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1 Overview

T cells play a central role in moderating host immune response. T cell receptors (TCRs) identify specific TCR clonotypes
and mediate recognition of antigens and activation of T cell. Therefore, an informative characterization of TCRs
is critical for studying T cell immunity and responsiveness to immunotherapies. Many experimental and in-silico
approaches have been developed to characterize the TCR repertoire. However, most existing approaches are not able
to elucidate the functional relevance of TCR sequences, which significantly hinders and could mislead interpretation
of the roles of T cells in various biological processes. To address this inadequacy, we developed a Bayesian model
named tessa (TCR Functional Landscape Estimation Supervised with ScRNA-Seq Analysis), to integrate TCR sequence
profiling with the transcriptomes of T cells. Enabled by the recently developed single cell sequencing techniques, which
provide both TCR sequences and RNA sequences of each T cell concurrently, tessa allows us to map the functional
landscape of the TCR repertoire, and generates insights into understanding human immune response to diseases.

2 The tessa model

2.1 Input data

The aims of tessa include: (1) estimating TCR sequence similarities and building TCR networks, and (2) capturing
the association between expression and TCR repertoire. The 10x Genomics Chromium single cell immune profiling
technique, and other advanced sequencing techniques, are capable of providing both gene expression and T cell
receptor sequencing for each T cell simultaneously. For each T cell, we have (1) gene expression levels, as one
numerical vector. Each element in the vector represents the RNA expression level of one gene, and (2) one TCR
sequence, which is converted into a numeric vector through a stacked auto-encoder. The TCR sequences considered
in the tessa model include only the TCR-β chain CDR3 region sequences. Typically, one T cell has only one productive
TCR-β chain detected. In very rare conditions when one T cell has two productive TCR-β chains detected from the
sequencing data, we select the sequence with the higher expression level. The group of T cells from the same patient
that share the same TCR sequence are referred to as the same clone, and they are of the same clonotype. No T cell
appears in more than one clone, and there are some clones that have only one unique T cell. The stacked auto-encoder
extracts sequence features from each unique TCR and converts it into a numerical vector. Let i = 1, ..., T be the indices
for T cells. Each T cell has a vector of numeric gene expression values, denoted by ei, and a vector of numeric TCR
sequence features, denoted by ti.

2.2 Model specification

As the first step, T cells are assigned into networks depending on their sequence similarity, where T cells in one net-
work are likely to target the same antigen. Naturally, T cells sharing the same TCR should be assigned to the same
network. Therefore, networks are built on the units of TCRs, or clones, rather than those of T cells. We use t to
represent all the unique TCRs, in the 30-dim embedded space, in one dataset. However, the RNA expression values
of T cells sharing the same TCR are usually not the same, so we use e to represent expression of all individual T cells
rather than T cell clones in one dataset. We consider identifying K networks among all T cells with observed data
t and e. The number of networks K is a positive integer determined through a Dirichlet Process dynamically, which
assigns the network membership mi ∈ {1, ...,K} for the i−th clone.

In each TCR network, we will determine a network center T cell clonotype. For the k−th network consisting of T cell
clones with ϕk different TCR sequences {tk,1, ..., tk,ϕk}, we identify tk,ck , where ck ∈ {1, ..., ϕk}, as the center TCR
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2.2 Model specification 2 THE TESSA MODEL

that is ”closest” to the mean of all embedded TCR sequences in this network. The remaining TCRs are considered as
non-center in network k. Due to the inner structure of the networks such that there are center clones and non-center
T cell clones in each network, we used the terminology of networks rather than clusters in this work, to emphasize this
internal hierarchy.
Next, we maximize the association between TCRs and gene expression. Based on our observation of the real data,
if two T cell clones within the same network have more similar TCRs, their expression profiles are also more similar.
Motivated by this observation, we specify the relationship between TCR distances and expression distances in network
k via a linear regression model,

dek,ck,r = akd
t
k,ck,r

+ εk,r , (1)

where dtk,ck,r are distances between the center TCR and the non-center TCRs, dek,ck,r represents the average of the pair-
wise distances, in terms of gene expression, between all T cells in the center clone and all T cells in each non-center
clone, for r = 1, ..., ϕk. The regression coefficient and the random error are denoted by ak and εk,ck,r, respectively.
The error term εk,ck,r is assumed to follow a normal distribution with mean 0 and a variance of σ2

