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17th Jun 20201st Editorial Decision

17th Jun 2020 

Dear Dr. McMillan, 

Thank you for the submission of your manuscript  to EMBO Molecular Medicine. We have now heard
back from the three referees who agreed to evaluate your manuscript . As you will see from the
reports below, while referee #1 is overall support ing publicat ion of your work, referees #2 and #3
highlight  the interest  of the study but also raises a number of concerns that should be addressed in
a major revision of the current manuscript . Part icular at tent ion should be given to the better
validat ion of the polygenic risk score (PRS) as a predictor of the cognit ive decline in ALS/FTD
pat ients and to the comparison of sparse canonical correlat ion analysis (sCCA) to the tradit ional
regression methods for PRS generat ion. Addressing the reviewers' concerns in full will further be
necessary for considerat ion of your manuscript  in our journal. 

Acceptance of the manuscript  will entail a second round of review. Please note that EMBO
Molecular Medicine encourages a single round of revision only and therefore, acceptance or
reject ion of the manuscript  will depend on the completeness of your responses included in the next,
final version of the manuscript . For this reason, and to save you from any frustrat ions in the end, I
would strongly advise against  returning an incomplete revision. 

We would welcome the submission of a revised version within three months for further
considerat ion. However, we realize that the current situat ion is except ional on the account of the
COVID-19/SARS-CoV-2 pandemic. Please let  us know if you require longer to complete the revision.

I look forward to receiving your revised manuscript . 

***** Reviewer's comments ***** 

Referee #1 (Remarks for Author): 

Thank you for let t ing me see this excellent paper, report ing a study of the impact of a polygenic risk 
score on the presence and progression of cognit ive impairment in ALS. The methodology (sparse 
canonical correlat ion analysis) appears to be a powerful approach to the analysis of mult imodal 
datasets, and the availabilit y of large, well-charact erized samples is a major asset of the study. The 
results are of great relevance, as they indicate a specific effect of a set of SNPs on cognit ion rather 
than on motor impairment . The fact that they are shared with FTD strongly supports the idea of the 
ALS-FTD cont inuum. The correlat ion with imaging data is fully in line with these results. In the



case of neuropathology, however, the only significant effect  is on the motor cortex, a point  which
deserves a more detailed considerat ion in the discussion. I suggest also to ment ion the limitat ions
of the ECAS, in part icular in the assessment of social cognit ion, an aspect related to behavioral
impairment. 

Referee #2 (Remarks for Author): 

This study describes work to generate and validate a polygenic risk score (PRS) for predict ing
cognit ive impairment in ALS (presence + rate of decline). The PRS is generated using a discovery
cohort  of 327 pat ients diagnosed with ALS or a related disorder. These samples have been whole
genome sequenced and evaluated on mult iple clinical axes, the most relevant to this story being
ECAS measures of cognit ive impairment. To validate the PRS, the authors ut ilize MRI data from a
second cohort  comprising 114 ALS pat ients and 114 controls, as well as neuropathology data from
a third cohort  of 88 ALS pat ients. The scope of the datasets is impressive and their use in a mult i-
modal explorat ion of prognost ic biomarkers for ALS is without doubt of wide and considerable
interest . However, some clarificat ions are required on the part iculars of the analysis and result ing
narrat ive. 

# Use of SCCA as a method to generate PRS 
I like the use of SCCA in this set t ing. The authors dedicate much discussion to the benefits and
novelty of their applicat ion, but I think some key points are missing. 
1. SCCA has a long history in relat ing neuroimaging data to genomics. The authors could elaborate
on how it  has been deployed in these contexts and what is different in their use case.
2. If we consider that  SCCA could be a new method for PRS generat ion then it  is worth expending a
lit t le effort  to show that it  performs better than the tradit ional method (or at  least  that  it  is not
worse). I would think a fair comparison would be to apply the tradit ional regression methods to
est imate single variant effects in the CReATe data and construct  a t radit ional PRS from these
3. "only one variable from the clinical dataset being chosen in each of the 10,000 iterat ions." So, in
pract ice the analysis proved equivalent to assessing each clinical variable independent ly? Does this
nullify ant icipated benefits vs over t radit ional regularized regressions (LASSO etc)
4. The authors right ly point  out that  a crit ique of t radit ional PRS is "undue influence by populat ion
variance, limit  their use in clinical and prognost ic set t ings". They claim that their SCCA method
avoids this, but  I do not see how. The authors include PC1-2 during training but the GWAS effect
sizes used in t radit ional PRS will also have been condit ioned for PCs (and usually more than 2). The
bigger problem with PRS is typically the lack of non-European samples in t raining datasets (Duncan,
NatComm,2019). Correct ing for PCs will not  solve insufficient  data to represent diverse human
populat ions.

# Demonstrat ion of a "polygenic contribut ion to cognit ive dysfunct ion in amyotrophic lateral
sclerosis" 
The authors generate a polygenic risk score (PRS) that ut ilizes 27 SNPs. The 27 SNPs were
selected from a start ing set of 45 SNPS, all of which have previously been associated with ALS
and/or ALS-FTD in prior GWAS. Moreover, most of the 45 SNPs were already reported as shared
risk factors for ALS / FTD and their link to cognit ive symptoms is therefore established. The key
narrat ive of the writeup is that  "Our results indicate a polygenic contribut ion to the presence and
rate of decline of cognit ive". I interpret  this to mean that the authors claim a novel demonstrat ion
that their 27 SNPs interact  addit ively for "quant itat ive t rait  modificat ion of pat ient  phenotype". If I
am mistaken could the authors clarify the claim and it 's novelty? Otherwise I have the following
concerns 



1. I saw no clear demonstrat ion that these variants contribute addit ively to modify cognit ive
impairment or rate of decline. The PRS has predict ive value in the training dataset, but  this does
not immediately imply addit ive effects or quant itat ive t rait  modificat ion of pat ient  phenotype. It
could be that the 27 selected SNPs comprise a collect ion of variants that simply tag separate
endophenotypes (as demonstrated for at  least  C9orf72 and KIF5A), and that there is in fact  no
addit ive interplay. In-keeping with this, Fig 2 gives the impression that only a small subset of the 27
SNPs play a strong role in determining the PRS. Out of the 5 SNPs that achieve large weight ings, 2
occur in the MOBP locus and these 2 SNPs have opposing direct ions of effect  (so MOBP is a major
player in determining both the largest and smallest  PRS values?). Perhaps the authors could just ify
their claim by demonstrat ing that the variants have improved prognost ic value when collapsed into
a PRS vs when considered independent ly as markers for separate endophenotypes. (As it  stands
the reader cannot tell if the prognost ic values of these known ALS-FTD SNPs is in fact  reduced by
collapsing into a PRS)
2. Can the authors indicate measures of LD among SNPs used in their PRS?
3. Were samples from CReATe included in the GWAS used to select  variants? (if so good to
acknowledge)
4. Are the primary conclusions of the study robust if the pat ients with "ALS related" disorders are
excluded?

# Validat ion of the PRS 
1. Neuroimaging and neuropathology from independent cohorts are used to test  whether the PRS
captures disease relevant pathology. This has significant appeal in highlight ing possible
intermediate phenotypes while providing some corroborat ion of capturing real biological signal.
However, it  does not const itute a validat ion for how well the PRS predicts presence / rate of
cognit ive decline on the ECAS and such validat ions are standard in generat ing PRS. The authors
include some acknowledgement of this but for the uninit iated reader it  would be good to elaborate
a lit t le further on the "over-fit t ing" that  can occur with such a study design and that t rue measures
of model performance cannot be obtained from the same dataset used to t rain SCCA
2. Was the available genet ic data used to exclude duplicates across the CReATe and validat ion
cohorts?
3. Could it  be clarified whether findings from the PRS analysis of the neuroimaging data are
stat ist ically significant after mult iple test  correct ion?
4. Figure 4B does not look to indicate a stat ist ically robust linear increase in PRS with ordinal
category (0-3), but  the text  indicates that pat ients with higher wPRS were x2.05 t imes more likely
to have greater neuronal loss in motor cortex than pat ients with lower PGS. Does this effect  size
comes from the ordinal logist ic regression? Or does it  compare all pat ients with PRS scores greater
than the median to all pat ients with PRS scores below the median? Or of extreme value PRS
groups? My impression is that  the reader should interpret  that  this observat ion is stat ist ically
significant after mult iple test  correct ion but perhaps the authors can confirm?
5. In the CReATe dataset the authors indicate that "Polygenic score captures baseline cognit ion as
well as longitudinal rate of cognit ive decline, but not motor decline". However, in their analyses of
neuronal loss/ TDP-43 pathology they indicate that they only observe effects in the motor cortex
and not frontal cortex or other regions. Is there any contradict ion here? Do the validat ion results
really converge in support  what was proposed in the t it le/ CReATe analyse?

