Reprogramming Immunosuppressive Myeloid Cells Facilitates Immunotherapy for Colorectal Cancer

Weiqiang Lu^{1,#,*}, Weiwei Yu^{1,#}, Jiacheng He¹, Wenjuan Liu¹, Junjie Yang¹, Xianhua Lin¹, Yuanjin Zhang¹, Xin Wang¹, Wenhao Jiang¹, Jian Luo¹, Qiansen Zhang¹, Huaiyu Yang¹, Shihong Peng¹, Zhengfang Yi¹, Shancheng Ren², Jin Chen³, Stefan Siwko⁴, Ruth Nussinov^{5,6}, Feixiong Cheng⁷⁻⁹, Hankun Zhang^{1,*}, Mingyao Liu^{1,*}

Appendix

Appendix Materials and Methods (Pages 2-5) Appendix Figures S1-S3 (Page 6-8) Appendix Tables S1-S9 (Page 9-29)

Appendix Materials and Methods

Chemistry: Preparation of TP-16

Reagents and solvents were obtained from commercial sources and used without further purification. All reactions were carried out with the use of standard techniques under an argon atmosphere and the progress of the reactions was monitored by TLC on SiO₂. Proton and carbon NMR spectra were recorded at spectrometer frequencies of 500 MHz and obtained as CDCl₃ or DMSO-*d*₆ solutions (reported in ppm), using CDCl₃ (7.26 and 77.00 ppm) or DMSO-*d*₆ (2.50 and 39.51 ppm) as the reference standard. High-resolution mass spectra (HRMS) were gathered on a Bruker MicroTOF-Q II LCMS instrument operating in electrospray ionization (ESI). HPLC (Agilent Technologies 1200 Series) was employed for purity determination, using the following method: SunFire C18 column, 5 µm, 4.6x150 mm; column temperature 40 °C; with detection at 254 or 214 nm on a variable wavelength detector; flow rate = 1.0 mL/min; gradient of 0–100% acetonitrile in water (both containing 0.03 vol% of CF₃COOH) in 16 min.

Synthesis of TP-16^a

^aReagents and conditions: (a) morpholine, EtOH, 60 °C, 10 h, 90.5%; (b) 3M HCl (aq), NaNO₂, Kl, H₂O, 0 °C, 34.9%; (c) n-BuLi (2.4 M in hexane), 4-fluorobenzaldehyde, Et₂O, -78 °C to room temperature (rt), 50.7%; (d) Et₃SiH, TFA, CH₂Cl₂, 0 °C, 95%; (e) LiOH·H₂O, MeOH, THF, H₂O, 70 °C, 100%; (f) methyl 4-[(1S)-1-aminoethyl]benzoate, 2-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), DIPEA, DMF, rt, 82%; (g) LiOH·H₂O, MeOH, THF, H₂O, 70 °C, 96%.

NMR Spectra

Methods

Molecular Docking

Molecular docking studies were performed using Autodock4.2.6 (Morris et al., 2009). Ligand TP-16 was docked into the EP4 receptor bound to an antagonist, ONO-AE3-208 (PDB: 5YWY) (Toyoda et al., 2019). A grid of 60, 60, and 60 points in x, y, and z directions was created with a grid spacing of 0.375 Å at the binding site for docking. The program AutoDockTool-1.5.6 was used for preparing EP4 receptor and ligand TP-16 parameter files. A Lamarckian genetic algorithm was used for generating binding poses (Morris et al., 1998). We computed 200 docking runs for TP-16, with the rotation of all non-ring torsion angles. The lowest binding energy conformation was selected for further analysis.

Preliminary pharmacokinetic studies of TP-16 in vivo

TP-16 was administered intravenously or orally by gavage as a 1 or 10 mg/kg solution, respectively (dose volume, 5 or 10 mL/kg respectively; dose vehicle, 5% (v/v) dimethyl sulfoxide (DMSO), 10% solutol, and 85% β -cyclodextrin) to male CD1 mice (n = 3). Blood samples were collected at 0.08, 0.25, 0.5, 1, 2, 4, 8, and 24 hr after administration. After suitable sample preparation, the concentration of TP-16 in plasma samples was determined by the Agilent 1290 HPLC system, coupled with a 6460 triple-quadrupole mass spectrometer and an Agilent Jet Stream electrospray ionization (ESI) source (Agilent Technologies, USA). Pharmacokinetic parameters were calculated by WinNonlin software version 7.0 based on non-compartmental analysis (Pharsight Corporation, Mountain View, USA). Mean plasma concentration-time curves were plotted by GraphPad Prism 6.0 (GraphPad software Inc., CA, USA).

Toxicity Evolution of TP-16

The *in vivo* toxicity test of TP-16 was performed by Shanghai Medicilon Inc. Briefly, Sprague-Dawley (SD) rats were randomly divided into two groups, vehicle group and TP-16 (100 mg/kg) group, and each group have six animals (three males and three females). TP-16 was dissolved in 0.5% MC400 and orally administrated once daily for 14 days. Abnormal behaviors and mortality were observed every day and body weight was recorded every three days. Animals were sacrificed on day 15, and blood parameters and organ morphology were recorded.

Reference

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, *et al.* Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19: 1639-1662.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, *et al.*. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30: 2785-2791.

Toyoda Y, Morimoto K, Suno R, Horita S, Yamashita K, Hirata K, *et al.* (2019). Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat. Chem. Biol., 2019, 15: 18-26.