ε . Specifically, the
two sets of distances in (1) can be calculated as,

dtk,ck,r =
1

2

Q∑
q=1

(tk,r,q − tk,ck,q)2

bq
, 0 < r, ck ∈ 1, ..., ϕk , (2)

and,

dek,ck,r =

∑
i∈gk,r

∑
j∈gk,ck

||ei − ej ||2

|gk,r| · |gk,ck |
, 0 < r, ck ∈ 1, ..., ϕk , (3)

where gk,r and gk,ck refer to the sets of the cells that belong to non-center TCR clone tk,r and the center TCR clone
tk,ck , respectively.

As we previously mentioned, the networks are built on TCR clones rather than T cells, and the transcriptomes of the
T cells in the same clonotype are usually not the same. The expression distances in (3) are defined as the average of
the expression distances between every cell in one clone and every cell in the other clone. Assuming that different
embedding digits of TCRs have different importance in terms of describing the part of TCR that is more relevant for the
function of T cells, we employ the weighting factor b = {bq}Qq=1 in (2) to adjust the weights of each digit to maximize
the association between expression and TCRs in (1). As a result, the component of TCRs that is more relevant to the
function of T cells is more influential in the tessa model. Q is the number of embedding digits. For instance, Q = 30
with our stacked auto-encoder.

For the network assignments mi (mi = 1, ...,K) for clone i, we employ a Dirichlet Process with a very diffuse base
measure, G0 : MVN((tmean,1, ...tmean,i, ..., tmean,30)T , λIQ), where tmean,i represents the average value of the i − th
element of all the input embedded TCR sequences t, and λ is a large positive number which is pre-defined to keep
the base measure diffuse enough and cover the dynamic region of the embedded TCR sequences. We define tk,0 as
the mean of the multivariate normal distribution that can describe the group of (embedded) TCRs in network k. We
also define the center TCRs ck, which is the TCR clonotype that is closest to tk,0, and the fixed scaling parameter ξ for
sampling mi. We assume a multivariate normal distribution for t,

p({tk,1, ..., tk,ϕk}|tk,0, b,mi) ∝
∏

r=1,...,ϕk

e−d
t
k,0,r

(
∏
bq)0.5

. (4)

Given the network assignment in (4), for each network k, we define the center as,

ck = argmins|tk,0 − tk,s|, s ∈ {1, ..., ϕk} . (5)

We then define priors and hyperpriors. A diffuse inverse gamma prior distribution IG(u = 0.1, v = 0.1) is taken for
bq in (2) and for σ2

e of the random error εk,r in (1). We assign the regression coefficient ak in (1) with a g−prior
N(a, gσ2). For the hyperparameter a, we assume a truncated normal prior to enforce a to have a positive value,

TN(a; 0, τ, a > 0) ∝ e− a
2

2τ , (6)

where τ is a pre-defined large positive number to make the prior diffuse. The overall model structure is summarized
in SN1 Fig 1.
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SN1 Fig. 1: The tessa model structure.

2.3 Posterior computation

Let Θ = {{ak}Kk=1, {bq}
Q
q=1, {mi}Ki=1, {tk,0}Kk=1, a, σ

2} denote the set of model parameters. The joint posterior distribu-
tion is,

p(Θ|t, e) ∝ [

K∏
k=1

G0(tk,0;λ)] � [

Q∏
q=1

IG(bq;u, v)]�[
K∏
k=1

P ({tk,1, ..., tk,ϕk}|tk,0, {bq}
Q
q=1,mi)]�TN(a; 0, τ, a > 0)�

IG(σ2;u, v) � [
∏

k=1,...,K

N(ak|a, gσ2)]�[
∏

k=1,...,K

∏
r=1,...,ϕk

N(dek,ck,r|akd
t
k,ck,r

, σ2
e)] (7)

With the log-posterior in (8), we employ the MCMC sampling to draw samples for each parameter in Θ.

log(p(Θ|t, e)) = −
K∑
k=1

Q∑
q=1

t2k,0,q
2λ
−

Q∑
q=1

[(u+1)log(bq)+
v

bq
]−

K∑
k=1

φk∑
r=1

[dtk,0,r+

∑Q
q=1 log(bq)

2
]− a

2

2τ
− [(u+1)log(σ2)+

v

σ2
]

−
∑

k=1,...,K

[
log(σ2)

2
+

(ak − a)2

2gσ2
]−

∑
k=1,...,K

∑
r=1,...,ϕk

[
log(σ2

e)

2
+

(dek,ck,r − akd
t
k,ck,r

)2

2σ2
e

]; a > 0 (8)

We update Θ according to the following steps.

