Thr W Chall and colleagues (submitted) Core 1-Ser 30 GaiD-StaINAca-O-Ser Dettra Lab Core 1-Ser 30 GaiD-StaINAca-O-Ser Dettra Lab SA1(2-3)-Core 1-Ser 32 NeuAca-3GaiD-3GaiNAca-O-Ser Dettra Lab SA1(2-3)-Core 1-Ser 32 NeuAca-3GaiD-3GaiNAca-O-Ser Ocleagues (submitted) SA1(2-3)-Core 1-Ser 34 GaiD-3GaiNAca-O-Ser Petra Lab SA1(2-6)-Core 1-Ser 34 GaiD-3GaiNAca-O-Ser Human urine (ParkKinen and Finne 1983) SA1(2-6)-Core 1-Ser 34 GaiD-3GaiNAca-O-Ser Human urine (ParkKinen and Finne 1983) SA1(2-6)-Core 1-Ser 34 GaiD-3GaiNAca-O-Thr Human urine (ParkKinen and Finne 1983) SA2-Core 1-Ser 36		GalNAcβ-Ser	24	GalNAcβ-O-Ser	W Chai and colleagues (submitted)
GioNAcβ-Ser 26 GloNAcβ-O-Ser W Chai and colleagues (submitted) GioNAcβ-Thr 27 GloNAcβ-O-Thr W Chai and colleagues (submitted) STn-Ser 28 MeuAco-GoaINAco-O-Ser W Chai and colleagues (submitted) STn-Thr 29 MeuAco-GoaINAco-O-Thr W Chai and colleagues (submitted) Core 1-Ser 30 Ga1β-3GaINAco-O-Thr W Chai and colleagues (submitted) Core 1-Ser 30 Ga1β-3GaINAco-O-Ser W Chai and colleagues (submitted) SA1(2-3)-Core 1-Ser 32 MeuAco-3GaIβ-3GaINAco-O-Ser W Chai and colleagues (submitted) SA1(2-3)-Core 1-Thr 33 MeuAco-3GaIβ-3GaINAco-O-Ser W Chai and colleagues (submitted) SA1(2-6)-Core 1-Ser 34 MeuAco-3GaIβ-3GaINAco-O-Ser Human urine (Parkkinen and Finne 1983) SA1(2-6)-Core 1-Ser 36 NeuAco-3GaIβ-3GaINAco-O-Ser Human urine (Parkkinen and Finne 1983) SA2-Core 1-Ser 36 NeuAco-3GaIβ-3GaINAco-O-Thr Human urine (Parkkinen and Finne 1983) SA2-Core 1-Ser 36 NeuAco-3GaIβ-3GaINAco-O-Thr Human urine (Parkkinen and Finne 1983) Core 2-Ca-N 38 GaIβ-3GaINAco-		GalNAcβ-Thr	25	GalNAcβ-O-Thr	colleagues (submitted)
GicNAcβ-Thr 27 GicNAcβ-O-Thr W Uhai and Colleagues (submitted) STn-Ser 28 NeuAca-6Ga1NAca-O-Ser W Chai and Colleagues (submitted) STn-Thr 29 NeuAca-6Ga1NAca-O-Ser W Chai and Colleagues (submitted) Core 1-Ser 30 Ga1P-3Ga1NAca-O-Thr Colleagues (submitted) Core 1-Ser 30 Ga1P-3Ga1NAca-O-Thr Colleagues (submitted) SA1(2-3)-Core 1-Ser 32 NeuAca-Ga1P-3Ga1NAca-O-Thr Sussex Research SA1(2-3)-Core 1-Ser 32 NeuAca-Ga1P-3Ga1NAca-O-Thr Colleagues (submitted) SA1(2-6)-Core 1-Ser 34 NeuAca-Ga1P-3Ga1NAca-O-Thr Colleagues (submitted) SA1(2-6)-Core 1-Thr 33 NeuAca-Ga1P-3Ga1NAca-O-Thr W Chai and colleagues (submitted) SA1(2-6)-Core 1-Thr 35 Ga1P-3Ga1NAca-O-Thr Human urine (ParkKinen and Finne 1983) SA1(2-6)-Core 1-Ser 36 NeuAca-G Human urine (ParkKinen and Finne 1983) SA2-Core 1-Ser 36 NeuAca-G Human urine (ParkKinen and Finne 1983) SA2-Core 1-Ser 36 NeuAca-G 1983) Core 2-C3-N 38 </td <td></td> <td>GlcNAcβ-Ser</td> <td>26</td> <td>GlcNAcβ-O-Ser</td> <td>vv Chai and colleagues (submitted)</td>		GlcNAcβ-Ser	26	GlcNAcβ-O-Ser	vv Chai and colleagues (submitted)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		GlcNAcβ-Thr	27	GlcNAcβ-O-Thr	colleagues (submitted)
STn-Thr29NeuAca-GGa1NAca-O-ThrW Cha and colleagues (submitted)Core 1-Ser30Ga1P-3Ga1NAca-O-SerDextra LabCore 1-Thr31Ga1P-3Ga1NAca-O-SerW Chai and colleagues (submitted)SA1(2-3)-Core 1-Ser32NeuAca-Ga1P-3Ga1NAca-O-SerW Chai and colleagues (submitted)SA1(2-3)-Core 1-Ser32NeuAca-Ga1P-3Ga1NAca-O-SerW Chai and colleagues (submitted)SA1(2-6)-Core 1-Ser34Ga1P-3Ga1NAca-O-SerHuman urine (Parkkinen and Finne 1983)SA1(2-6)-Core 1-Ser34Ga1P-3Ga1NAca-O-Ser NeuAca-6Human urine (Parkkinen and Finne 1983)SA1(2-6)-Core 1-Thr35Ga1P-3Ga1NAca-O-Ser NeuAca-6Human urine (Parkkinen and Finne 1983)SA1(2-6)-Core 1-Thr35Ga1P-3Ga1NAca-O-Ser NeuAca-6Human urine (Parkkinen and Finne 1983)SA2-Core 1-Ser36NeuAca-Ga1P-3Ga1NAca-O-Ser