# Other comments 
1. Can the authors provide summary stat ist ics for the independent prognost ic values of each of the
45 SNPs on each of the clinical variables tested? Beyond reasons already discussed, I think this
would be valuable informat ion that could be incorporated into other research



2. Could the authors include PCA plots for their samples? It  would be useful to convey the
homogeneity/ complexity of sample ancestry within the cohorts

Referee #3 (Remarks for Author): 

The manuscript  „Machine learning suggests polygenic contribut ion to cognit ive dysfunct ion in 
amyotrophic lateral sclerosis (ALS)" by Placek and coworkers is a nicely writ ten manuscript  about a
very important and t imely topic about what contributes to cognit ive decline in the motor
devastat ing disease ALS. Nevertheless, I have some concerns: 

major 
1. Even though authors invest igate reasons for „cognit ive" dysfunct ion, they do not strat ify,
correlate or even properly discuss state-of-the-art  subclassificat ion of ALS according to the revised
Strong criteria. While I acknowledge that the authors note that ALS-bi might need further
invest igat ion in the discussion sect ion, I cannot accept the begin of the results saying ALS pat ient
cohort  was heterogenous also concerning cognit ion/cognit ive test  results. This is the matter why
we group nowadays according to the revised Strong criteria and the study should have be drawn
according to them.
2. The „biological" sample size is pret ty small, the machine learning approach (to the best of my
understanding) more or less an art ificial mult iplicat ion of the results of these ~300 pat ients. Thus, it
is more or less a model and not large dataset analysis. Of note, the autopsy cohort  is remarkable
large!
3. Even though the authors use „independent cohorts" for the neuroimaging and autopsy part , the
first  and necessary step would have been to t ry to replicate the genotype-phenotype correlat ions
arising from the polygeneic risk score also in these cohorts
4. Having said this, I'm not sure how much the knowledge about such a „polygenet ic" risc score
helps our further understanding of cognit ive decline in ALS. Of course, it  adds to the fact  that
cognit ion is not defined by a single SNPs, but this is not novel.

minor 
1. Were the C9 pat ients in the postmortem analysis taken out of analysis?
2. Cognit ive onset in the neuroimaging/autopsy cohort  is defined how and how to compare this to
the init ial CReATe cohort , were only ALS-FTD was noted
3. Introduct ion: „As many as half of pat ients with amyotrophic lateral sclerosis (ALS) manifest
progressive decline in cognit ion consistent with extra-motor frontal and temporal lobe
neurodegenerat ion..."
Current understanding is that  cognit ive dysfunct ion is already present at  motor disease onset and
it  is of current debate whether cognit ion also generally declines. The statement is of general and
not fully proven yet!



Referee #1 (Remarks for Author): 

Thank you for letting me see this excellent paper, reporting a study of the impact of a polygenic 
risk score on the presence and progression of cognitive impairment in ALS. The methodology 
(sparse canonical correlation analysis) appears to be a powerful approach to the analysis of 
multimodal datasets, and the availability of large, well-characterized samples is a major asset of 
the study. The results are of great relevance, as they indicate a specific effect of a set of SNPs on 
cognition rather than on motor impairment. The fact that they are shared with FTD strongly 
supports the idea of the ALS-FTD continuum. The correlation with imaging data is fully in line with 
these results. In the case of neuropathology, however, the only significant effect is on the motor 
cortex, a point which deserves a more detailed consideration in the discussion. I suggest also to 
mention the limitations of the ECAS, in particular in the assessment of social cognition, an aspect 
related to behavioral impairment. 

We thank this reviewer for their enthusiastic comments and their constructive consideration of the 
anatomy of our neuroimaging and neuropathology results and importance of behavioral 
assessment in patients with ALS and related disorders. 

Related to your point on anatomic specificity in the neuropathological data, our finding that the 
weighted polygenic risk score (wPRS) related to cortical thinning in regions including the 
prefrontal cortex and hippocampus from in vivo neuroimaging and the motor cortex from post 
mortem study may potentially reflect differences in two sources of sampling across the 
neuroimaging analysis and neuropathologic analysis. 

One source of sampling differences may reflect the clinical characteristics of both cohorts. We 
used a retrospective analysis of neuroimaging and neuropathology data from the UPenn Biobank, 
which represents one of the largest repositories of multimodal data on neurodegenerative disease 
of its class. Our neuroimaging cohort consisted of 114 patients with ALS, 25 (17%) of whom were 
diagnosed with ALS-FTD and 14 (12%) of whom were diagnosed with ALSci, while our autopsy 
cohort consisted of 88 individuals, only 6 (7%) of whom were diagnosed with ALS-FTD and 2 
(2%) of whom were diagnosed with ALSci. Thus, one possibility for our observation of the motor 
cortex cortical thinning relating to the wPRS at autopsy could be that a lower proportion of cases 
in the autopsy cohort relative to the neuroimaging cohort had impaired cognition during life.  
Thus, the autopsy cohort may likewise have less extensive cortical thinning in the frontal and 
temporal lobes due to sampling differences across cohorts. Consistent with this account, as 
reported in Supplementary Figures 10 and 11, a low proportion of cases in the autopsy cohort 
had moderate or severe neuropathological ratings in the middle frontal cortex, cingulate cortex, 
CA1 / subiculum, and superior/middle temporal cortex, particularly if neuronal loss in these 
regions are compared to the more severe levels observed in the motor cortex. 

Another source of sampling differences may be technical in nature.   For our neuroimaging 
analysis we evaluated voxelwise cortical thickness at 2mm

3
 resolution across the entire cortex.

However, according to our established autopsy protocol for the UPenn Biobank (Toledo et al., 
Alzheimer’s & Dementia, 2014) autopsy tissue is sampled from a small (e.g., 1cm) block and 
slides used to assess neuronal loss typically represent a 6μm section from each region of interest 
(e.g. middle frontal cortex, superior/middle temporal lobe). Thus, the sampled cortical tissue from 
neuropathological assessment only represents a microscale evaluation of total cortex. 

To acknowledge these limitations we now report the proportion of patient diagnoses (e.g. ALS, 
ALSci, and ALS-FTD) for each UPenn cohort in Table 2.   Please note these total numbers also 
changed as result of excluding non-independent samples between the UPenn Biobank and 
CReATe PGB cohorts (as suggested by Reviewer #2).   We additionally revised the Discussion 
(page 20, paragraph 2) to state: 

“Higher polygenic risk related to in vivo cortical thinning in the orbital prefrontal cortex, 
anterior cingulate cortex, premotor cortex, lateral temporal cortex, and hippocampus in a 

18th Sep 20201st Authors' Response to Reviewers



neuroimaging cohort, and to post-mortem neuronal loss in sampled tissue from the motor 
cortex in an autopsy cohort. We speculate that the relationship to motor cortex only in the 
neuropathology cohort may reflect two sources of sampling differences.  First, clinical 
characteristics differed across cohorts: 9% of the autopsy cohort had premorbid 
diagnoses of ALS-FTD or ALSci and 29% of the neuroimaging cohort were diagnosed 
with ALS-FTD or ALSci.  Thus, the autopsy cohort likely had less frontal and temporal 
cortex neuronal loss relative to motor cortex neuronal loss.  Second, the differences 
across analyses may reflect different scales of resolution in which neuroimaging data is 
analyzed at 2mm

3
 resolution across the entire cortex while neuropathological data is

sampled at approximately 6μm. We are aware of these issues and more recently have 
begun to increase tissue sampling including bilateral hemisphere (Irwin et al., Brain, 
2018; Giannini et al., Annals of Neurology, 2019), more extensive brain regions (Irwin et 
al., Annals of Neurology, 2016), performing digital immunohistochemistry analyses (Irwin 
et al., Journal of Histochemistry and Cytochemistry, 2015; Giannini et al., Annals of 
Neurology, 2019) and whole hemisphere post-mortem neuroimaging using 7T MRI.  
Thus, future studies will be able to address these sampling differences as our autopsy 
cohort continues to grow and our technical methods continue to improve.” 

Related to your point on the limitations of not considering social cognition, we fully agree this is 
an important area for future research to address.  Since social, behavioral and neuropsychiatric 
features of disease are obtain through a caregiver interviewer on the ECAS rather than direct 
measurements we focused our investigation on cognitive impairment. Future development of 
behavioral assessments that are completed by patients are necessary. We now include the 
following in the discussion (page 25, paragraph 2): 

“We assessed patient performance on specific domains of cognition using the ECAS, this 
which includes a measure of social cognition counted towards the domain of executive 
function. Behavioral impairment on the ECAS is assessed through caregiver report 
(Abrahams et al., Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, 2014), 
and the vast majority of neuropsychological assessments of behavior in 
neurodegenerative disease are based on physician or caregiver report (Simon et al., 
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, 2019). With this in mind, 
we chose to focus our investigation on the analysis of patient-completed assessments of 
cognition and motor function. Future research incorporating assessments of behavior is 
necessary to investigate polygenic risk for behavioral dysfunction in ALS and related 
disorders and to determine whether loci included in our calculated polygenic risk score 
additionally confer risk for behavioral dysfunction.” 



Referee #2 (Remarks for Author): 

This study describes work to generate and validate a polygenic risk score (PRS) for predicting 
cognitive impairment in ALS (presence + rate of decline). The PRS is generated using a 
discovery cohort of 327 patients diagnosed with ALS or a related disorder. These samples have 
been whole genome sequenced and evaluated on multiple clinical axes, the most relevant to this 
story being ECAS measures of cognitive impairment. To validate the PRS, the authors utilize MRI 
data from a second cohort comprising 114 ALS patients and 114 controls, as well as 
neuropathology data from a third cohort of 88 ALS patients. The scope of the datasets is 
impressive and their use in a multi-modal exploration of prognostic biomarkers for ALS is without 
doubt of wide and considerable interest. However, some clarifications are required on the 
particulars of the analysis and resulting narrative. 

We would like to thank this reviewer for their thoughtful and constructive suggestions that we 
address below in a point-by-point response. 

A. Use of SCCA as a method to generate PRS. I like the use of SCCA in this setting. The authors
dedicate much discussion to the benefits and novelty of their application, but I think some key
points are missing.

1. SCCA has a long history in relating neuroimaging data to genomics. The authors could
elaborate on how it has been deployed in these contexts and what is different in their use case.