Appendix Figure S1. The *in vitro* cytotoxicity of TP-16. The cytotoxicity curves of E7046 and TP-16 against various cancer cells. Mouse cancer cells: CT26 (A), MC38 (B), 4T1 (C), Pan02 (D). Human colon cancer cells: HCT116 (E), HCT8 (F), HT29 (G) and DLD1 (H). Human normal cell line: HUVECs (I). Cell viability was measured by MTS. Data are presented as mean \pm SEM derived from three independent experiments (n=3).

Appendix Figure S2. Mouse body weight of CT26 tumor-bearing BALB/c (A), CT26 tumor-bearing BALB/c nude mice (B), MC38 tumor-bearing C57/BL(C), 4T1 tumor-bearing BALB/c (D), and Pan02 tumor-bearing BALB/c (E) during indicated drug treatments.

Appendix Figure S3. Multiple oncogenic events induce COX2 expression. CHO cells were transfected with indicated expression vector of mutated oncogenes for 24 hr, and then cells were harvested and lysed for the detection of COX2 expression by Western blot. GAPDH served as a loading control.

Appendix	Table	S1.	Selectivity	of	TP-16	on	GPCRs	in	LANCE	Ultra	cAMP
assay.											

	LANCE Ultra cAMP assay						
Decenter	Known agon	ists	Known antagoni	Known antagonists			
Receptor	EC ₅₀ (μΜ)		IC ₅₀ (μΜ)		IC ₅₀		
AODRA ₁	NECA	0.0024	DPCPX	0.0032	>10 ^a		
ADORA _{2A}	NECA	0.00046	ZM-241385	0.0016	>10		
		0.0041	MRS 1754	0.00	>10		
ADORA28	NECA	0.0041	hydrate	0.99	>10		
ADORA ₃	NECA	0.0040	MRS 1220	0.00074	>10		
CB1	CP55940	0.00053	AM251	0.0016	>10		
CB ₂	CP55940	0.00094	AM630	0.26	>10		
DRD ₂	Dopamine	0.0019	Spiperone	0.00027	>10		
	RU24969		GR 55562	0.025	>10		
		0.018		0.035	>10		

^acAMP based GPCR selectivity assay was performed by Pharmaron (Beijing, China)

Ap	pendix	Table S	2. Se	electivity	of	TP-16	on	GPCRs	in	calcium	flux	assav	٧.
γ \p	perior		2.00	JOOUVILY		11 10		01 01 0		ouloium	nux	assu	y

	Calcium flux assay				
Receptor	Known agonists		Known antagonists		TP-16
	EC ₅₀ (μΜ)		IC ₅₀ (μΜ)	IC ₅₀ (μΜ)	
ADRA1B	(R)-(-)-Phenylephrine hydrochloride	0.0014	Prazosin hydrochloride	0.0149	>10 ^a
ADRA1D	Norepinephrine bitartrate monohydrate	0.0012	Prazosin hydrochloride	0.0046	>10
ADRA2A	UK 14,304 tartrate	0.0057	Rauwolscine hydrochloride	0.0169	>10
ADRB1	Isoprenaline hydrochloride	0.0055	CGP 20712 dihydrochloride	0.0185	>10
ADRB2	Isoprenaline hydrochloride	0.0111	ICI 118,551 hydrochloride	0.0021	>10
AT1	Angiotensin II 5-valine	0.0002	Irbesartan	0.0109	>10
AVPR1A	Oxytocin acetate	0.0087	Conivaptan hydrochloride	0.1325	>10
BB1	Neuromedin B	0.0002	PD 176252	0.8628	>10
CHRM1	Acetylcholine chloride	0.0014	Atropine sulfate monohydrate	0.0014	>10
CHRM2	Acetylcholine chloride	0.0040	Atropine sulfate monohydrate	0.0041	>10
CHRM3	Acetylcholine chloride	0.0003	Atropine sulfate monohydrate	0.0013	>10
DRD1	Dopamine hydrochloride	0.3038	SCH 23390 hydrochloride	0.0009	>10
HRH1	Histamine	0.0122	Mepyramine maleate	0.0059	>10
HTR2B	RU24969	0.0118	Ritanserin	0.0308	>10
OPRD1	ADL-5859	0.2663	Naltrindole hydrochloride	0.0012	>10
OPRK1	Nalfurafine hydrochloride	0.0029	Norbinaltorphimine dihydrochloride	0.0010	>10
OPRM1	Loperamide hydrochloride	0.0664	Alvimopan dihydrate	0.0023	>10

^aCalcium flux based GPCR selectivity assay was performed by Pharmaron (Beijing, China).

Pharmacokinetic	P.O. (10 mg/kg)	I.V. (1 mg/kg)
parameters		
C _{max} (ng/mL)	3851.8	
C ₀ (ng/mL)	١	2370.2
t1/2 (hr)	5.4	3.0
AUC ₀₋₂₄ (hr*ng/mL)	8399.8	2137.6
AUC₀₋∞ (hr*ng/mL)	8576.7	2140.6
V _d /F (mL/kg)	9083.1	2016.0
CL/F (mL/min/kg)	1166.0	467.2
MRT (hr)	3.7	2.1
Bioavailability (%)	40.1	

Appendix Table S3. Pharmacokinetic parameters of TP-16 after oral administration or intravenous injection in CD1 mice.

Species	Remaining Percentages	In vitro T1/2	In vitro Clint	Scale-up Clint	Predicted benatic	Hepatic Extraction
		11/2				
	at 120 min	(min)	(µL/min/10	(mL/min/kg	Clint	Ratio (ER)
	(%)		6 cells))	(mL/min/kg	
	· · ·		,	,)	
Human	90.5 ^a	>581	<2.39	<6.07	<4.69	<0.227
Mouse	70.6	235	5.91	69.8	39.3	0.437
						<u></u>

Appendix Table S4. In vitro metabolic stability assessment using liver microsome.