NeuAca-6Human urine (Parkkinen and Finne 1983)SA2-Core 1-Thr37NeuAca-Ga1P-3Ga1NAca-O-Thr NeuAca-6Human urine (Parkkinen and Finne 1983)Core 2-C3-N38Ga1P-3Ga1NAca-O-Thr CleNAcp-6Human urine (Parkkinen and Finne 1983)Core 2-C3-N38Ga1P-3Ga1NAca-O-Thr CleNAcp-6Nicolai BovinGa1P-3Ga1NAca-O-SerSussex Research CleNAcp-6Sussex Research CleNAcp-6Core 3-Ser40GleNAcp-3Ga1NAca-O-SerSussex Research CleNAcp-6Ga1P-3Ga1NAca-O-SerSussex Research CleNAcp-6Sussex Research CleNAcp-6Ga1P-3Ga1NAca-O-		STn-Ser	28	NeuAca-6GalNAca-O-Ser	vv Chai and colleagues (submitted)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		STn-Thr	29	NeuAca-6GalNAca-O-Thr	W Chai and colleagues (submitted)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Core 1-Ser	30	Galp-3GalNACQ-0-Ser	Dextra Lab
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Core 1-Thr	31	Galβ-3GalNacα-O-Thr	Sussex Research W Chai and
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		SAT(2-3)-COTE 1-SET	32	Nound Jeath Jeatwice A. Set	(submitted) W Chai and
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SA1(2-3)-Core 1-Thr	33	NeuAcα-3Galβ-3GalNAcα-0-Thr	colleagues (submitted)
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		SA1(2-6)-Core 1-Ser	34	Galp-SGalNACα-O-Ser NeuAcα-6	(Parkkinen and Finne 1983)
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		SA1(2-6)-Core 1-Thr	35	Galβ-3GalNAcα-O-Thr NeuAcα-6	Human urine (Parkkinen and Finne 1983)
SA2-Core 1-Thr37NeuAca-3Galp-3GalNAca-0-Thr NeuAca-6Human urine (Parkkinen and Finne 1983)Core 2-C3-N38Galp-3GalNAca-0-C3-NH2 GlcNAcβ-6Nicolai BovinCore 2-Thr39Galp-3GalNAca-0-Thr GlcNAcβ-6Sussex ResearchCore 3-Ser40GlcNAcβ-3GalNAca-0-SerSussex ResearchGalp-GalCore 3-Thr41GlcNAcβ-3GalNAca-0-Thr Galβ-4GlcNAcβ-3GalNAca-0-SerSussex ResearchGal-Core 3-Ser42Galβ-4GlcNAcβ-3GalNAca-0-SerW Chai and colleagues (submitted)		SA2-Core 1-Ser	36	NeuAcα-3Galβ-3GalNAcα-O-Ser NeuAcα-6	Human urine (Parkkinen and Finne 1983)
Core 2-C3-N 38 Galβ-3GalNAcα-0-C3-NH2 GlcNAcβ-6 Nicolai Bovin Core 2-Thr 39 Galβ-3GalNAcα-0-Thr GlcNAcβ-6 Sussex Research Core 3-Ser 40 GlcNAcβ-3GalNAcα-0-Ser Sussex Research Core 3-Thr 41 GlcNAcβ-3GalNAcα-0-Thr Sussex Research Galβ-0.000 Galβ-3GalNAcα-0-Ser Sussex Research W Chai and colleagues (submitted) W Chai and colleagues Sussex Research		SA2-Core 1-Thr	37	NeuAcα-3Galβ-3GalNAcα-0-Thr NeuAcα-6	Human urine (Parkkinen and Finne 1983)
Core 2-Thr 39 GalP-3GalNACC-U-Thr I GlCNAC6-6 Sussex Research Core 3-Ser 40 GlCNAC6-3GalNACC-O-Ser Sussex Research Core 3-Thr 41 GlcNAC6-3GalNACC-O-Thr Sussex Research Gal-Core 3-Ser 42 Galβ-4GlcNAcβ-3GalNACC-O-Ser W Chai and colleagues (submitted)		Core 2-C3-N	38	Galβ-3GalNAcα-0-C3-NH2 GlcNAcβ-6 (all - 3CalNAcα - 0 mbr	Nicolai Bovin
Core 3-Ser 40 GlcNAcβ-3GalNAcα-0-Ser Sussex Research Core 3-Thr 41 GlcNAcβ-3GalNAcα-0-Thr Sussex Research Gal-Core 3-Ser 42 Galβ-4GlcNAcβ-3GalNAcα-0-Ser W Chai and colleagues (submitted)		Core 2-Thr	39	Gaip-JGaiNAcα-U-Thr GlcNAcβ-6	Sussex Research
Core 3-Thr 41 GloNAcβ-3GalNAcα-0-Thr Sussex Research Gal-Core 3-Ser 42 Galβ-4GloNAcβ-3GalNAcα-0-Ser W Chai and colleagues (submitted)	1	Core 3-Ser	40	GlcNAcβ-3GalNAcα-O-Ser	Sussex Research
Core 3-Thr 41 GlcNAcβ-3GalNAcα-0-Thr Sussex Research Gal-Core 3-Ser 42 Galβ-4GlcNAcβ-3GalNAcα-0-Ser W Chai and colleagues (submitted)	1				
Gal-Core 3-Ser 42 Galβ-4GlcNAcβ-3GalNAcα-0-Ser W Chai and colleagues (submitted)	1	Core 3-Thr	41	GlcNAcβ-3GalNAcα-O-Thr	Sussex Research
		Gal-Core 3-Ser	42	Galβ-4GlcNAcβ-3GalNAcα-0-Ser	W Chai and colleagues (submitted)