We agree that sCCA has a long history in imaging-genomics which we now better highlight by 
providing references to previous research as well as acknowledge important differences between 
prior applications and the current report, including the novelty of applying sCCA to polygenic risk 
score generation. Specifically, we re-organized and revised an Introduction paragraph to now 
state (page 5, paragraph 3): 

“Here we employed an unsupervised machine-learning approach, sparse canonical 
correlation analysis (sCCA)(Witten et al., Biostatistics, 2009), to identify and evaluate a 
potential polygenic contribution to cognitive dysfunction in ALS.  sCCA has previously 
been implemented in many contexts such as genetics (Witten et al., Statistical 
Applications in Genetics and Molecular Biology, 2009), neuroimaging-behavior studies 
(Avants et al., Neuroimage, 2014; Avants et al., Neuroimage, 2010), and neuroimaging-
genetic studies (Du et al., Bioinformatics, 2019; Hao et al., Bioinformatics, 2017; Hu et 
al., IEEE Transactions on Biomedical Engineering, 2018), including the association of 
cortical thickness and white matter diffusion to FTD risk SNPs (McMillan et al., 
Neurobiology of Aging, 2014). For the first time, we leverage sCCA as a data-driven tool 
to facilitate generation of a polygenic risk score.  Specifically, sCCA can be leveraged to 
identify variants by employing sparsity to select maximally contributing variants and to 
assign corresponding weights based on model contribution with minimal a priori 
assumptions.  This contrasts with traditional approaches to constructing polygenic scores 
that rely on the use of existing GWAS statistics to select variants and assign weights, 
which can be challenging if the original GWAS statistics are based on case-control 
associations rather than current neuropsychological outcome of interest.” 

We also have added the following statement to the Discussion (page 21, paragraph 2): 

“While sCCA has been widely applied to genotype-phenotype studies (Witten et al., 
Statistical Applications in Genetics and Molecular Biology, 2009; Parkhomenko et al., 
Statistical Applications in Genetics and Molecular Biology, 2009), including 
neuroimaging-genetic studies (Avants et al., Neuroimage, 2014; Avants et al., 
Neuroimage, 2010; Du et al., Bioinformatics, 2019; Hao et al., Bioinformatics, 2017; Hu et 
al., IEEE Transactions on Biomedical Engineering, 2018; McMillan et al., Neurobiology of 



Aging, 2014), we are unaware of prior applications using sCCA to define a polygenic 
score based on rich clinical phenotypic and biomarker data.” 

2. If we consider that SCCA could be a new method for PRS generation then it is worth
expending a little effort to show that it performs better than the traditional method (or at least that
it is not worse). I would think a fair comparison would be to apply the traditional regression
methods to estimate single variant effects in the CReATe data and construct a traditional PRS
from these

This is an excellent suggestion and we considered reporting something similar to this in the 
original submission but opted not to due to challenges with such an implementation.  In particular, 
traditional approaches to the generation of polygenic risk scores include selection of SNPs from a 
single GWAS and weighting the selected SNPs based on the GWAS odds ratio statistics for the 
phenotype associations, typically case vs. control. In the current study, we diverged from this 
traditional approach in two ways.  First, we investigated 45 SNPs selected from two different 
hypothesis-driven sources: a genome-wide conjunction analysis for FTD and ALS (Karch et al., 
JAMA Neurology, 2018) and the largest case-control ALS GWAS to date (Nicolas et al., Neuron, 
2018). Second, by selecting these SNPs, their associated weights from the prior conjunction 
analysis and case-control GWAS would not be applicable since they were generated using a 
“phenotype” distinct from our research question related to cognitive outcomes. With this in mind, 
we are unable to calculate a traditional polygenic risk score. 

Nonetheless, in an effort to compare our sCCA approach to alternative method we calculated an 
unweighted polygenic risk score from the genetic variables selected from our sCCA analysis by 
computing an unweighted sum of allele dosages for each genetic variable.  This approach is 
described in the revised Methods (page 13, paragraph 1): 

“We also calculated an unweighted polygenic risk score (uPRS) by computing an 
unweighted sum of allele dosage for each individual genetic variable selected from sCCA 
modeling.” 

We now also report associations with the uPRS relative to 1) ECAS performance in the CReATe 
cohort, 2) in vivo cortical thickness in the UPenn Biobank neuroimaging cohort, and 3) post 
mortem severity of cortical thinning and burden of TDP-43 neuropathology UPenn Biobank 
autopsy cohort. We did not find any significant relationship between the uPRS and any of these 
measures, as reported in the Results (pages 13-15): 

Page 13, paragraph 1: “We observed no statistically significant relationship between the 
uPRS and adjusted baseline estimates of performance on ALS-Specific, Executive 
Function, Language, and ECAS Total scores (all p values > .2).” 

Page 14, paragraph 1: “We observed no statistically significant relationship between the 
uPRS and adjusted rate of decline on any clinical measure (all p values > .9).” 

Page 16, paragraph 1: “We observed no statistically significant relationship between the 
uPRS and cortical thickness in any region (not shown).” 

Page 17, paragraph 1: “We also observed no statistically significant associations 
between the uPRS and neuronal loss or TDP-43 pathology in region (all p values>0.19; 
not shown).” 

We interpret these findings to suggest that the weights derived from sCCA meaningfully define 
the relationship between genetic variation and quantitative phenotypic differences in the CReATe 
PGB and UPenn cohorts with regards to cognitive performance and disease neuroanatomy. We 
include an interpretation of these findings in the Discussion (page 21, paragraph 2): 



 “The positive or negative direction of model-derived weights is potentially biologically 
informative, and could reflect ‘risk’ (i.e. positive weight) or ‘protective’ (i.e. a negative 
weight) effects. We evaluated the wPRS using model-derived weights relative to a uPRS 
derived created by computing an unweighted sum of allele dosages for each genetic 
variable. Our observation that the uPRS did not relate to cognitive or clinical performance 
in the CReATe PGB cohort or to neuroimaging or neuropathology in the UPenn 
Biomarker cohorts suggests that that the weights derived from sCCA meaningfully define 
the relationship between genetic variation and quantitative phenotypic differences in the 
CReATe PGB and UPenn cohorts with regards to cognitive performance and disease 
neuroanatomy. ” 

3. "only one variable from the clinical dataset being chosen in each of the 10,000 iterations." So,
in practice the analysis proved equivalent to assessing each clinical variable independently?
Does this nullify anticipated benefits vs over traditional regularized regressions (LASSO etc)

We acknowledge this reviewer’s concern regarding the selection of clinical variables by sCCA 
modeling. We used a gridsearch of 100 possible combinations of L1 parameters ranging in 
increments from 0.1 (most stringent selection of 10% of features) to 1.0 (least stringent selection 
of all 100% of features) for the clinical and genetic datasets, and found that the optimal L1 
parameter for the clinical dataset was 0.1 (the most stringent L1 parameter) and the optimal L1 
parameter for the genetic dataset was 0.6. While the usage of these L1 parameters resulted in 
one clinical variable being chosen in each of the 10,000 iterations, this approach differs from 
LASSO in several key ways. First, in LASSO, the dependent variable is pre-specified by the 
researcher; however, in the current study, sCCA modeling was used to select a single clinical 
variable in each model iteration. This use of sCCA to select a single clinical variable, rather than 
pre-specifying a clinical variable resulted in the minimization of experimenter bias. Second, 11 
LASSO models would need to be run in order to investigate each of the 11 clinical variables as a 
dependent variable; SCCA offers advantages over this approach with regards to multiple testing 
considerations because it allows the concurrent consideration of all 11 clinical variables in each 
model iteration. We address this concern by clarifying the quoted statement in the Results (page 
10, paragraph 1): 

“This differs from other regularization techniques (e.g. LASSO), as the variable from the 
clinical dataset was selected by sCCA modeling in each iteration rather than being 
experimenter-selected prior to analysis.  Importantly, the use of sCCA also minimizes the 
necessity for multiple comparisons corrections, since all variables can be tested in a 
single model, and therefore reduces the potential of a Type II false-negative error 
common in genomics studies related to rejection of a true effect due to overly stringent 
correction of multiple comparisons.” 

4. The authors rightly point out that a critique of traditional PRS is "undue influence by population
variance, limit their use in clinical and prognostic settings". They claim that their SCCA method
avoids this, but I do not see how. The authors include PC1-2 during training but the GWAS effect
sizes used in traditional PRS will also have been conditioned for PCs (and usually more than 2).
The bigger problem with PRS is typically the lack of non-European samples in training datasets
(Duncan, NatComm,2019). Correcting for PCs will not solve insufficient data to represent diverse
human populations.

We agree with this reviewer in recognizing the importance of acknowledging limitations in racial 
and ethnic diversity in the creation of polygenic scores and in natural history studies more 
broadly, and the critical need for increased inclusivity and representation for individuals from 
diverse racial and ethnic groups.  

We altered language in the Methods and Results to more accurately state that our inclusion of 
PC1 and PC2 is an attempt to account for differences in population substructure: 



Results, page 9, paragraph 2: “We included the first two principal components from a 
PCA conducted in the PGB cohort and binary variables for sex, C9ORF72 repeat 
expansion status, and other mutation status (e.g. SOD1) in this dataset in an effort to 
account for inter-individual genetic differences in population structure, sex, and mutation 
status.”   

Methods, page 30, paragraph 1: “In an attempt to account for population substructure, we 
additionally derived the first two principal components scores for each in the CReATe 
PGB cohort using principal components analysis (PCA) implemented using Eigenstrat”.  