^aLiver microsomal stability test was tested by WuXi AppTec (Shanghai, China)

		Vahiala	TP-16
			(100 mg/kg/day)
Male			
	WBC (10 ⁹ /L)	10.21 ± 1.26	11.81 ± 3.1
	RBC (10 ¹² /L)	7.17 ± 0.01	6.92 ± 0.46
	HGB (g/L)	141 ± 0	137 ± 8
	HCT (%)	43.9 ± 0.8	43.1 ± 1.8
	MCV (fL)	61.3 ± 1.1	62.5 ± 1.6
	MCH (pg)	19.7 ± 0	19.8 ± 0.3
	MCHC (g/L)	322 ± 6	317 ± 5
	PLT (10 ⁹ /L)	1152 ± 26	868 ± 280
	Neutrophils (10 ⁹ /L)	0.88 ± 0.1	1.67 ± 0.49
	Neutrophils (%)	8.6 ± 0.1	15.6 ± 8.6
	Lymphocytes (10 ⁹ /L)	8.75 ± 1.22	9.48 ± 3.26
	Lymphocytes (%)	85.6 ± 1.5	79.1 ± 7.3
	Monocytes (10 ⁹ /L)	0.51 ± 0.04	0.57 ± 0.27
	Monocytes (%)	5.1 ± 1.1	4.7 ± 1.7
	Eosinophils (10 ⁹ /L)	0.06 ± 0.02	0.06 ± 0.02
	Eosinophils (%)	0.6 ± 0.3	0.5 ± 0.2
	Basophils (10 ⁹ /L)	0.02 ± 0	0.02 ± 0.01
	Basophils (%)	0.2 ± 0	0.2 ± 0.1
	Reticulocytes (%)	8.53 ± 0.83	9.14 ± 1.16
	Reticulocytes (10 ⁹ /L)	611.2 ± 60.4	629.4 ± 50.9
Female			
	WBC (10 ⁹ /L)	9.55 ± 1.81	10.81 ± 0.81
	RBC (10 ¹² /L)	7.7 ± 0.36	8.08 ± 0.37
	HGB (g/L)	147 ± 7	146 ± 5
	HCT (%)	44.7 ± 1.9	45.1 ± 1
	MCV (fL)	58.1 ± 1.4	55.8 ± 1.5
	MCH (pg)	19.1 ± 0.3	18.1 ± 0.3
	MCHC (g/L)	328 ± 4	325 ± 4
	PLT (10 ⁹ /L)	1124 ± 82	1152 ± 95
	Neutrophils (10 ⁹ /L)	0.75 ± 0.09	1.21 ± 0.08
	Neutrophils (%)	8 ± 0.7	11.3 ± 1.4
	Lymphocytes (10 ⁹ /L)	8.24 ± 1.62	8.98 ± 0.68
	Lymphocytes (%)	86.1 ± 1.1	83.1 ± 1.2
	Monocytes (10 ⁹ /L)	0.45 ± 0.14	0.5 ± 0.17
	Monocytes (%)	4.6 ± 1	4.6 ± 1.3
	Eosinophils (10 ⁹ /L)	0.1 ± 0.02	0.1 ± 0.02

Appendix Table S5. Summary of hematological data.

Eosinophils (%)	1.1 ± 0.4	0.9 ± 0.2
Basophils (10 ⁹ /L)	0.02 ± 0.01	0.01 ± 0.01
Basophils (%)	0.2 ± 0.1	0.13 ± 0.06
Reticulocytes (%)	5.68 ± 1.58	5.56 ± 0.68
Reticulocytes (10 ⁹ /L)	434.9 ± 109.9	448.2 ± 38.6

Data expressed as means \pm SD. *Significantly different from control group (p < 0.05).

		Male		Female	
Organ		Vehicle	TP-16	Vehicle	TP-16
Liver	Normal	3/3	3/3	3/3	3/3
Kidney	Normal	3/3	3/3	3/3	3/3
Thyroid gland	Normal	3/3	3/3	3/3	3/3
Urinary bladder	Normal	3/3	3/3	3/3	3/3
Spleen	Normal	3/3	3/3	3/3	3/3
Pancreas	Normal	3/3	3/3	3/3	3/3
Thymus	Normal	3/3	3/3	3/3	3/3
Thyroid gland	Normal	3/3	3/3	3/3	3/3
Parathyroid gland	Normal	3/3	3/3	3/3	3/3
Trachea	Normal	3/3	3/3	3/3	3/3
Esophagus	Normal	3/3	3/3	3/3	3/3
Lung	Normal	3/3	3/3	3/3	3/3
Heart	Normal	3/3	3/3	3/3	3/3
Salivary gland	Normal	3/3	3/3	3/3	3/3
Cervical lymph node	Normal	3/3	3/3	3/3	3/3
Mesenteric lymph node	Normal	3/3	3/3	3/3	3/3
Stomach	Normal	3/3	3/3	3/3	3/3
Duodenum	Normal	3/3	3/3	3/3	3/3
Jejunum	Normal	3/3	3/3	3/3	3/3
lleum	Normal	3/3	3/3	3/3	3/3
Colon	Normal	3/3	3/3	3/3	3/3
Rectum	Normal	3/3	3/3	3/3	3/3
Preputial/Clitoral gland	Normal	3/3	3/3	3/3	3/3
Skin/ Mammary gland	Normal	3/3	3/3	3/3	3/3
Eye	Normal	3/3	3/3	3/3	3/3
Harderian gland	Normal	3/3	3/3	3/3	3/3
Brain	Normal	3/3	3/3	3/3	3/3
Pituitary gland	Normal	3/3	3/3	3/3	3/3
Femur/Bone marrow	Normal	3/3	3/3	3/3	3/3
Nasal cavity	Normal	3/3	3/3	3/3	3/3
Testis	Normal	3/3	3/3	3/3	3/3
Epididymis	Normal	3/3	3/3	-	-

Appendix Table S6. Summary of organ data.