Gal(3S)-Core 3-Ser	43	Gal(3S) β -4GlcNAc β -3GalNAc α -O-Ser	W Chai and colleagues (submitted)
GalNAc-G(3S)-Core 3-Ser	44	GalNAcβ-4Gal(3S)β-4GlcNAcβ-3GalNAcα-0-Ser	W Chai and colleagues (submitted)
GSC 967-Ser	45	Galβ-3GalNAcβ-4Gal(3S)β-4GlcNAcβ-3GalNAcα-O-Ser	W Chai and colleagues (submitted)
Core 4-C3-N	46	GlcNAcβ-3GalNAcα-O-C3-NH2 GlcNAcβ-6	Nicolai Bovin
Core 4-Thr	47	GlcNAcβ-3GalNAcα-O-Thr GlcNAcβ-6	Sussex Research
Man-PentaPep	48	YAT (Man) AV	Chemical synthesis (Bartels et al. 2016)
Man-HexaPep	49	CYAT (Man) AV-NMe	Chemical synthesis (Bartels et al. 2016)
Man-UndecaPep	50	Sp-TriEG-SQSLEET(Man)ISPR	Chemical synthesis (Bartels et al. 2016)
Hep-4-NAc-PhN	51	GlcNAca-4GlcAβ-4GlcNAca-4GlcAβ-0-Ph-NH2	Chemo-enzymatic synthesis (Jian Liu)
Hep-4-NS-PhN	52	GlcNSa-4GlcAβ-4GlcNSa-4GlcAβ-O-Ph-NH2	Chemo-enzymatic synthesis (Jian Liu)
Glc12-C5-N	53	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ] ₃ -3Glcβ-3Glcβ-0-C5-NH2	Chemical synthesis (Weishaupt et al. 2013, 2017)
Glc15-C2-N	54	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ]₃-3Glcβ-3Glcβ-3Glcβ- 3Glcβ-3Glcβ-0-C2-NH2	Chemical synthesis Novartis
Glc13(B10)-C5-N	55	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ]3-3Glcβ-3Glcβ-0-C5-NH2 Glcβ-6	Chemical synthesis (Weishaupt et al. 2013, 2017)
Gal-C2-N	56	Galβ-O-C2-NH2	W Chai and colleagues (submitted)
Gal-Ph-N	57	Galβ-O-Ph-NH2	W Chai and colleagues (submitted)
Glc-C2-N	58	Glcβ-O-C2-NH2	W Chai and colleagues (submitted)
Man-C2-N	59	Manβ-O-C2-NH2	W Chai and colleagues (submitted)
Xyl-C2-N	60	Xy1β-O-C2-NH2	W Chai and colleagues (submitted)
		Reducing glycans and glycosylceramides	(5.)
Lac	61	Galβ-4Glc	(Palma et al. 2011; Vendele et al. 2020)
B-Tetra-T2	62	Galα-3Galβ-4GlcNAc Fucα-2	W Chai and colleagues (submitted)
NeuAcα-(3')Lac	63	NeuAca-3Galβ-4Glc	(Palma et al. 2011; Vendele et al. 2020)
LNFP-I	64	Fucα-2Galβ-3GlcNAcβ-3Galβ-4Glc	(Palma et al. 2011; Vendele et al. 2020)
LNFP-III	65	Galβ-4GlcNAcβ-3Galβ-4Glc	(Palma et al. 2011; Vendele et al. 2020)
LSTb	66	Galβ-3GlcNAcβ-3Galβ-4Glc	(Palma et al. 2011; Vendele et al. 2020)
H2 (with H2+Fuc)	67	NeuAcα-b Fucα-2Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-3Galβ-4Glc(β-Cer)*	(Gao et al. 2014)
TFiLNO	68	$\begin{array}{c c} Gal\beta - 3GICNAC\beta - 3Gal\beta - 4GICNAC\beta - 6 \\ & & \\ Fuc\alpha - 4 & Fuc\alpha - 3 & Gal\beta - 4GIc \\ & & & & \\ Gal\beta - 3GICNAC\beta - 3 \\ & & & \\ & & & \\ & & & Fuc\alpha - 4 \end{array}$	(Palma et al. 2011; Vendele et al. 2020)
SM1a	69	Galβ-3GalNAcβ-4Galβ-4Glc(β-Cer) SU-3	(Palma et al. 2011; Vendele et al. 2020)
Asialo-GM1-Tetra	70	Galβ-3GalNAcβ-4Galβ-4Glc	(Palma et al. 2011; Vendele et al. 2020)
SB1a	71	SU-3Galβ-3GalNAcβ-4Galβ-4Glc(β-Cer) SU-3	(Palma et al. 2011; Vendele et al. 2020)
GalNAc-Ser	72	GalNAca-Ser	(Palma et al. 2011; Vendele et al. 2020)
GalNAc-Thr	73	GalNAca-Thr	(Palma et al. 2011; Vendele et al. 2020)
BSM-Di-A1	74	NeuGca-6GalNAc	(Chai et al. 1992)
BSM-Di-A2	75	NeuAca-6GalNAc	(Chai et al. 1992) (Palma et al. 2011;
	70	Galp Sedinac	Vendele et al. 2020) (Palma et al. 2011;
Galβ-6GalNAc	11	Gaip-bGaiNAC	Vendele et al. 2020)