We now include the following statement in the Discussion, citing the study mentioned by the 
reviewer, to help address this limitation (page 24, paragraph 1): 

“Previous critiques of polygenic scores argue that three factors limit their use in clinical 
and prognostic settings: (1) calculation based on GWAS-defined odds ratios for 
univariate risk loci; (2) undue influence by population variance; and (3) predominant use 
of samples of European ancestry (Wald & Old, Genetics in Medicine, 2019; Duncan et 
al., Nature Communications, 2019). In an attempt to mitigate these potential confounds, 
we based our computation of the wPRS on model-selected parameters derived from an 
analysis including all genetic variants and, in addition, covariates for genetic mutation 
status and sex in an effort to account for multivariate genetic relationships. We also 
included the first two principal components in our model from a PCA conducted in the 
CReATe PGB cohort in an effort to account for differences in population substructure 
(Price et al., Nature Genetics, 2006). While we used the first two principal components in 
an effort to account for population substructure, this is a complex issue to resolve and 
future studies with more diverse cohorts to investigate potential substructure bias are 
necessary. The current investigation utilized existing data from natural history studies that 
were predominantly comprised of individuals of European ancestry; however, increased 
representation of diverse racial and ethnic groups in future investigations of polygenic risk 
for cognitive impairment in ALS are necessary in order to ensure generalizability to 
diverse populations.”  

B. Demonstration of a "polygenic contribution to cognitive dysfunction in amyotrophic lateral
sclerosis". The authors generate a polygenic risk score (PRS) that utilizes 27 SNPs. The 27
SNPs were selected from a starting set of 45 SNPS, all of which have previously been associated
with ALS and/or ALS-FTD in prior GWAS. Moreover, most of the 45 SNPs were already reported
as shared risk factors for ALS / FTD and their link to cognitive symptoms is therefore established.
The key narrative of the writeup is that "Our results indicate a polygenic contribution to the
presence and rate of decline of cognitive". I interpret this to mean that the authors claim a novel
demonstration that their 27 SNPs interact additively for "quantitative trait modification of patient
phenotype". If I am mistaken could the authors clarify the claim and it's novelty? Otherwise I have
the following concerns

We address each of these concerns below in detail. 

1. I saw no clear demonstration that these variants contribute additively to modify cognitive
impairment or rate of decline. The PRS has predictive value in the training dataset, but this does
not immediately imply additive effects or quantitative trait modification of patient phenotype. It
could be that the 27 selected SNPs comprise a collection of variants that simply tag separate
endophenotypes (as demonstrated for at least C9orf72 and KIF5A), and that there is in fact no
additive interplay. In-keeping with this, Fig 2 gives the impression that only a small subset of the
27 SNPs play a strong role in determining the PRS. Out of the 5 SNPs that achieve large
weightings, 2 occur in the MOBP locus and these 2 SNPs have opposing directions of effect (so



MOBP is a major player in determining both the largest and smallest PRS values?). Perhaps the 
authors could justify their claim by demonstrating that the variants have improved prognostic 
value when collapsed into a PRS vs when considered independently as markers for separate 
endophenotypes. (As it stands the reader cannot tell if the prognostic values of these known ALS-
FTD SNPs is in fact reduced by collapsing into a PRS) 

We appreciate your attention to detail about the relative independence vs. additive nature of 
selected SNPs, the predominant strength of 5 SNPs in our resulting PRS that included 27 
selected SNPs, and the directionality of associations.  We have addressed each of these points in 
the manuscript. 

Related to an “additive effect” we agree that just because 27 SNPs were selected they may not 
have an additive or cumulative impact, but rather collectively contribute to endophenotypes, and 
we specifically avoid the term “additive” when describing the combination of SNPs for the PRS.  
We have revised the manuscript throughout to refrain from implying that these associations are 
necessarily “additive” in nature.  We additionally revised the Discussion to state the following 
(page 22, paragraph 1). 

 “While our sCCA modeling selected 27 SNPs in addition to sex and C9ORF72 mutation 
status and we used model-derived weights to calculate a wPRS, we are unable to 
determine in the current study what the collective contribution of these SNPs are to 
modifying cognitive phenotypes.  For example, these could be additive in nature, such 
that increased risk allele dosage increases risk for impaired cognition, or the selected 
SNPs could act independently in disease modification.  As often is the case, future 
functional studies are required to identify the mechanistic relationship between SNP 
associations and cognitive phenotype.” 

To address the independent contribution of SNPs and their strength and directionality, we 
incorporated univariate analyses of each clinical variable and SNP genotype into the manuscript 
and report this in the Methods (page 31, paragraph 3): 

“In addition to the linear mixed-effects models described above, we also conducted a 
second series of linear-mixed effects models to investigate fixed effects of each of the 45 
SNPs on each of the 11 clinical measures (i.e. all ECAS scores, ALSFRS-R, and UMN 
and LMN burden scores), independently; this resulted in a total of 495 models. We again 
used the nlme package in R and each model was fit using maximum likelihood. In 
addition to each SNP, we included age at baseline visit (in years), lag between age of 
symptom onset and age at baseline visit (in years), college education (yes / no), bulbar 
onset (yes / no) and visit time-point (in months) as fixed effects, and we included 
individual-by-visit time-point as a random effect.” 

We now report in the Results and include a supplementary figure (Supplementary Figure 8) 
demonstrating that the five SNPs achieving the strongest median weights from bootstrapped 
sCCA modeling do emerge in this univariate analysis but do not survive multiple comparisons 
corrections (page 14, paragraph 2). 

“In post hoc analyses, we investigated whether SNPs also contribute individually to rate 
of decline on clinical measures. We conducted LME modeling of the original longitudinal 
data to investigate fixed effects of each of the 45 SNPs on each of the 11 clinical 
measures (i.e. all ECAS scores, ALSFRS-R, and UMN and LMN burden scores), 
independently. We did not observe any effects that survived corrections for multiple 
comparisons. However, we observed that the SNPs achieving the five largest median 
weights from bootstrapped sCCA modeling (rs1768208, rs538622, rs10143310, 
rs7224296, rs9820623) also independently related to performance on the ECAS ALS-
Specific and Total scores (all uncorrected p <.05).” 



Given that the univariate analyses did not survive multiple comparisons we also added the 
following to the Discussion (page 22, paragraph 1): 

“Post hoc investigation of independent SNP effects on longitudinal cognitive performance 
revealed that the SNPs achieving the five largest median weights from bootstrapped 
sCCA modeling also relate to longitudinal cognitive performance; however these effects 
did not survive correction for multiple comparisons. By its nature, this post hoc 
investigation considered each SNP as independent from other SNPs and each clinical 
measure as independent from other clinical measures and thus did not account for more 
complex collective contribution of SNPs to cognitive phenotypes. As often is the case, 
future functional studies are required to identify the mechanistic relationship between 
SNP associations and cognitive phenotype. Nonetheless, our results support the 
consideration of sCCA as a promising method to identify collective combinations of SNPs 
and cognitive phenotypes and to direct research efforts towards model-selected variants.” 

2. Can the authors indicate measures of LD among SNPs used in their PRS?

We thank this reviewer for their interest in understanding how LD contributes to our calculated 
PRS. We report D’ and R

2
 derived from LDLink using European populations for pairs of SNPs on

the same chromosomes in the Supplementary Table 2.  Critically, while our analyses included 5 
SNPs in high LD (D’> 0.8), sCCA notably is able to accommodate highly-correlated features, 
including genetic variants.  We revised the Methods to state (Page 30, paragraph 2): 

“An assessment of LD revealed that 5 of our 45 hypothesized SNPs were in high LD with 
one another (D’>0.8; Supplementary Table 2), but we included these high LD SNPs in 
our investigation since sCCA is able to accommodate highly correlated features (Witten 
et al., Biostatistics, 2009).” 

We additionally now report a comparison of a wPRS that includes and does not include the high 
LD SNPs (page 14, paragraph 3): 

“We also conducted post hoc analyses to investigate whether the inclusion of SNPs in 
high linkage disequilibrium (LD) influence the magnitude and direction of the wPRS we 
re-ran bootstrapped sCCA analyses using 10,000 iterations excluding the 5 SNPs in high 
LD (i.e. based on the cutoff of R

2
 > 0.5) and recalculated the wPRS in the CReATe

cohort. This revealed a strong linear relationship between both wPRS models (Pearson’s 
R = 0.90 (95% CI: 0.87, 0.91), p < 2.2x10

-16
; Supplementary Figure 7) and thus LD of a

subset of SNPs is unlikely to be a driver of our observed polygenic associations.” 

3. Were samples from CReATe included in the GWAS used to select variants? (if so good to
acknowledge)

We appreciate your attention to detail and revised the Methods to clarify (page 27, paragraph 1): 

“A subset of 155 CReATe PGB cases were previously included in the replication cohort 
of the ALS case-control GWAS (Nicolas et al., Neuron, 2018).” 

4. Are the primary conclusions of the study robust if the patients with “ALS related” disorders are
excluded?

We appreciate this reviewer’s concern for the inclusion of patients in the CReATe PGB cohort 
who were diagnosed with “ALS related” disorders, a term encompassing patients with primary 
lateral sclerosis (PLS) and progressive muscular atrophy (PMA). We included these individuals in 
our investigation for two primary reasons: 1) Individuals initially diagnosed with PLS or PMA may 



eventually progress to diagnostic criteria for ALS (e.g. Kim et al., Neurology, 2009) and 2) 
Individuals with PLS and PMA show similar profiles of cognitive dysfunction to individuals with 
ALS (de Vries et al., JNNP, 2019).  Nonetheless, to address this concern we re-ran bootstrapped 
sCCA modeling as originally reported on a subset of the CReATe PGB excluding 35 patients with 
ALS-related disorders (N=22 PLS, N=13 PMA). We describe this revised approach in the Results: 

Page 7, paragraph 1: “We included a spectrum of ALS and related disorder cases in an 
effort to account for the possibility that a subset of PLS or PMA cases may evolve into 
ALS (Kim et al., Neurology, 2009) and can have similar cognitive profiles of cognitive 
dysfunction to ALS (de Vries, JNNP, 2019).   