Prostate	Normal	3/3	3/3	-	-
Seminal vesicle	Normal	3/3	3/3	-	-
Ovary	Normal	-	-	3/3	3/3
Uterus	Normal	-	-	3/3	3/3
Vagina	Normal	-	-	3/3	3/3

Appendix Table S7. Primers for q-PCR

Gene	Origin	Forward	Reverse
Ptger1	Mouse	GGGATGCTCGAAACACCAGA	TTGGGGTTTTAAGGCCGTGT
Ptger2	Mouse	GGTCCTGAGGTTAATGCGCT	TGGCACTGGACTGGGTAGAA
Ptger3	Mouse	TGTCGGTTGAGCAATGCAAGACAC	TCTGGCAGAACTTCCGAAGAAGGA
Ptger4	Mouse	TTTCTTCGGTCTGTCGGGTC	GGCTGTAGAAGTAGGCGTGG
Cxcl10	Mouse	ATGACGGGCCAGTGAGAATG	GAGGCTCTCTGCTGTCCATC
Tnfa	Mouse	AGGCACTCCCCCAAAAGATG	CCACTTGGTGGTTTGTGAGTG
Ccl2	Mouse	TTAAAAACCTGGATCGGAACCAA	GCATTAGCTTCAGATTTACGGGT
Ccl5	Mouse	TGCTTTGCCTACCTCTCCCT	ACACACTTGGCGGTTCCTTC
Arg-1	Mouse	ACATTGGCTTGCGAGACGTA	ATCACCTTGCCAATCCCCAG
Ptgs2	Mouse	CATCCCCTTCCTGCGAAGTT	CATGGGAGTTGGGCAGTCAT
ll-4ra	Mouse	ACACCAATGTGTCCGACGAA	CTGCAGGGTTGTCCTCTCTG
ldo1	Mouse	CCCAGTCCGTGAGTTTGTCA	TCTTCCGACTTGTCGCCATC
II-10	Mouse	AAGGGTTACTTGGGTTGCCA	GCCTGGGGCATCACTTCTAC
CD206	Mouse	CATGAGGCTTCTCCTGCTTCTG	TTGCCGTCTGAACTGAGATGG
Fizzl	Mouse	CCAATCCAGCTAACTATCCCTCC	CCAGTCAACGAGTAAGCACAG
Ym1	Mouse	AGAAGGGAGTTTCAAACCTGGT	CTCTTGCTGATGTGTGTAAGTGA
II-6	Mouse	GGGACTGATGCTGGTGACAA	ACAGGTCTGTTGGGAGTGGT
<i>ΙΙ-1β</i>	Mouse	TGCCACCTTTTGACAGTGATG	AAGGTCCACGGGAAAGACAC
Cxcl1	Mouse	CCATCCAGAGCTTGACGGTG	TGGGGGTTGAGGCAAACTTC
β-Actin	Mouse	GTACGCCAACACAGTGCTG	CGTCATACTCCTGCTTGCTG

Appendix Table S8. P values and statistical tests in figures.

Figure 1	P value	Comparison	Statistical test
1A	0.079	EP2: bone marrow myeloid cells vs colon tumor myeloid	Kolmogorov–Smirnov test
	0.015	cells EP4: bone marrow myeloid	Kolmogorov–Smirnov
	0.010	cells vs colon tumor myeloid cells	test
1E	0.0087	(%F4/80+CD11c-MacrophageofBMMC)GM-CSF/IL-4vsGM-CSF/IL-4 + PGE2	Unpaired t test
	0.025	(%F4/80+CD11c-MacrophageofBMMC)GM-CSF/IL-4+PGE2vsGM-CSF/IL-4+PGE2+E7046	Unpaired t test
	0.017	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Unpaired t test
	0.0035	(% F4/80 ⁻ CD11c ⁺ DC of BMMC) GM-CSF/IL-4 vs GM-CSF/IL-4 + PGE ₂ + E7046	Unpaired t test
1H	0.00090	(% mMDSC of BMMC) GM-CSF/IL-6 vs GM-CSF/IL-6 + PGE ₂	Unpaired t test
	0.0011	(% mMDSC of BMMC) GM-CSF/IL-6 + PGE ₂ vs GM-CSF/IL-6 + PGE ₂ + PF-04418948	Unpaired t test
	0.0034	(% mMDSC of BMMC) GM-CSF/IL-6 + PGE ₂ vs GM-CSF/IL-6 + PGE ₂ + E7046	Unpaired t test
	0.00010	(% PMN-MDSC of BMMC) GM-CSF/IL-6 vs GM-CSF/IL-6 + PGE ₂	Unpaired t test
	0.0012	(% PMN-MDSC of BMMC) GM-CSF/IL-6 + PGE ₂ vs GM-CSF/IL-6 + PGE ₂ +E7046	Unpaired t test
Figure 3	P value	Comparison	Statistical test
3B	0.0231	Control vs TP-16 75mg/kg	One-way ANOVA