	DOT	70	NeuAca-3Galβ-3GalNAc	(Palma et al. 2011;					
	DST	78	NeuAca-6	Vendele et al. 2020)					
	Curd-13 Cello-3	79 80	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ] ₃ -3Glcβ-3Glcβ-3Glc [*] Glcβ-4Glcβ-4Glc	(Palma et al. 2015) (Palma et al. 2015)					
	GN2	81	GlcNAcβ-4GlcNAc	(Palma et al. 2011;					
	GN6	82	GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc*	(Vendele et al. 2020)					
	^a Pos, position in the microarra ^b Abbreviations of reducing ten C5, -CH ₂ -(CH ₂) ₃ -CH ₂ *Asterisks indicate that major of	iy with gly minal stru compone	vcans sorted according to backbone type. uctures: Gly, glycine; Ph, phenyl; Ser, serine; Thr, threonine; C2, -CH ₂ -t nts are depicted.	CH ₂ -; C3, -CH ₂ -CH ₂ -CH ₂ -;					
Glycan									
description for undefined glycans	Not applicable.								
Glycan	The amino-terminating gl (4-formylbenzamide)-1,2- colleagues, submitted). Th	The amino-terminating glycans were conjugated to a new aldehyde-functionalized phospholipid reagent <i>N</i> -(4-formylbenzamide)-1,2-dihexadecyl- <i>sn</i> -glycero-3-phosphoethanolamine, abbreviated to DA (W Chai and colleagues, submitted). The NGLs were designated DA-NGLs.							
modifications	DH, NGLs, prepared from reducing oligosaccharides by reductive amination with the amino lipid, 1,2- dihexadecyl- <i>sn</i> -glycero-3-phosphoethanolamine [(DHPE) <u>(Chai et al., Methods Enzymol. 2003)</u>](Chai et al. 2003); AO, NGLs prepared from reducing oligosaccharides by oxime ligation with an aminooxy functionalized DHPE [(AOPE) <u>(Liu et al., Chem. Biol. 2007)</u>](Liu et al. 2007).								
3. Printing Surface	; e.g., Microarray Slide								
Description of surface	Nitrocellulose-coated glas	ss micr	oarray slides.						
Manufacturer	16-pad UniSart® 3D Microarray Slide from Sartorius (Goettingen, Germany).								
Custom preparation of surface	Not relevant.								
Non-covalent Immobilization	The lipid-linked oligosa dihexanoyl- <i>sn</i> -glycero-3-j immobilization on nitroce	The lipid-linked oligosaccharide probes were formulated as liposomes by adding carrier lipids, 1,2- dihexanoyl- <i>sn</i> -glycero-3-phosphocholine (DHPC) and cholesterol for arraying and non-covalent immobilization on nitrocellulose-coated glass slides (Liu et al., Methods Mol. Biol. 2012)(Liu et al. 2012).							
4. Arrayer (Printer	•)								
Description of Arrayer	Nano-Plotter 2.1 (GeSiM,	Radeb	berg, Germany).						
Dispensing mechanism	Non-contact liquid delivery with four dispensing tips.								
Glycan deposition	Approximately 0.33 nl was printed per spot.								
	Each glycan probe was pr	inted a	t 2 levels (2 and 5 fmol per spot), in duplicate.						
	The printing solutions w humidity of 58%.	ere aq	ueous-based. Printing was performed at ambient ten	nperature and relative					
Printing conditions	The NGL printing solution carriers in addition to the pmol/ μ l for the 2 and 5 fm	ons cor lipid-l nol per	tained 100 pmol/ μ l of DHPC and cholesterol (both f inked glycan probes. The concentrations of the NGL spot levels, respectively.	rom SIGMA) as lipid probes were 5 and 15					
	The printing solutions also monitor the printing proce	o conta ess.	ined Cy3 NHS ester (GE Healthcare) at 20 ng/ml (26 f	mol/µl) as a marker to					
5. Glycan Microarray with "Map"									