Page 12, paragraph 1: “To evaluate whether our observed sCCA model was impacted by 
inclusion of patients with disorders related to ALS (i.e. PLS, PMA), we compared the 
median weights for genetic features and the percentage of times selected for clinical 
features from sCCA modeling using the entire CReATe PGB cohort (i.e. with PLS and 
PMA included) to those obtained from sCCA modeling using a subset of the CReATe 
PGB cohort that excluded patients with PLS and PMA. sCCA modeling that excluded 
patients with PLS and PMA resulted in the most frequent selection of the ECAS Total, 
ALS-Specific, Executive Function, and Language scores (Supplementary Figure 6A), 
similar to results obtained in the entire cohort. Furthermore, sCCA modeling that 
excluded patients with PLS and PMA resulted in the same selection of genetic variables 
as in sCCA modeling of the entire cohort, and achieved similar direction and strength of 
weights (Supplementary Figure 6B). This demonstrates that the inclusion of disorders 
related to ALS does not potentially confound our observations.” 

We also now include a sentence in the Discussion addressing these findings (page 23, paragraph 
2): 

“While we focus on ALS and FTD risk variants and demonstrate that the inclusion of 
related disorders (i.e. PLS, PMA) does not confound our observed cognitive and genetic 
associations, future work should also incorporate variants associated with risk for 
disorders related to ALS and specifically test the application of polygenic associations 
within PLS and PMA.”  

C. Validation of the PRS
1. Neuroimaging and neuropathology from independent cohorts are used to test whether the PRS
captures disease relevant pathology. This has significant appeal in highlighting possible
intermediate phenotypes while providing some corroboration of capturing real biological signal.
However, it does not constitute a validation for how well the PRS predicts presence / rate of
cognitive decline on the ECAS and such validations are standard in generating PRS. The authors
include some acknowledgement of this but for the uninitiated reader it would be good to elaborate
a little further on the “over-fitting” that can occur with such a study design and that true measures
of model performance cannot be obtained from the same dataset used to train SCCA

We appreciate your notion that our multimodal analyses provide some corroboration of capturing 
real biological signal and also agree with potential dangers of model over-fitting, especially with 
regards to machine learning approaches. In an effort to minimize over-fitting we 1) used 
bootstrapped sCCA modeling on subsets of 75% of the CReATe cohort and 2) report median 
weights over 10,000 permutations of bootstrapped sCCA modeling rather than a single “top 
model”.  We revised the following text of the Discussion to highlight the potential limitations of this 
approach (page 25, paragraph 2): 

 “Although the current study demonstrates converging, multimodal evidence for polygenic 
risk, replication in additional cohorts with larger sample sizes that allow for robust cross-
validation is warranted. Notably, machine-learning methods have the tendency to over-fit 
data and produce estimates that do not generalize to different data sets. However, 
alternative datasets for ALS that contain detailed genotyping and cognitive phenotyping 



are currently lacking and the CReATe PGB cohort represents the largest of its kind. In 
the absence of an alternative dataset to minimize over-fitting, we employed a 
bootstrapping procedure and generated a final sCCA model based on median weights 
across permutations rather than selecting a single “top model”.  We additionally 
demonstrate converging, multimodal evidence for polygenic risk in independent 
neuroimaging and neuropathology biomarker cohorts in an effort to provide corroboration 
that we are detecting a true biological signal. However, future research is necessary to 
determine the predictive potential and generalizability of our proposed polygenic risk 
score in ALS patients. We furthermore hope that this demonstration motivates the 
collection of additional genotyping data and longitudinal cognitive evaluation using the 
ECAS in additional large-scale patient cohorts.” 

2. Was the available genetic data used to exclude duplicates across the CReATe and validation
cohorts?

We thank the reviewer for this attention to detail and agree with the need to exclude any 
individuals from the converging evidence cohorts at UPenn who were also included in the 
CReATe PGB cohort. By linking IDs across cohorts, in the absence of WGS data in the UPenn 
cohorts, we identified 1 individual from the UPenn Biobank autopsy cohort and 22 individuals in 
the UPenn neuroimaging cohort that were also in the CReATe PGB cohort.  We therefore 
excluded these 23 individuals from the neuroimaging and neuropathological analyses and revised 
the Methods to state: 

Page 33, paragraph 2: “We retrospectively evaluated 90 patients with ALS and 90 
healthy controls matched for age, sex, and education from the UPenn Biobank…. 
Inclusion criteria for ALS patients consisted of the following: lack of participation in the 
CReATe PGB cohort....” 

Page 35, paragraph 2: ”We evaluated brain tissue samples from 87 ALS autopsy cases 
identified from the UPenn Biobank…. Inclusion criteria consisted of the following: lack of 
participation in the CReATe PGB cohort….” 

We then re-ran all neuroimaging and neuropathology analyses after excluding these individuals, 
and report the updated analyses throughout the Results. Critically, this did not impact our 
previously reported associations. 

3. Could it be clarified whether findings from the PRS analysis of the neuroimaging data are
statistically significant after multiple test correction?

Clear reporting of statistical thresholds in a scientific manuscript is essential to the interpretation 
of results.  

We now report statistical thresholds in the Results section (Page 15, paragraph 2): 

 “Nonparametric modeling using 10,000 random permutations revealed extensive 
reduction of cortical thickness bilaterally in the frontal and temporal cortices of patients 
relative to controls (threshold-free cluster enhancement, FWE corrected p<0.05)…. 

Nonparametric modeling using 10,000 random permutations with adjustments for 
potential confounds in age, disease duration, and scanning acquisition revealed that a 
higher wPRS (i.e. greater risk) associated with greater reduction of cortical thickness in 
regions including the orbital prefrontal cortex, anterior cingulate cortex, premotor cortex, 
lateral temporal cortex, and hippocampus that survived uncorrected p value of 0.01 and a 
cluster extent threshold of 10 voxels (Figure 4A; Supplementary Table 3).” 



In the Methods section, we also report (Page 38, paragraph 2): 

 “First, we used randomise set to 10,000 permutations to identify reduced cortical 
thickness in ALS patients relative to healthy controls. We constrained this analysis using 
an explicit mask restricted to high probability cortex (>0.4) and reported clusters that 
survive p<0.05 threshold-free cluster enhancement (Smith et al., NeuroImage, 2009) 
corrected for family-wise error (FWE). 

Next, we again used randomise set to 10,000 permutations to identify regions of reduced 
cortical thickness associated with wPRS in ALS patients, constraining analysis to an 
explicit mask defined by regions of reduced cortical thickness in ALS patients relative to 
controls (see above). The statistical model for this analysis included covariate adjustment 
for age, disease duration, and scanner acquisition. We report clusters that survive 
uncorrected p<0.01 with a cluster extent threshold of 10 voxels; we employ an 
uncorrected threshold to minimize the chance of Type II error (not observing a true 
result).” 

4. Figure 4B does not look to indicate a statistically robust linear increase in PRS with ordinal
category (0-3), but the text indicates that patients with higher wPRS were x2.05 times more likely
to have greater neuronal loss in motor cortex than patients with lower PRS. Does this effect size
comes from the ordinal logistic regression? Or does it compare all patients with PRS scores
greater than the median to all patients with PRS scores below the median? Or of extreme value
PRS groups? My impression is that the reader should interpret that this observation is statistically
significant after multiple test correction but perhaps the authors can confirm?

We thank this reviewer for their interest in clarifying the effect of the wPRS on neuronal loss in the 
autopsy cohort and apologize for lack of clarity in reporting this statistic based on continuous 
data. We report the effect from ordinal logistic regression as the odds associated with wPRS for 
ordinal score of magnitude of neuronal loss. This odds ratio comes from a multivariable model 
that includes wPRS, age, and disease duration at death as covariates. We also thank the 
reviewer regarding the clarity of statistical reporting. Our reported result is not statistically 
significant after multiple comparisons correction using family-wise error adjustment. We now 
clearly state in the Results as follows (page 16, paragraph 2): 

“We conducted ordinal logistic regression with covariate adjustment for age at death and 
disease duration and found that as patients’ wPRS increases, their odds of greater 
neuronal loss in the motor cortex also increases (OR = 1.98; 95% CI: 1.01, 3.96; 
uncorrected p=0.049; Figure 4B); older age at death and longer disease duration were 
not found to statistically significantly influence the odds for greater neuronal loss 
(p>0.05).” 

5. In the CReATe dataset the authors indicate that "Polygenic score captures baseline cognition
as well as longitudinal rate of cognitive decline, but not motor decline". However, in their analyses
of neuronal loss/ TDP-43 pathology they indicate that they only observe effects in the motor
cortex and not frontal cortex or other regions. Is there any contradiction here? Do the validation
results really converge in support what was proposed in the title/ CReATe analyses?

We thank this reviewer for their consideration of the anatomy of our neuroimaging and 
neuropathology results and for acknowledging the importance of behavioral assessment in 
patients with ALS and related disorders.   

Our finding that the wPRS related to cortical thinning in regions including the prefrontal cortex and 
hippocampus from in vivo neuroimaging and the motor cortex from post mortem study may 
potentially reflect differences in two sources of sampling across the neuroimaging analysis and 
neuropathologic analysis. 