	0.0221	Control vs TP-16 150mg/kg	One-way ANOVA
3C	0.33	Control vs TP-16	Unpaired t test
3D	0.0045	Control vs TP-16	Unpaired t test
3E	0.0055	Control vs TP-16	Unpaired t test
3F	0.0012	Control vs TP-16	Unpaired t test
3G	0.038	Control vs TP-16	Unpaired t test
Figure 4	P value	Comparison	Statistical test
4A	0.0024	Control vs TP-16	Unpaired t test
4B	0.0027	Control vs TP-16	Unpaired t test
4C	0.0012	Control vs TP-16	Unpaired t test
4D	0.29	Control vs TP-16 (Cxcl10)	Unpaired t test
	< 0.0001	Control vs TP-16 (Tnfa)	Unpaired t test
	0.0055	Control vs TP-16 (Ccl2)	Unpaired t test
	0.0086	Control vs TP-16 (Ccl5)	Unpaired t test
4E	0.044	Control vs TP-16 (Arg-1)	Unpaired t test
	0.0017	Control vs TP-16 (CD206)	Unpaired t test
	0.0089	Control vs TP-16 (Fizzl)	Unpaired t test
	0.00010	Control vs TP-16 (Ym1)	Unpaired t test
4F	0.033	Control vs TP-16 (Arg-1)	Unpaired t test
	0.0004	Control vs TP-16 (Ptgs2)	Unpaired t test
	0.0023	Control vs TP-16 (II-4ra)	Unpaired t test
	0.044	Control vs TP-16 (Ido1)	Unpaired t test
	< 0.0001	Control vs TP-16 (II-10)	Unpaired t test
4G	0.0018	Control vs TP-16 (Arg-1)	Unpaired t test
	0.0029	Control vs TP-16 (Ptgs2)	Unpaired t test
	0.026	Control vs TP-16 (II-4ra)	Unpaired t test
	0.0025	Control vs TP-16 (Ido1)	Unpaired t test
	0.014	Control vs TP-16 (II-10)	Unpaired t test
4H	< 0.0001	Control vs TP-16	Unpaired t test
41	0.0012	Control vs TP-16	Unpaired t test
4J	0.0005	Control vs TP-16	Unpaired t test
4K	0.0015	Control vs TP-16	Unpaired t test
Figure 5	P value	Comparison	Statistical test
5A	< 0.0001	Control vs IFNγ (<i>Cxcl10</i>)	One-way ANOVA
	0.0044	Control + IFNy vs Control +	One-way ANOVA
		IFNγ + PGE ₂ (<i>Cxcl10</i>)	
	< 0.0001	Control + IFNy + PGE ₂ vs	One-way ANOVA
		Control + IFNy + PGE ₂ +	
		TP-16 (<i>Cxcl10</i>)	
	0.004	Control vs IFNγ (<i>Tnfa</i>)	One-way ANOVA
	0.44	Control + IFNγ vs Control + IFNγ + PGE ₂ (<i>Tnfa</i>)	One-way ANOVA
	< 0.0001	Control + IFNy + PGE ₂ vs	One-way ANOVA

		Control + IFN γ + PGE ₂ + TP-16 (<i>Tnfa</i>)	
	0.058	Control vs IFNv (<i>Arg-1</i>)	One-way ANOVA
	< 0.0001	Control + IFNγ vs Control + IFNγ + PGE ₂ (<i>Arg-1</i>)	One-way ANOVA
	< 0.0001	Control + IFNγ + PGE ₂ vs Control + IFNγ + PGE ₂ + TP-16 (<i>Arg-1</i>)	One-way ANOVA
	< 0.0001	Control vs IFNγ (<i>Ym-1</i>)	One-way ANOVA
	0.001	Control + IFNγ vs Control + IFNγ + PGE ₂ (<i>Ym-1</i>)	One-way ANOVA
	0.0004	Control + IFN γ + PGE ₂ vs Control + IFN γ + PGE ₂ + TP-16 (<i>Ym-1</i>)	One-way ANOVA
5B	< 0.0001	Control vs IL-4 (Arg-1)	One-way ANOVA
	< 0.0001	Control + IL-4 vs Control + IL-4 + PGE ₂ (<i>Arg-1</i>)	One-way ANOVA
	< 0.0001	Control + IL-4 + PGE ₂ vs Control + IL-4 + PGE ₂ + TP-16 (<i>Arg-1</i>)	One-way ANOVA
	<0.0001	Control vs IL-4 (Ym-1)	One-way ANOVA
	0.034	Control + IL-4 vs Control + $IL-4 + PGE_2 (Ym-1)$	One-way ANOVA
	0.0003	Control + IL-4 + PGE ₂ vs Control + IL-4 + PGE ₂ + TP-16 (Ym -1)	One-way ANOVA
	<0.0001	Control vs IL-4 (CD206)	One-way ANOVA
	0.011	Control + IL-4 vs Control + IL-4 + PGE ₂ (<i>CD206</i>)	One-way ANOVA
	0.013	Control + IL-4 + PGE ₂ vs Control + IL-4 + PGE ₂ + TP-16 ($CD206$)	One-way ANOVA
5C	0.007	(% mMDSC of BMMC) GM-CSF/IL-6 vs GM-CSF/IL-6 + PGE ₂	One-way ANOVA
	0.048	(% mMDSC of BMMC) GM-CSF/IL-6 + PGE ₂ vs GM-CSF/IL-6 + PGE ₂ + 0.1 µM TP16	One-way ANOVA
	0.012	(% mMDSC of BMMC) GM-CSF/IL-6 + PGE ₂ vs GM-CSF/IL-6 + PGE ₂ + 1 µM TP16	One-way ANOVA