Array layout	Each array slide contained 16-pad subarrays. Each pad was set up for printing 64 probes maximum, each at 2 levels in duplicate (four spots for one probe in a row); up to 256 spots (16x16) in total for each subarray. The probes were printed on multiple subarrays for parallel binding analyses.						
Glycan identification and quality control	Quality control was performed with sequence-specific proteins: biotinylated plant lectins - Wheat Germ Agglutinin (WGA), <i>Vicia Villosa</i> Lectin (VVL), Peanut agglutinin (PNA), <i>Helix pomatia</i> lectin (HPA), <i>Ricinus Communis</i> agglutinin I (RCA ₁₂₀), Concanavalin A (ConA) and <i>Aleuria aurantia</i> lectin (AAL) (Vector Laboratories); Fc-tagged-MGL (CLEC10A) (Abcam); his-tagged carbohydrate-binding modules of bacterial glycoside hydrolases (<i>Cm</i> CBM6-2, <i>Tm</i> CBM4-2); CTD110.6 – anti-O-GlcNAc (Santa Cruz) and anti-blood group H monoclonal antibodies (17-206, BRIC231) (Abcam) (W Chai and colleagues, submitted).						
6. Detector and Da	ta Processing						
Scanning hardware	GenePix 4300A (Molecular Devices)						
Scanner settings	Scanning resolution: 10 µm / pixel; Laser channel: red (scan wavelength 635nm); PMT Voltages: 350 Scan power: Adjusted for each sample to achieve maximum signal without saturation of any single spot.						
Image analysis software	GenePix® Pro 7 (Molecular Devices)						
Data processing	The gpr file was entered into an in-house microarray database using software (designed by Mark Stoll, <u>http://www.beilstein-institut.de/en/publications/proceedings/glyco-2009</u>) for data processing. No particular normalization method or statistical analysis was used.						
7. Glycan Microard	ray Data Presentation						
7. Glycan Microard	ray Data Presentation In Figure 4, the binding results are presented as 2D bar graphs with bars representing averaged mean signal of duplicate spots at 5 fmol/spot and error bars representing standard deviation. The fluorescence intensity numerical scores are depicted in Supplementary Table S2.						
 7. Glycan Microard Data presentation 8. Interpretation and 	ray Data Presentation In Figure 4, the binding results are presented as 2D bar graphs with bars representing averaged mean signal of duplicate spots at 5 fmol/spot and error bars representing standard deviation. The fluorescence intensity numerical scores are depicted in Supplementary Table S2. and Conclusion from Microarray Data						
 7. Glycan Microard Data presentation 8. Interpretation and Data interpretation 	ray Data Presentation In Figure 4, the binding results are presented as 2D bar graphs with bars representing averaged mean signal of duplicate spots at 5 fmol/spot and error bars representing standard deviation. The fluorescence intensity numerical scores are depicted in Supplementary Table S2. and Conclusion from Microarray Data No software or algorithms were used to interpret processed data.						
 7. Glycan Microard Data presentation 8. Interpretation and Data interpretation 	ray Data PresentationIn Figure 4, the binding results are presented as 2D bar graphs with bars representing averaged mean signal of duplicate spots at 5 fmol/spot and error bars representing standard deviation. The fluorescence intensity numerical scores are depicted in Supplementary Table S2.and Conclusion from Microarray DataNo software or algorithms were used to interpret processed data.Human Siglec-15 is shown to bind to sialylated glycans apart from sTn. Mutation of the conserved Arg143 that is critical for interaction with sialic acid to Ala markedly reduced but not abolished the binding. The binding of hSiglec-15 contrasts with the restricted binding observed with the 3F1-IgG antibody to the sTn antigen.						
 7. Glycan Microard Data presentation 8. Interpretation and Data interpretation 	ray Data Presentation In Figure 4, the binding results are presented as 2D bar graphs with bars representing averaged mean signal of duplicate spots at 5 fmol/spot and error bars representing standard deviation. The fluorescence intensity numerical scores are depicted in Supplementary Table S2. and Conclusion from Microarray Data No software or algorithms were used to interpret processed data. Human Siglec-15 is shown to bind to sialylated glycans apart from sTn. Mutation of the conserved Arg143 that is critical for interaction with sialic acid to Ala markedly reduced but not abolished the binding. The binding of hSiglec-15 contrasts with the restricted binding observed with the 3F1-IgG antibody to the sTn antigen. hSiglec-15 ligands Anti-STn 3F1 determinants High avidity Low avidity 						