One source of sampling differences may reflect the clinical characteristics of both cohorts. We 
used a retrospective analysis of neuroimaging and neuropathology data from the UPenn Biobank, 
which represents one of the largest repositories of multimodal data on neurodegenerative disease 
of its class. Our neuroimaging cohort consisted of 114 patients with ALS, 25 (17%) of whom were 
diagnosed with ALS-FTD and 14 (12%) of whom were diagnosed with ALSci, while our autopsy 
cohort consisted of 88 individuals, only 6 (7%) of whom were diagnosed with ALS-FTD and 2 
(2%) of whom were diagnosed with ALSci. Thus, one possibility for our observation of the motor 
cortex cortical thinning relating to the wPRS at autopsy could be that a lower proportion of cases 
in the autopsy cohort relative to the neuroimaging cohort had impaired cognition during life.  
Thus, the autopsy cohort may likewise have less extensive cortical thinning in the frontal and 
temporal lobes due to sampling differences across cohorts. Consistent with this account, as 
reported in Supplementary Figures 10 and 11, a low proportion of cases in the autopsy cohort 
had moderate or severe neuropathological ratings in the middle frontal cortex, cingulate cortex, 
CA1 / subiculum, and superior/middle temporal cortex, particularly if neuronal loss in these 
regions are compared to the more severe levels observed in the motor cortex. 

Another source of sampling differences may be technical nature.   For our neuroimaging analysis 
we evaluated voxelwise cortical thickness at 2mm

3
 resolution across the entire cortex. However,

according to our established autopsy protocol for the UPenn Biobank (Toledo et al., Alzheimer’s 
& Dementia, 2014) autopsy tissue is sampled from a small (e.g., 1cm) block and slides used to 
assess neuronal loss typically represent a 6μm section from each region of interest (e.g. middle 
frontal cortex, superior/middle temporal lobe). Thus, the sampled cortical tissue from 
neuropathological assessment only represents a microscale evaluation of total cortex. 

To acknowledge these limitations we now report the proportion of patient diagnoses (e.g. ALS, 
ALSci, and ALS-FTD) for each UPenn cohort in Table 2.   Please note these total numbers also 
changed as result of excluding non-independent samples between the UPenn and CReATe 
cohorts (as suggested by Reviewer #2).   We additionally revised the Discussion (page 20, 
paragraph 2) to state: 

“Higher polygenic risk related to in vivo cortical thinning in the orbital prefrontal cortex, 
anterior cingulate cortex, premotor cortex, lateral temporal cortex, and hippocampus in a 
neuroimaging cohort, and to post-mortem neuronal loss in sampled tissue from the motor 
cortex in an autopsy cohort. We speculate that the relationship to motor cortex only in the 
neuropathology cohort may reflect two sources of sampling differences.  Higher polygenic 
risk related to in vivo cortical thinning in the orbital prefrontal cortex, anterior cingulate 
cortex, premotor cortex, lateral temporal cortex, and hippocampus in a neuroimaging 
cohort, and to post-mortem neuronal loss in sampled tissue from the motor cortex in an 
autopsy cohort. We speculate that the relationship to motor cortex only in the 
neuropathology cohort may reflect two sources of sampling differences.  First, clinical 
characteristics differed across cohorts: 9% of the autopsy cohort had premorbid 
diagnoses of ALS-FTD or ALSci and 29% of the neuroimaging cohort were diagnosed 
with ALS-FTD or ALSci.  Thus, the autopsy cohort likely had less frontal and temporal 
cortex neuronal loss relative to motor cortex neuronal loss.  Second, the differences 
across analyses may reflect different scales of resolution in which neuroimaging data is 
analyzed at 2mm

3
 resolution across the entire cortex while neuropathological data is

sampled at approximately 6μm. We are aware of these issues and more recently have 
begun to increase tissue sampling including bilateral hemisphere (Irwin et al., Brain, 
2018; Giannini et al., Annals of Neurology, 2019), more extensive brain regions (Irwin et 
al., Annals of Neurology, 2016), performing digital immunohistochemistry analyses (Irwin 
et al., Journal of Histochemistry and Cytochemistry, 2015; Giannini et al., Annals of 
Neurology, 2019) and whole hemisphere post-mortem neuroimaging using 7T MRI.  
Thus, future studies will be able to address these sampling differences as our autopsy 
cohort continues to grow and our technical methods continue to improve.” 



D. Other comments
1. Can the authors provide summary statistics for the independent prognostic values of each of
the 45 SNPs on each of the clinical variables tested? Beyond reasons already discussed, I think
this would be valuable information that could be incorporated into other research.

As responded in your prior comment B.1 we now report univariate associations of each 45 SNPs 
on each of the 11 clinical variables in Supplementary Figure 8. 

2. Could the authors include PCA plots for their samples? It would be useful to convey the
homogeneity/ complexity of sample ancestry within the cohorts

We appreciate this reviewer’s request for PCA plots for the 327 patients included in the CReATe 
PGB cohort, and now include a PC1 x PC2 plot in Supplementary Figure 1.  As can be observed 
the vast majority of cases cluster together consistent with a White European cohort and small 
proportion of 10-20 cases extend along an axis likely reflecting African/Admixed and/or Asian 
ancestry.  



Referee #3 (Remarks for Author): 

The manuscript „Machine learning suggests polygenic contribution to cognitive dysfunction in 
amyotrophic lateral sclerosis (ALS)" by Placek and coworkers is a nicely written manuscript about 
a very important and timely topic about what contributes to cognitive decline in the motor 
devastating disease ALS. Nevertheless, I have some concerns: 

Thank you for your constructive comments and appreciation that this manuscript is nicely written 
as well as a very important and timely topic. 

A. Major Concerns
1. Even though authors investigate reasons for „cognitive" dysfunction, they do not stratify,
correlate or even properly discuss state-of-the-art subclassification of ALS according to the
revised Strong criteria. While I acknowledge that the authors note that ALS-bi might need further
investigation in the discussion section, I cannot accept the begin of the results saying ALS patient
cohort was heterogeneous also concerning cognition/cognitive test results. This is the matter why
we group nowadays according to the revised Strong criteria and the study should have been
drawn according to them.

We agree that clinically-defined subclassifications of ALS according to the revised Strong criteria 
are important for facilitating the interpretation of our reported findings and better understanding 
the clinical/cognitive characteristics of our cohorts.  However, there are also some limitations with 
Strong criteria: (1) boundaries to define cognitive impairment are arbitrary and require appropriate 
normative data to classify “impaired” on each domain that are currently lacking; (2) even with a 
Strong criteria category like ALSci there is heterogeneity, for example, it can include executive 
dysfunction, language dysfunction or a combination of the two; and (3) behavioral assessments 
are informant based and thus not always reliable. Therefore, to focus on patient-derived data we 
report the ALS, ALSci, and ALS-FTD Strong criteria categories, but not ALSbi, using the following 
approaches to provide a descriptive summary of cohort patient characteristics, but continue to 
analyze data as a matrix of continuous ECAS values that captures the complex heterogeneity 
observed across the ALS frontotemporal dementia spectrum.  Specific edits include: 

Page 27, paragraph 1: (CReATe PGB cohort): “Presence of ALS with cognitive 
impairment (ALSci) was assessed at baseline using the ECAS according to established 
criteria (Strong et al., Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, 
2017), operationalized as baseline performance on Executive Function, Verbal Fluency, 
or Language subscores at or below normative cutoff scores (Abrahams et al., 
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, 2014).” 

Page 34, paragraph 3: (UPenn Biobank neuroimaging cohort): “All patients were 
diagnosed with ALS by a board-certified neurologist (L.E., L.M., M.G., D.I.) using revised 
El Escorial criteria and assessed for ALS frontotemporal spectrum disorder using 
established criteria; those patients enrolled in research prior to 2017 were retrospectively 
evaluated through chart review.” 

Page 35, paragraph 2: (UPenn Biobank autopsy cohort): “During life, all patients were 
diagnosed with ALS by a board-certified neurologist (L.E., L.M., M.G., D.I.) using revised 
El Escorial criteria and assessed for ALS frontotemporal spectrum disorder using 
established criteria;  those patients enrolled in research prior to 2017 were retrospectively 
evaluated through chart review.” 

We also have revised Table 1, Table 2, Figure 1A and Figure 1C to include ALS, ALSci, 
and ALS-FTD as well as PLS and PMA. 

2. The „biological" sample size is pretty small, the machine learning approach (to the best of my
understanding) more or less an artificial multiplication of the results of these ~300 patients. Thus,



it is more or less a model and not large dataset analysis. Of note, the autopsy cohort is 
remarkable large! 

We agree that sample size is an important consideration in any machine learning approach.  
While small relative to other big genomic series, the CReATe PGB cohort (N=339) represents the 
largest longitudinal phenotype-genotype dataset of its class with detailed cognitive and clinical 
assessment and available whole genome sequencing data. In our machine learning analyses, we 
used bootstrapping in an effort to 1) avoid model over-fitting to the CReATe PGB cohort data, and 
2) evaluate model performance using randomly-permuted data in the absence of an independent
replication cohort (see Response to point #3 below). Furthermore, we feel that our observation of
biological signals in independent modalities including neuroimaging and neuropathology provide
some corroboration that our observations have some generalizability. Nonetheless, we revised
the manuscript to acknowledge sample size limitations in the Discussion (Page 25, paragraph 2):

“Although the current study demonstrates converging, multimodal evidence for polygenic 
risk, replication in additional cohorts with larger sample sizes that allow for robust cross-
validation is warranted. Notably, machine-learning methods have the tendency to over-fit 
data and produce estimates that do not generalize to different data sets. However, 
alternative datasets for ALS that contain detailed genotyping and cognitive phenotyping 
are currently lacking and the CReATe PGB cohort represents the largest of its kind. In 
the absence of an alternative dataset to minimize over-fitting, we employed a 
bootstrapping procedure and generated a final sCCA model based on median weights 
across permutations rather than selecting a single “top model”.  We additionally 
demonstrate converging, multimodal evidence for polygenic risk in independent 
neuroimaging and neuropathology biomarker cohorts in an effort to provide corroboration 
that we are detecting a true biological signal. However, future research is necessary to 
determine the predictive potential and generalizability of our proposed polygenic risk 
score in ALS patients. We furthermore hope that this demonstration motivates the 
collection of additional genotyping data and longitudinal cognitive evaluation using the 
ECAS in additional large-scale patient cohorts.” 