	0.008	(% mMDSC of BMMC)	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ vs	
		$GM-CSF/IL-6 + PGE_2 + 10$	
		μM TP16	
	<0.0001	(% PMN-MDSC of BMMC)	One-way ANOVA
		GM-CSF/IL-6 vs	
		GM-CSF/IL-6 + PGE ₂	
	0.0014	(% PMN-MDSC of BMMC)	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ vs	
		$GM-CSF/IL-6 + PGE_2 + 0.1$	
		μM TP16	
	0.0006	(% PMN-MDSC of BMMC)	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ vs	
		$GM-CSF/IL-6 + PGE_2 + 1$	
		μM TP16	
	<0.0001	(% PMN-MDSC of BMMC)	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ vs	
		$GM-CSF/IL-6 + PGE_2 + 10$	
		μM TP16	
5D	<0.0001	GM-CSF/IL-6 vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂	
		(Arg-1)	
	0.0001	GM-CSF/IL-6 + PGE ₂ vs	One-way ANOVA
		$GM-CSF/IL-6 + PGE_2 +$	
		TP16 (<i>Arg-1</i>)	
	<0.0001	GM-CSF/IL-6 vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂	
		(Ptgs2)	
	0.0006	GM-CSF/IL-6 + PGE ₂ vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ +	
		TP16 (<i>Ptgs2</i>)	
	0.040	GM-CSF/IL-6 vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ (<i>II-10</i>)	
	0.010	GM-CSF/IL-6 + PGE ₂ vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ +	
		TP16 (<i>II-10</i>)	
	0.030	GM-CSF/IL-6 vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ (<i>II-4ra</i>)	
	0.22	GM-CSF/IL-6 + PGE ₂ vs	One-way ANOVA
		GM-CSF/IL-6 + PGE ₂ +	
		TP16 (<i>II-4ra</i>)	
5F	<0.0001	Naïve CD8 ⁺ vs Activated	One-way ANOVA
		CD8+	
	<0.0001	Activated CD8+ vs Activated	One-way ANOVA

		CD8 ⁺ & Control Tumor	
		CD11b ⁺ (2:1)	
	<0.0001	Activated CD8 ⁺ vs Activated	One-way ANOVA
		CD8 ⁺ & Control Tumor	
	0.0004	CD116 ⁺ (1:1)	
	<0.0001	Activated CD8 ⁺ vs Activated	One-way ANOVA
		CD8 ¹ & Control Tumor	
	-0.0001	Activated CDSt & Control	
	<0.0001	Tumor CD11b ⁺ vs Activated	One-way ANOVA
		CD8 ⁺ & TP-16 Tumor	
		$CD11b^+$ (2.1)	
	<0.0001	Activated CD8 ⁺ & Control	One-way ANOVA
		Tumor CD11b ⁺ vs Activated	
		CD8 ⁺ & TP-16 Tumor	
		CD11b ⁺ (1:1)	
	<0.0001	Activated CD8 ⁺ & Control	One-way ANOVA
		Tumor CD11b ⁺	
		vs Activated CD8 ⁺ & TP-16	
Figure 6	Dvolue	Tumor CD11b ⁺ (1:2)	Ctatiatical test
Figure 6		Comparison	
64	0.0058	Control vs TP-16	
	<0.0001	Control vs anti-PD-1	
6P	<0.0001	Control vs Combination	Une-way ANOVA
00	0.0000	Control vo onti PD 1	Log rank test
		Control vs anti-FD-1	Log rank test
	<0.0001 0.015	TP 16 vs combination	Log rank test
Eiguro 7	D.015	Comparison	Statistical test
		Control ve TP 16	
70	0.012	Control vs apti PD 1	
	0.0091	Control vs combination	
	0.0000	Control vs anti-PD-1 (0-2	Unpaired t test
	0.000		Onpaired t test
	0.0019	Control vs combination (2-4	Unpaired t test
	0.0010	mm)	
	0.012	Control vs TP-16	Unpaired t test
	0.0006	anti-PD-1 vs TP-16	Unpaired t test
	0.0038	Control vs combination (2-4	Unpaired t test
		mm)	
Figure EV2	P value	Comparison	Statistical test
EV2A	0.0024	Control vs celecoxib	One-way ANOVA

	0.0004	Control vs TP-16	One-way ANOVA
EV2B	<0.0001	Control vs TP-16	Unpaired t test
EV2C	0.0061	Control vs TP-16	Unpaired t test
EV2D	0.040	Control vs TP-16	Unpaired t test
EV2E	0.0089	Control vs TP-16	Unpaired t test
EV2F	0.0007	Control vs TP-16	Unpaired t test
EV2H	0.018	Control vs TP-16 (M1)	Unpaired t test
	0.0042	Control vs TP-16 (M2)	Unpaired t test
	0.018	Control vs TP-16 (mMDSC)	Unpaired t test
	0.0067	Control vs TP-16	Unpaired t test
		(PMN-MDSC)	
EV2I	<0.0001	Control vs TP-16	Unpaired t test
EV2J	0.0004	Control vs TP-16	Unpaired t test
Figure EV3	P value	Comparison	Statistical test
EV3A	<0.0001	M-CSF + IL-4 vs M-CSF +	One-way ANOVA
		IL-4 + PGE ₂	
	<0.0001	M-CSF + IL-4 + PGE ₂ vs	One-way ANOVA
		$M-CSF + IL-4 + PGE_2 + 10$	
		μΜ TP-16 (Si)	
	<0.0001	M-CSF + IL-4 + PGE ₂ vs	One-way ANOVA
		$M-CSF + IL-4 + PGE_2 + 1$	
		μΜ ΤΡ-16 (Si)	
	<0.0001	M-CSF + IL-4 + PGE ₂ vs	One-way ANOVA
		$M-CSF + IL-4 + PGE_2 + 0.1$	
	0.0004	μΜ ΤΡ-16 (Si)	
	<0.0001	$M-CSF + IL-4 + PGE_2 VS$	One-way ANOVA
		$M-CSF + IL-4 + PGE_2 + 10$	
	0.0004	μM TP-16 (Se)	
	<0.0001	$M-CSF + IL-4 + PGE_2 VS$	One-way ANOVA
		$M-CSF + IL-4 + PGE_2 + 1$	
	-0.0001		
	<0.0001	$M CSF + IL + PGE_2 VS$	One-way ANOVA
		$W-CSF + IL-4 + PGE_2 + 0.1$	
	<0.0001	$\mu M TF = 10 (3e)$	
	<0.0001	CD4 ⁺ vs Activated	
	<0.0001	Activated CD4 ⁺ vs Activated	One-way ANOVA
		CD4 ⁺ & Control Tumor	
		CD11b ⁺ (2:1)	
	<0.0001	Activated CD4 ⁺ vs Activated	One-way ANOVA
		CD4 ⁺ & Control Tumor	