Supplementary Table SII. List of the lipid-linked glycan probes included in microarrays and the fluorescence binding intensities elicited with human Siglec-15 proteins and 3F1 antibody.

	_		Fluorescence intensities ³ (5fmol/spot)		
Probe name ¹	Pos.	Probe Sequence ²	hSiglec-15 WT	hSiglec-15 Arg143Ala	Anti-STn 3F1-IgG
		DA-NGLs			
Lac-C2-N-	1	Galβ-4Glcβ-O-C2-NX-DA	-	-	-
2'FL-Gly-	2	Fuca-2Galβ-4Glc-NH-Gly-NH-DA	-	-	-
B-tri-C3-N-	3	Galα-3Galβ-O-C3-NX-DA Fucα-2	-	-	-
3'SA-Lac-C2-N-	4	NeuAcα-3Galβ-4Glcβ-0-C3-NX-DA	-	-	-
3'SA-Lac-Gly-	5	NeuAcα-3Galβ-4Glcβ-NH-Gly-NH-DA	1 451	-	-
6'SA-Lac-Gly-	6	NeuAcα-6Galβ-4Glcβ-NH-Gly-NH-DA	451	-	-
LNFP I-Gly-	7	Fuca-2Galβ-3GlcNAcβ-3Galβ-4Glc-NH-Gly-NH-DA	-	-	-
LSTb-Gly-	8	Galβ-3GlcNAcβ-3Galβ-4Glcβ-NH-Gly-NH-DA NeuAcα-6	4 766	-	-
DSLNT-Gly-	9	NeuAcα-3Galß-3GlcNAcß-3Galß-4Glcß-NH-Gly-NH-DA	4 597	-	-
DSMFLNH-Gly-	10	Galß-4GlcNAcβ-6 Fucα-3 Galß-4Glcβ-NH-Gly-NH-DA NeuAcα-3Galß-3GlcNAcβ-3 NeuAcα-6	6 347	759	-
ChitoBiose-Gly-	11	GlcNAcβ-4GlcNAcβ-NH-Gly-NH-DA	-	-	-
Fuc(3)GlcNAc-Gly-	12	GlcNAcβ-NH-Gly-NH-DA Fucα-3	-	-	-
Fuc(6)GlcNAc-Gly-	13	Fuca-6GlcNAcβ-NH-Gly-NH-DA	-	-	-
DFuc(3,6)GlcNAc-Gly-	14	Fucα-6GlcNAcβ-NH-Gly-NH-DA Fucα-3	-	-	-

Man5-Gly-	15	Manα-6 Manα-3Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-NH-Gly-NH-DA	-	-	-
		 Manα-3			
Man6-Gly-	16	Manα-6 Manα-3Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-NH-Gly-NH-DA Manα-2Manα-3	-	-	-
NA2-Gly-	17	Galβ-4GlcNAcβ-2Manα-6 Manβ-4GlcNAcβ-4GlcNAc-NH-Gly-NH-DA Galβ-4GlcNAcβ-2Manα-3	-	-	-
NA2F-Gly-	18	Galβ-4GlcNAcβ-2Manα-6 Fucα-6 Manβ-4GlcNAcβ-4GlcNAc-NH-Gly-NH-DA Galβ-4GlcNAcβ-2Manα-3	-	-	-
SM1a-C3-N-	19	Galβ-3GalNAcβ-4Galβ-4Glcβ-O-C3-NH-DA SU-3	-	-	-
SM1a(2S)-C3-N-	20	Galβ-3GalNAcβ-4Galβ-4Glcβ-O-C3-NH-DA SU-2	-	-	-
GalNAcα-ON-	21	GalNAca-O-N=DA	-	-	-
GalNAca-Ser-	22	GalNAca-O-Ser-NH-DA	-	-	-
GalNAca-Thr-	23	GalNAca-O-Thr-NH-DA	-	-	-
GalNAcβ-Ser-	24	GalNAcβ-O-Ser-NH-DA	-	-	-
GalNAcβ-Thr-	25	GalNAcβ-O-Thr-NH-DA	-	-	-
GlcNAcβ-Ser-	26	GLCNACG-O-Ser-NH-DA	-	-	-
GicNAcβ-Thr-	27	GLCNACK-U-TNT-NH-DA	-	-	-
SIN-Ser-	28		1 687	410	8 226
Sin-Ihr-	29		543	-	789
Core 1-Ser-	- 30	Galb-3GalNAca-O-Ser-NH-DA	-	-	-

Core 1-Thr-	31	Galβ-3GalNAcα-O-Thr-NH-DA	-	-	-
SA1(2-3)-Core 1-Ser-	32	NeuAca-3Galβ-3GalNAca-O-Ser-NH-DA	-	-	-
SA1(2-3)-Core 1-Thr-	33	NeuAca-3Galβ-3GalNAca-O-Thr-NH-DA	852	-	-
SA1(2-6)-Core 1-Ser-	34	Galβ-3GalNAcα-O-Ser-NH-DA NeuAcα-6	-	-	-
SA1(2-6)-Core 1-Thr-	35	Galβ-3GalNAcα-O-Thr-NH-DA NeuAcα-6	224	-	-
SA2-Core 1-Ser-	36	NeuAcα-3Galβ-3GalNAcα-O-Ser-NH-DA NeuAcα-6	748	-	-
SA2-Core 1-Thr-	37	NeuAcα-3Galβ-3GalNAcα-O-Thr-NH-DA NeuAcα-6	436	-	-
Core 2-C3-N-	38	Galβ-3GalNAcα-O-C3-NH-DA GlcNAcβ-6	-	-	-
Core 2-Thr-	39	Galβ-3GalNAcα-O-Thr-NH-DA GlcNAcβ-6	40	-	-
Core 3-Ser-	40	GlcNAcβ-3GalNAcα-O-Ser-NH-DA	-	-	-
Core 3-Thr-	41	GlcNAcβ-3GalNAcα-O-Thr-NH-DA	1 450	549	-
Gal-Core 3-Ser-	42	Galβ-4GlcNAcβ-3GalNAcα-O-Ser-NH-DA	40	-	-
Gal(3S)-Core 3-Ser-	43	Gal(3S)β-4GlcNAcβ-3GalNAcα-O-Ser-NH-DA	151	16	-
GalNAc-Gal(3S)-Core 3-Ser-	44	GalNAcβ-4Gal(3S)β-4GlcNAcβ-3GalNAcα-O-Ser-NH-DA	-	-	-
GSC 967-Ser-	45	Galβ-3GalNAcβ-4Gal(3S)β-4GlcNAcβ-3GalNAcα-O-Ser-NH-DA	-	-	-
Core 4-C3-N-	46	GlcNAcβ-3GalNAcα-O-C3-NH-DA GlcNAcβ-6	-	-	-
Core 4-Thr-	47	GlcNAcβ-3GalNAcα-O-Thr-NH-DA GlcNAcβ-6	-	-	-
Man-PentaPep-	48	YAT (Man) AV-NH-DA ⁴	-	-	-
Man-HexaPep-	49	CYAT (Man) AV-NMe-DA ⁴	477	-	-
Man-UndecaPep-	50	Sp-TriEG-SQSLEET(Man)ISPR-NH-DA ³	-	-	-