3. Even though the authors use „independent cohorts" for the neuroimaging and autopsy part, the
first and necessary step would have been to try to replicate the genotype-phenotype correlations
arising from the polygenic risk score also in these cohorts.

We agree with this reviewer regarding the importance for validation of our observed genotype-
phenotype relationship in the CReATe PGB cohort in additional, independent cohorts. However, 
given the lack of additional ALS patient cohorts with longitudinal cognitive evaluation on the 
ECAS, we were unable to validate our model in independent cohorts. To address this, we 
investigated whether a polygenic risk score derived from the median weights of bootstrapped 
sCCA relate to neuroimaging and neuropathology in the UPenn cohorts. Nonetheless, we also 
agree that true validation of our sCCA model and derived polygenic risk score is necessary in 
additional patient cohorts with longitudinal ECAS performance and targeted genotyping.  We 
have edited our discussion of the need for cross-validation in the Discussion as follows (Page 25, 
paragraph 2): 

“Although the current study demonstrates converging, multimodal evidence for polygenic 
risk, replication in additional cohorts with larger sample sizes that allow for robust cross-
validation is warranted. Notably, machine-learning methods have the tendency to over-fit 
data and produce estimates that do not generalize to different data sets. However, 
alternative datasets for ALS that contain detailed genotyping and cognitive phenotyping 
are currently lacking and the CReATe PGB cohort represents the largest of its kind. In 
the absence of an alternative dataset to minimize over-fitting, we employed a 
bootstrapping procedure and generated a final sCCA model based on median weights 
across permutations rather than selecting a single “top model”.  We additionally 
demonstrate converging, multimodal evidence for polygenic risk in independent 



neuroimaging and neuropathology biomarker cohorts in an effort to provide corroboration 
that we are detecting a true biological signal. However, future research is necessary to 
determine the predictive potential and generalizability of our proposed polygenic risk 
score in ALS patients. We furthermore hope that this demonstration motivates the 
collection of additional genotyping data and longitudinal cognitive evaluation using the 
ECAS in additional large-scale patient cohorts.” 

4. Having said this, I'm not sure how much the knowledge about such a „polygenetic" risk score
helps our further understanding of cognitive decline in ALS. Of course, it adds to the fact that
cognition is not defined by a single SNP, but this is not novel.

We appreciate this reviewer’s concern for the utility of a polygenic risk score for understanding 
cognitive impairment in ALS. While others have demonstrated shared polygenic risk between 
several neurodegenerative diseases and cognitive and physical function in the UK Biobank, a 
large cohort of healthy individuals (Hagenaars et al., Plos One, 2018), to our knowledge, ours is 
the first study to demonstrate polygenic risk for cognitive impairment using targeted analysis of 
genome-wide risk variants for ALS or ALS and FTD in a symptomatic patient cohort. Notably, our 
results demonstrate a sparse association between several variants previously associated with 
case-control ALS and FTD risk and both baseline performance and rate of decline on detailed 
measures of cognition that largely reflect specific impairments observed in ALS. We believe that 
our study encourages the consideration of genetic variation in addition to phenotypic 
heterogeneity, including cognitive impairment, in ALS and related disorders.  We address 
potential caveats in the Discussion (Page 22, paragraph 1): 

 “While our sCCA modeling selected 25 SNPs in addition to sex and C9ORF72 mutation 
status and we used model-derived weights to calculate a wPRS, we are unable to 
determine in the current study what the collective contribution of these SNPs are to 
modifying cognitive phenotypes.  For example, these could be additive in nature, such 
that increased risk allele dosage increases risk for impaired cognition, or the selected 
SNPs could act independently in disease modification.  As often is the case, future 
functional studies are required to identify the mechanistic relationship between SNP 
associations and cognitive phenotype.” 

B. Minor Comments
1. Were the C9 patients in the postmortem analysis taken out of analysis?

Like our other cohorts, the CReATe PGB and UPenn Biobank neuroimaging cohort, the autopsy 
cases were inclusive of individuals with a C9ORF72 repeat expansion and our polygenic risk 
score includes a term for C9ORF72 expansion status.  This is described in the Results (Page 9, 
paragraph 2), Supplementary Table 2 and Methods (Page 34, paragraph 2). 

2. Cognitive onset in the neuroimaging/autopsy cohort is defined how and how to compare this to
the initial CReATe cohort, were only ALS-FTD was noted

We appreciate this reviewer’s consideration of the cognitive diagnoses of patients in the UPenn 
cohorts that have been collected since 1985. The cognitive diagnoses for these cohorts were 
made according to the revised Strong criteria (Strong et al., ALSFTD, 2017) using retrospective 
chart review by expert neurologists.  We describe the cognitive diagnoses of the UPenn Biobank 
neuroimaging cohort as follows (Page 34, paragraph 3): 

“All patients were diagnosed with ALS by a board-certified neurologist (L.E., L.M., M.G., 
D.I.) using revised El Escorial criteria (Brooks et al., Amyotrophic lateral sclerosis and
other motor neuron disorders : official publication of the World Federation of Neurology,
Research Group on Motor Neuron Diseases, 2000) and assessed for ALS frontotemporal



spectrum disorder using established criteria (Strong et al., Amyotrophic Lateral Sclerosis 
and Frontotemporal Dementia, 2017); those patients enrolled in research prior to 2017 
were retrospectively evaluated through chart review.” 

We revised the Methods for the UPenn Biobank autopsy cohort to also include this information 
regarding cognitive diagnoses. We now state in the Methods (Page 35, paragraph 2):  

“During life, all patients were diagnosed with ALS by a board-certified neurologist (L.E., 
L.M., M.G., D.I.) using revised El Escorial criteria (Brooks et al., Amyotrophic lateral
sclerosis and other motor neuron disorders : official publication of the World Federation of
Neurology, Research Group on Motor Neuron Diseases, 2000) and assessed for ALS
frontotemporal spectrum disorder using established criteria (Strong et al., Amyotrophic
Lateral Sclerosis and Frontotemporal Dementia, 2017); those patients enrolled in
research prior to 2017 were retrospectively evaluated through chart review.”

3. Introduction: „As many as half of patients with amyotrophic lateral sclerosis (ALS) manifest
progressive decline in cognition consistent with extra-motor frontal and temporal lobe
neurodegeneration..." Current understanding is that cognitive dysfunction is already present at
motor disease onset and it is of current debate whether cognition also generally declines. The
statement is of general and not fully proven yet!

This reviewer brings up an interesting point regarding the timing of cognitive impairment in the 
disease course of patients with ALS. While some have demonstrated the progression of cognitive 
impairment after initial motor symptom onset (e.g. Elamin et al. Neurology, 2013), others have 
also shown that cognitive dysfunction may precede motor symptom onset (e.g. Mioshi et al. 
Neurology, 2014). To more accurately reflect this current understanding, we have changed the 
statement in the Introduction to omit the assumption of general decline (Page 4, paragraph 1):  

“A significant proportion of patients with amyotrophic lateral sclerosis (ALS) manifest 
impairment in cognition consistent with extra-motor frontal and temporal lobe 
neurodegeneration, including 14% also diagnosed with frontotemporal dementia (FTD).” 



16th Oct 20201st Revision - Editorial Decision

16th Oct 2020 

Dear Dr. McMillan, 

Thank you for the submission of your revised manuscript to EMBO Molecular Medicine. I am pleased 
to inform you that we will be able to accept your manuscript pending the following final 
amendments: 

***** Reviewer's comments ***** 

Referee #2 (Comments on Novelty/Model System for Author): 

In my review of the original submission I gave a very extensive set of suggest ions and comments to 
which the authors responded very comprehensively 

Referee #2 (Remarks for Author): 

My thanks to the authors for their extensive and very clear responses to all comments. I think they 
have a nice body of work here. Some quest ions remain for follow up in future work but in my opinion
the story is sufficient ly complete and I have no outstanding concerns.



27th Oct 20202nd Authors' Response to Reviewers

The authors performed the requested changes.



30th Oct 20202nd Revision - Editorial Decision

The authors performed the requested changes.
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� exact statistical test results, e.g., P values = x but not P values < x;
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� definition of error bars as s.d. or s.e.m. 
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1.b. For animal studies, include a statement about sample size estimate even if no statistical methods were used.
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mycoplasma contamination.
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CReATe PGB cohort: We excluded nine individuals with missing or incomplete data that precluded 
subsequent analysis and, in an effort to avoid confounds associated with clear outliers, three 
individuals with extreme values at baseline on the ECAS Visuospatial Score (i.e. >5 standard 
deviations from group mean), resulting in a total of 327 participants.

UPenn INDD neuroimaging cohort: Inclusion criteria for ALS patients consisted of the following: 
lack of participation in the CReATe PGB cohort, complete genotyping at the 45 analyzed SNPs, 
screening for genetic mutations (e.g. C9ORF72, SOD1), white non-Latino racial and ethnic 
background (population diversity is known to influence allele frequencies across individuals), 
disease duration from symptom onset < 2.5 standard deviations from respective group means (to 
avoid confounds associated with clear outliers), and T1-weighted MRI. 

NA
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We evaluated all data for outliers relative to 5 standard deviations from group mean performance 
and used Shapiro-Wilks tests to evaluate normality of data. When necessary we used 
nonparametric statistical analyses. 

We report the standard deviations for raw data and report confidence intervals for all estimates.