		CD11b ⁺ (1:1)	
	< 0.0001	Activated CD4 ⁺ vs Activated	One-way ANOVA
		CD4 ⁺ & Control Tumor	
		CD11b ⁺ (1:2)	
	0.076	Activated CD4 ⁺ & Control	One-way ANOVA
		Tumor CD11b ⁺ vs Activated	
		CD4 ⁺ & TP-16 Tumor	
		CD11b ⁺ (2:1	
	<0.0001	Activated CD4 ⁺ & Control	One-way ANOVA
		Tumor CD11b ⁺ vs Activated	
		CD4 ⁺ & TP-16 Tumor	
		CD11b ⁺ (1:1)	
	<0.0001	Activated CD4 ⁺ & Control	One-way ANOVA
		Tumor CD11b ⁺ vs Activated	
		CD4 ⁺ & TP-16 Tumor	
		CD11b ⁺ (1:2)	
Figure EV4	P value	Comparison	Statistical test
EV4B	0.016	Control vs TP-16	One-way ANOVA
	0.0056	Control vs anti-PD-1	One-way ANOVA
	<0.0001	Control vs combination	One-way ANOVA
EV4E	0.010	Control vo TD 16 (IL C)	
	0.010	CONTOLVS TP-16 (IL-6)	One-way ANOVA
	0.010	Control vs anti-PD-1 (IL-6)	One-way ANOVA One-way ANOVA
	0.0001	Control vs anti-PD-1 (IL-6) Control vs combination	One-way ANOVA One-way ANOVA One-way ANOVA
	0.010 0.0001 <0.0001	Control vs anti-PD-1 (IL-6) Control vs combination (IL-6)	One-way ANOVA One-way ANOVA One-way ANOVA
	0.010 0.0001 <0.0001 0.0005	Control vs TP-16 (IL-6) Control vs anti-PD-1 (IL-6) Control vs combination (IL-6) Control vs TP-16 (CXCL-1)	One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA
	0.010 0.0001 <0.0001 0.0005 0.0001	Control vs TP-16 (IL-6) Control vs anti-PD-1 (IL-6) Control vs combination (IL-6) Control vs TP-16 (CXCL-1) Control vs anti-PD-1	One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA
	0.0001 <0.0001 0.0005 0.0001	Control vs TP-16 (IL-6) Control vs anti-PD-1 (IL-6) Control vs combination (IL-6) Control vs TP-16 (CXCL-1) Control vs anti-PD-1 (CXCL-1)	One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA
	0.010 0.0001 <0.0001 0.0005 0.0001 <0.0001	Control vs TP-16 (IL-6)Control vs anti-PD-1 (IL-6)Control vs combination(IL-6)Control vs TP-16 (CXCL-1)Control vs anti-PD-1(CXCL-1)Control vs combination	One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA One-way ANOVA

Appendix Table S9. KEY RESOURCES TABLE

REAGENT OF RESOURCE SOURCE IDENTIFIER	
Antibodies	
PerCP/Cy5.5 anti-mouse BioLegend 103132	
CD45 antibody	
APC anti-mouse CD8a BioLegend 100712	
antibody	
PE anti-mouse IFN-γ BD 562020	
antibody Pharmingen	
PE anti-mouse Granzyme eBioscience 12-8898-80	
B antibody	
PE anti-mouse INF-α BioLegend 506305	
antibody	
APC anti-mouse F4/80 BioLegend 123116	
Antibody	
PE anti-mouse CDTTC BioLegend 177307	
APC anti-mouse CD11c BioLogand 117310	
antibody	
PE anti-mouse Lv6C BioLegend 128008	
antibody	
PerCP/Cv5.5 anti-mouse BioLegend 127616	
Lv6G antibody	
APC anti-mouse LY6G BioLegend 108412	
antibody	
FITC anti-mouse/human BioLegend 101206	
CD11b antibody	
APC anti-mouse CD4 BioLegend 100411	
antibody	
PerCP/Cy5.5 anti-mouse BioLegend 100433	
CD4 antibody	
PE anti-mouse MHC-II BioLegend 107608	
antibody	
PE anti-mouse CD206 BioLegend 141706	
antibody	
PE anti-mouse PD-1 BioLegend 135205	
IruStain fcX BioLegend 101320	
LEAF Purified BioLegend 100207	
apti-mouse CD28 aptibody BioLegend 102111	
In Vivo mAb anti-mouse BioxCell BE0273	