Hep-4-NAc-PhN-	51	GlcNAca-4GlcAβ-4GlcNAca-4GlcAβ1-0-Ph-NH-DA	1 106	-	-
Hep-4-NS-PhN-	52	GlcNSa-4GlcAβ-4GlcNSa-4GlcAβ1-0-Ph-NH-DA	904	-	-
Glc12-C5-N-	53	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ] ₃ -3Glcβ-3Glcβ-0-C5-NH-DA	-	-	-
Glc15-C2-N-	54	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ] ₃ -3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-0-C2-NH-DA	-	-	-
Glc13(B10)-	55	Glcβ-3Glcβ-3Glcβ-3Glcβ-[3Glcβ-3Glcβ] ₃ -3Glcβ-3Glcβ-0-C5-NH-DA Glcβ-6	-	-	-
Gal-C2-N-	56	Galβ-O-C2-NX-DA	-	-	-
Gal-Ph-N-	57	Galβ-O-Ph-NH-DA	-	-	-
Glc-C2-N-	58	Glcβ-O-C2-NX-DA	-	-	-
Man-C2-N-	59	Manβ-O-C2-NH-DA	-	-	-
Xyl-C2-N-	60	Xylβ-O-C2-NX-DA	-	-	-
		Cer, AO- and DH-NGLs			
Lac-	61	Galβ-4Glc-AO	-	-	-
B-Tetra-T2-	62	Galα-3Galβ-4GlcNAc-AO	-	-	-
NeuAcα-(3')Lac-	63	NeuAca-3Galβ-4Glc-AO	4 711	-	-
LNFP-I-	64	Fuca-2Galβ-3GlcNAcβ-3Galβ-4Glc-AO	-	-	-
LNFP-III-	65	Galβ-4GlcNAcβ-3Galβ-4Glc-DH Fucα-3	-	-	-
LSTb-	66	Galβ-3GlcNAcβ-3Galβ-4Glc-DH NeuAcα-6	5 610	-	-
H2 (with H2+Fuc)-	67	Fucα-2Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer*	-	-	-
TFiLNO-	68	Galβ-3GlcNAcβ-3Galβ-4GlcNAcβ-6 Fucα-4 Fucα-3 Galβ-4Glc-DH	-	-	-
		Galβ-3GlcNAcβ-3 Fucα-4			
Asialo-GM1-Tetra-	69	Galß-3GalNAcß-4Galß-4Glc-DH	-	-	-
SM1a-	70	Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer SU-3	-	-	-

SB1a-	71	SU-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer	-	-	-
GalNAc-Ser-	72	GalNAca-Ser-DH	-	-	-
GalNAc-Thr-	73	GalNAca-Thr-DH	-	-	-
BSM-Di-A1-	74	NeuGca-6GalNAc-AO	633	-	-
BSM-Di-A2-	75	NeuAca-6GalNAc-AO	3 112	-	-
Galβ-3GalNAc-	76	Galβ-3GalNAc-AO	-	-	-
Galβ-6GalNAc-	77	Galβ-6GalNAc-AO	-	-	-
DST-	78	NeuAcα-3Galβ-3GalNAc-AO NeuAcα-6	3 889	-	-
Curd-13-	79	$Glc\beta-3Glc\beta-3Glc\beta-3Glc\beta-[3Glc\beta-3Glc\beta]_3-3Glc\beta-3Glc\beta-3Glc-AO*$	-	-	-
Cello-3-	80	Glcβ-4Glcβ-4Glc-AO	-	-	-
GN2-	81	GlcNAc _β -4GlcNAc-AO	-	-	-
GN6-	82	$GlcNAc\beta-4GlcNAc\beta-4GlcNAc\beta-4GlcNAc\beta-4GlcNAc\beta-4GlcNAc-AO*$	-	-	-

¹The oligosaccharide probes are all lipid-linked, neoglycolipids (NGLs) or glycosylceramides and are sorted by glycan backbone type referred to a position as in the binding charts in **Figure 4**.