No group comparisons were conducted in the current study.

Genetic data: QIAamp DNA Blood Mini Kit (Qiagen #51106), Quant-iT dsDNA Assay Kit (Life 
Technologies cat#Q33130), E-Gel (Life Technologies, cat#G8008-01), Flexigene (Qiagen), 
QuickGene DNA whole blood kit (Autogen), QIAsymphony DNA Mini Kit (Qiagen) 

UPenn INDD neuropathology cohort:Inclusion criteria consisted of the following: lack of 
participation in the CReATe PGB cohort, complete genotyping at the 45 analyzed SNPs, screening 
for genetic mutations (e.g. C9ORF72, SOD1), white non-Latino racial and ethnic background 
(population diversity is known to influence allele frequencies across individuals), disease duration 
from symptom onset < 2.5 standard deviations from respective group means (to avoid confounds 
associated with clear outliers), and brain tissue samples from the middle frontal, motor, cingulate, 
and superior / temporal cortices, and the cornu ammonis 1 (CA1) / subiculum of the hippocampus 
for analysis of neuronal loss and TDP-43 pathology.  

NA

No groups were allocated in any analysis. All neuropathological ratings were performed by an 
expert neuropathologist (J.Q.T., E.B.L.) blinded to patient genotype. 

NA

1. Data
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We identified all available cases with necessary phenotype and genotype data from the CReATe 
Phenotype-Genotype Biomarker (PGB) Study, and all available cases with genotype data and either 
neuroimaging data or neuropathology data from the University of Pennsylvania Integrated 
Neurodegenerative Disease (INDD) Biobank.
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B- Statistics and general methods
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a statement of how many times the experiment shown was independently replicated in the laboratory.

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.
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8. Report species, strain, gender, age of animals and genetic modification status where applicable. Please detail housing 
and husbandry conditions and the source of animals.

9. For experiments involving live vertebrates, include a statement of compliance with ethical regulations and identify the 
committee(s) approving the experiments.

10. We recommend consulting the ARRIVE guidelines (see link list at top right) (PLoS Biol. 8(6), e1000412, 2010) to ensure 
that other relevant aspects of animal studies are adequately reported. See author guidelines, under ‘Reporting 
Guidelines’. See also: NIH (see link list at top right) and MRC (see link list at top right) recommendations.  Please confirm 
compliance.

11. Identify the committee(s) approving the study protocol.

12. Include a statement confirming that informed consent was obtained from all subjects and that the experiments 
conformed to the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human 
Services Belmont Report.

13. For publication of patient photos, include a statement confirming that consent to publish was obtained.

14. Report any restrictions on the availability (and/or on the use) of human data or samples.

15. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

16. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram (see link list at top right) 
and submit the CONSORT checklist (see link list at top right) with your submission. See author guidelines, under ‘Reporting 
Guidelines’. Please confirm you have submitted this list.

17. For tumor marker prognostic studies, we recommend that you follow the REMARK reporting guidelines (see link list at 
top right). See author guidelines, under ‘Reporting Guidelines’. Please confirm you have followed these guidelines.

18: Provide a “Data Availability” section at the end of the Materials & Methods, listing the accession codes for data 
generated in this study and deposited in a public database (e.g. RNA-Seq data: Gene Expression Omnibus GSE39462, 
Proteomics data: PRIDE PXD000208 etc.) Please refer to our author guidelines for ‘Data Deposition’.

Data deposition in a public repository is mandatory for: 
a. Protein, DNA and RNA sequences 
b. Macromolecular structures 
c. Crystallographic data for small molecules 
d. Functional genomics data 
e. Proteomics and molecular interactions

19. Deposition is strongly recommended for any datasets that are central and integral to the study; please consider the 
journal’s data policy. If no structured public repository exists for a given data type, we encourage the provision of datasets 
in the manuscript as a Supplementary Document (see author guidelines under ‘Expanded View’ or in unstructured 
repositories such as Dryad (see link list at top right) or Figshare (see link list at top right).
20. Access to human clinical and genomic datasets should be provided with as few restrictions as possible while respecting 
ethical obligations to the patients and relevant medical and legal issues. If practically possible and compatible with the 
individual consent agreement used in the study, such data should be deposited in one of the major public access-
controlled repositories such as dbGAP (see link list at top right) or EGA (see link list at top right).

21. Computational models that are central and integral to a study should be shared without restrictions and provided in a 
machine-readable form.  The relevant accession numbers or links should be provided. When possible, standardized format 
(SBML, CellML) should be used instead of scripts (e.g. MATLAB). Authors are strongly encouraged to follow the MIRIAM 
guidelines (see link list at top right) and deposit their model in a public database such as Biomodels (see link list at top 
right) or JWS Online (see link list at top right). If computer source code is provided with the paper, it should be deposited 
in a public repository or included in supplementary information.

22. Could your study fall under dual use research restrictions? Please check biosecurity documents (see link list at top 
right) and list of select agents and toxins (APHIS/CDC) (see link list at top right). According to our biosecurity guidelines, 
provide a statement only if it could.

NA

Data & Code Availability
All R software code generated to perform the reported analyses has been deposited online 
(https://github.com/pennbindlab/PolygenicALSCognitive).  Please review the associated README 
file for details of data access.  Briefly, associated datasets can be obtained as follows:
The Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) 
Consortium Phenotype-Genotype Biomarker (PGB) Study data will be deposited at the NIH-
supported Data Management and Coordinating Center (DMCC) and the Database of Genotypes 
and Phenotypes (dbGaP) using procedures outlined by the Rare Disease Clinical Research Network 
(RDCRN) of the National Institutes of Health (NIH).  As detailed in the patient consent process, 
“Only researchers with an approved study may be able to see and use your information…. Only de-
identified data, which does not include anything that might directly identify you, will be shared 
with study investigators and approved investigators from the general scientific community for 
research purposes.”  If you would like to access this data, please contact the CReATe Consortium at 
ProjectCReATe@miami.edu for a data request form.
 De-identified raw T1-weighted MRI and voxelwise cortical thickness images will be made 
available to researchers through an approved request pending review by the Penn 
Neurodegenerative Data Sharing Committee.  To request access please complete the following 
online data request form: https://www.pennbindlab.com/data-sharing.
 

The PGB study is registered on clinicaltrials.gov (NCT02327845).

NA

NA

Data & Code Availability
All R software code generated to perform the reported analyses has been deposited online 
(https://github.com/pennbindlab/PolygenicALSCognitive).  Please review the associated README 
file for details of data access.  Briefly, associated datasets can be obtained as follows:
The Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) 
Consortium Phenotype-Genotype Biomarker (PGB) Study data will be deposited at the NIH-
supported Data Management and Coordinating Center (DMCC) and the Database of Genotypes 
and Phenotypes (dbGaP) using procedures outlined by the Rare Disease Clinical Research Network 
(RDCRN) of the National Institutes of Health (NIH).  As detailed in the patient consent process, 
“Only researchers with an approved study may be able to see and use your information…. Only de-
identified data, which does not include anything that might directly identify you, will be shared 
with study investigators and approved investigators from the general scientific community for 
research purposes.”  If you would like to access this data, please contact the CReATe Consortium at 
ProjectCReATe@miami.edu for a data request form.
 

All R software code generated to perform the reported analyses has been deposited online 
(https://github.com/pennbindlab/PolygenicALSCognitive).  Please review the associated README 
file for details of data access.  

The Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) 
Consortium Phenotype-Genotype Biomarker (PGB) Study data will be deposited at the NIH-
supported Data Management and Coordinating Center (DMCC) and the Database of Genotypes 
and Phenotypes (dbGaP) using procedures outlined by the Rare Disease Clinical Research Network 
(RDCRN) of the National Institutes of Health (NIH).  As detailed in the patient consent process, 
“Only researchers with an approved study may be able to see and use your information…. Only de-
identified data, which does not include anything that might directly identify you, will be shared 
with study investigators and approved investigators from the general scientific community for 
research purposes.”  If you would like to access this data, please contact the CReATe Consortium at 
ProjectCReATe@miami.edu for a data request form.
 De-identified raw T1-weighted MRI and voxelwise cortical thickness images will be made 
available to researchers through an approved request pending review by the Penn 
Neurodegenerative Data Sharing Committee.  To request access please complete the following 
online data request form: https://www.pennbindlab.com/data-sharing.

All R software code generated to perform the reported analyses has been deposited online 
(https://github.com/pennbindlab/PolygenicALSCognitive).  

De-identified raw T1-weighted MRI and voxelwise cortical thickness images will be made available 
to researchers through an approved request pending review by the Penn Neurodegenerative Data 
Sharing Committee.  To request access please complete the following online data request form: 
https://www.pennbindlab.com/data-sharing.
 Neuropathological data and associated data fields have been deposited along with all associated 
statistical code in an online repository (https://github.com/pennbindlab/PolygenicALSCognitive).

Neuropathological data and associated data fields have been deposited along with all associated 
statistical code in an online repository (https://github.com/pennbindlab/PolygenicALSCognitive).

NA

NA

NA

G- Dual use research of concern

F- Data Accessibility

CReATe PGB cohort: University of Miami Institutional Review Board (IRB) (the central IRB for the 
CReATe Consortium) approved the study. UPenn INDD cohorts: IRB convened at the University of 
Pennsylvania.

CReATe PGB cohort: All participants provided written informed consent. The PGB study is 
registered on clinicaltrials.gov (NCT02327845) and the University of Miami Institutional Review 
Board (IRB) (the central IRB for the CReATe Consortium) approved the study.  UPenn INDD cohorts: 
All ALS patients and controls participated in an informed consent procedure approved by an IRB 
convened at UPenn.

NA

D- Animal Models

E- Human Subjects
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