PD-1			
Anti-Granzyme B antibody	Abcam	ab4059	
Anti-CD8 antibody	Abcam	ab217344	
Anti-Gr1 antibody	R&D	Mab1037	
Anti-CD11b antibody	Abcam	Ab133357	
Anti-PD-1 antibody	Servicebio	GB13338	
Anti-PD-L1 antibody	Servicebio	GB13339	
P-STAT3 ^{Tyr705} antibody	CST	9145	
STAT3 antibody	CST	9139	
P-AKT ^{Ser473} antibody	CST	4060	
AKT antibody	CST	9272	
Arg1 antibody	Proteintech	16001	
COX2 antibody	CST	12282	
GAPDH antibody	Abcam	Ab181602	
P-ERK ^{Thr218/Tyr220} antibody	CST	4370	
ERK antibody	CST	9102	
CD206 antibody	Abcam	ab64693	
F4/80 antibody	Abcam	ab6640	
P-CREB ^{S133} antibody	Abcam	ab32096	
TNFα antibody	Abcolonal	A11534	
Chemicals, Peptides, and Re	ecombinant Pro	teins	
Celecoxib	Sigma	PHR1683	
PCE	Cayman	14010	
	Chemical	14010	
ONO-8711	Cayman	14070	
	Chemical		
PF-04418948	TopScience	T3306	
L-798106	Sigma	L4545	
CFSE	Thermo	C34554	
Recombinant murine GM-CSF	PeproTech	315-03	
Recombinant murine IL-4	PeproTech	214-14	
Recombinant murine IL-6	PeproTech	216-16	
Recombinant murine	DonroTooh	215.02	
M-CSF	Peprotech	515-02	
Recombinant murine IFN-γ	PeproTech	315-05	
Leukocyte Activation	BD	550583	
Cocktail, with BD GolgiPlug	Pharmingen	550565	
Critical Commercial Assays			
Prostaglandin E2 Express	Cayman	500141	
EIA Kit	Chemical		
Mouse IL-6 ELISA KIT	Biolegend	431302	
Mouse CXCL1 ELISA KIT	Abnova	KA0553	

FLIPR Calcium 5 Assay Kit	Molecular Devices	R8185		
GloSensor™ cAMP Assay kit	Promega	E1291		
Luciferase Reporter Assay System	Promega	E1960		
MTS Cell Titer 96 Cell Proliferation Assay	Promega	G3581		
MojoSort™ Mouse CD3 T Cell Isolation Kit	BioLegend	480024		
CD11b MicroBeads, human and mouse	Miltenyi	130-049-601		
Fixation/Permeabillzation Solution Kit	BD Pharmingen	554714		
Deposited DATA				
GSE23502	Yang XD et al., 2011	https://www.ncbi.nlm.nih.gov/gds.		
GSE132004	This paper			
Experimental Models: Cell li	nes			
4T1	ATCC	CRL-2539		
B16F10	CRCPUMC	TCM36		
Pan02	CRCPUMC	N/A		
MC38	CRCPUMC	N/A		
CT26	ATCC	CRL-2638		
HCT116	ATCC	CCL-247		
HCT8	ATCC	CCL-244		
HT29	ATCC	HTB-38		
DLD1	ATCC	CCL-221		
СНО	CRCPUMC	GNHa 3		
CHO-Ga16	This paper	N/A		
HEK293	CRCPUMC	GNHu43		
HEK293T	CRCPUMC	GNHu17		
HUVECs	This paper	N/A		
Experimental Models: Organ	Experimental Models: Organisms/Strains			
	National			
	Rodent			
Mouse: BALB/c	Laboratory	N/A		
	Animal			
	Center			
	National			
Mouse: BALB/c pude	Rodent	Ν/Δ		
	Laboratory	1 1// 4		
	Animal			

	Center	
	National	
	Rodent	
Mouse: C57BL	Laboratory	N/A
	Animal	
	Center	
Oligonucleotides	••••••	
PCR primers	q-PCR	See Appendix Table S1
Recombinant DNA		
Plasmid: LentiCRISPv2	Addgene	52961
Plasmid: psPAX2	Addgene	12260
Plasmid: pVSVg	Addgene	8454
	cDNA	
Plasmid: Human Ptger1	Resource	PER0100000
	Center	
	cDNA	
Plasmid: Human Ptger2	Resource	PER020TN00
	Center	
	cDNA	
Plasmid: Human Ptger3	Resource	PER3VI0000
	Center	
	cDNA	
Plasmid: Human Ptger4	Resource	PER0400000
	Center	
Plasmid:		
pCMV-Entry-Ptger4	This paper	N/A
(Mouse)		
		51/6
pcDNA3.1-3 [*] Flag-Ptger4	This paper	N/A
(Rat)		
	This manage	N1/A
(Doc)	This paper	N/A
(Dog) Blacmid:		
Plasillu.	This paper	Ν/Δ
(Monkey)	This paper	
Plasmid:		
pGloSensor™-22F cAMP	Promega	E2301
Plasmid: CRE-luc	This paper	N/A
Plasmid: Tango-Ptger4	Addgene	66486
Plasmid: Kras (G12V)	Addgene	64602
Plasmid: Hras1 (G12V)	Addgene	64603
Plasmid: MEK1 (S218D,	Addgene	64604

S222D)		
Plasmid: PI3KCA	Addgene	64605
Plasmid: AKT1	Addgene	64606
Plasmid: ΙΚΚα (S176E,	Addaona	64607
S180E)	Addgene	64607
Plasmid: JAK2 (V617F)	Addgene	64609
Plasmid: STAT3 (A662C,	Addaono	64610
N664C, V617F)	Addgene	04010
Plasmid: β-catenin (S33A,	Addaene	6/611
S37A, T41A, S45A)	Audgene	04011
Plasmid: Mkk7-JNK2	Addaene	6/618
fusion	Audyene	04018
Plasmid: TGFβR1 (T204D)	Addgene	64629
Software and Algorithms		
Flow Jo VX	Flow Jo, LLC	N/A
GraphPad Prism 7	GraphPad	N/A