²Abbreviations are as follows: DA, NGLs prepared using a new aldehyde-terminating lipid reagent to conjugate with amino-terminating glycans; NX, NH or NMe; C2, -CH₂-CH₂-; C3, -CH₂-CH₂-CH₂-; C5, -CH₂-CH₂-CH₂-CH₂-CH₂-; Gly, glycine; Ser, serine; Thr, threonine; Ph, phenyl; Gly, glycine. For the control probes: DH, NGLs prepared from reducing oligosaccharides by reductive amination with the amino lipid, 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE)(Chai et al. 2003); AO, NGLs prepared from reducing oligosaccharides by oxime ligation with an aminooxy (AO) functionalized DHPE(Liu et al. 2007); Cer, natural glycolipids with various ceramide moieties. ³Means of fluorescence intensities of duplicate spots printed at the high level of probe arrayed (5fmol/spot); –, less than 1.

⁴O-mannosyl glycopeptide.

*Asterisks indicate that major components are depicted.

References

- Bartels MF, Winterhalter PR, Yu J, et al. 2016. Protein O-mannosylation in the murine brain: Occurrence of Mono-O-Mannosyl glycans and identification of new substrates. *PLoS One*. 11: e0166119.
- Chai W, Hounsel EF, Cashmore GC, Rosankiewicz JR, Feeney J, Lawson AM. 1992. Characterisation by mass spectrometry and 1H-NMR of novel hexasaccharides among the acidic O-linked carbohydrate chains of bovine submaxillary mucin. *Eur J Biochem*.207: 973–80.
- Chai W, Stoll MS, Galustian C, et al. 2003. Neoglycolipid technology: Deciphering information content of glycome. *Methods Enzymol.* 362: 160–195.
- Gao C, Liu Y, Zhang H, et al. 2014. Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. *J Biol Chem.* 289: 16462–16477.
- Likhosherstov L.M., Novikova O.S., Yamskov I.A. PVE. 2012. Synthesis of N-glycyl-beta-glycopyranosylamines, human milk fucooligosaccharide derivatives. *Russ Chem Bull*. 61: 1816–1817.
- Likhosherstov LM, Novikova OS, Malysheva NN, et al. 2015. Synthesis of mono- and di-α-l-fucosylated 2acetamido-2-deoxy-N-glycyl-β-d-glucopyranosylamines modeling N-glycoprotein carbohydrate-peptide bond region based on 2-acetamido-N-(N-tert-butyloxycarbonylglycyl)-2-deoxy-β-d-glucopyranosylamine. *Russ Chem Bull.* 64: 1445–1450.
- Likhosherstov LM, Novikova OS, Sakharov AM, et al. 2016. Synthesis of N-aminoacyl-β-glycopyranosylamines derivatives of natural sialooligosaccharides. *Russ Chem Bull*. 65: 1617–1624.
- Liu Y, Feizi T, Campanero-Rhodes MA, et al. 2007. Neoglycolipid Probes Prepared via Oxime Ligation for Microarray Analysis of Oligosaccharide-Protein Interactions. *Chem Biol.* 14: 847–859.
- Liu Y, Childs RA, Palma AS, et al. 2012. Neoglycolipid-Based Oligosaccharide Microarray System: Preparation of NGLs and Their Noncovalent Immobilization on Nitrocellulose-Coated Glass Slides for Microarray Analyses BT - Carbohydrate Microarrays: Methods and Protocols. In: Chevolot Y (ed). Totowa, NJ: Humana Press, pp. 117–136.
- Nishimura S-I, Kuzuhara H, Takiguchi Y, et al. 1989. Peracetylated chitobiose: Preparation by specific degradations of chitin, and chemical manipulations. *Carbohydr Res.* 194: 223–231.
- Palma AS, Liu Y, Childs RA, et al. 2011. The human epithelial carcinoma antigen recognized by monoclonal antibody AE3 is expressed on a sulfoglycolipid in addition to neoplastic mucins. *Biochem Biophys Res Commun.* 408: 548–552.
- Palma AS, Liu Y, Zhang H, et al. 2015. Unravelling glucan recognition systems by glucome microarrays using the designer approach and mass spectrometry. *Mol Cell Proteomics*. 14: 974–988.
- Parkkinen J, Finne J. 1983. Isolation and structural characterization of five major sialyloligosaccharides and a sialylglycopeptide from normal human urine. *Eur J Biochem*. 136: 355–361.
- Piskarev VE, Shuster AM, Gabibov AG, et al. 1990. A novel preparative method for the isolation of avidin and riboflavin-binding glycoprotein from chicken egg-white by the use of high-performance liquid chromatography. *Biochem J.* 265: 301–304.
- Vendele I, Willment JA, Silva LM, et al. 2020. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. *PLoS Pathog.* 16: 1– 29.
- Weishaupt MW, Matthies S, Seeberger PH. 2013. Automated solid-phase synthesis of a β -(1,3)-glucan dodecasaccharide. *Chem A Eur J.* 19: 12497–12503.
- Weishaupt MW, Hahm HS, Geissner A, et al. 2017. Automated glycan assembly of branched β -(1,3)-glucans to identify antibody epitopes. *Chem Commun.* 53: 3591–3594.