(I) Updating network membership mi for each cell i, using a Dirichlet process for all the clones gk,r = {i|ti =
tk,mi = k}. The updating rule of each clone is as following,

(a) If this clone belongs to a network with ϕk = 1, we remove the network k, the associated tk,0 and ak, and
update Λ = {1, ...,K/k}.

(b) If this clone belongs to a network with ϕk > 1, we update the network k by changing ϕk to ϕk − 1.

Then we estimate the probability for each clone to belong to any of the existing networks or a new network
following these steps.

(a) We build a new network K + 1, the ’putative center’ tK+1,0 is drawn from G0(tK+1,0;λ) and the linear
coefficient aK+1 is drawn from N(aK+1|a, gσ2). The center of the new network is the clone tk,r, which is
denoted as cK+1 = tk,r.

(b) We sample a network k∗ from current networks, which includes the new one we created in the last step.
The probability of drawing k∗ from one of {Λ,K + 1} is proportional to

[I(k∗ ∈ Λ)ϕk + I(k∗ = K + 1)× 10ξ] �MN(tk,r|tk∗,0, {bq}
Q
q=1) �N(dek∗,ck∗ ,r|akd

t
k∗,ck∗ ,r

, σ2
e) , (9)

where N(dek∗,ck∗ ,r|akd
t
k∗,ck∗ ,r

, σ2
e) refers to the regression between the TCR sequence and the T cell expres-

sion for the sampled k∗.

(c) We assign tk,r to the sampled k∗ according to the last step. Update K if needed, and rename the associated
indices including ϕk, mi, dtk,ck,r, d

e
k,ck,r

, and ck.

(II) We update tk,0,q by drawing each tk,0,q from,

N(

∑
r=1,...,ϕk

tk,r,q

bq[
1
λ + ϕk

bq
]

, [
1

λ
+
ϕk
bq

]−1) . (10)

3



2.4 Applying tessa to analyze T cells from multiple sources 2 THE TESSA MODEL

(III) We update ak by drawing each ak from,

N(
Bk
Ak

, σ2A−1k ) , (11)

where Ak = 1
g +

∑
r=1,...,ϕk

(dtk,ck,r)
2, and Bk = a

g +
∑
r=1,...,ϕk

dek,ck,rd
t
k,ck,r

).

(IV) Then σ2 is updated by IG(C − 1, D), where C = u+ 1 +
K+

∑
k=1,...,K ϕk

2 , and

D = v +
∑
k=1,...,K [(ak−a)2+g

∑
r=1,...,ϕk

(dek,ck,r
−akdtk,ck,r)

2]

2g .

(V) Then a is updated by TN(a; DE , E
−1, a > 0), where D = 1

τ + K
gσ2 , and E =

∑
k=1,...,K ak
gσ2 .

(VI) Next, we update all bq for q = 1, ..., Q at the same time. bq is sampled by a Metropolis–Hastings (M-H) algorithm.
The proposing function for each bq is,

IG(u+

∑K
k=1 ϕk,

2
, v +

∑K
k=1

∑ϕk
r=1(tk,0,q − tk,r,q)2

2
) , (12)

from where all {b′q}
Q
q=1 are sampled together, in order to calculate a new (dtk,ck,r)

′
in the next step. To decide the

acceptance or the rejection of {b′q}
Q
q=1, the acceptance criterion is calculated as follows,

A({b
′

q}
Q
q=1, {bq}

Q
q=1) = min(1, e−F ) , (13)

where

F =
∑

k=1,...,K

∑
r=1,...,ϕk

(dek,ck,r − ak(dtk,ck,r)
′
)2

2σ2
e

−
∑

k=1,...,K

∑
r=1,...,ϕk

(dek,ck,r − akd
t
k,ck,r

)2

2σ2
e

. (14)

2.4 Applying tessa to analyze T cells from multiple sources

Recent development of single-cell RNA-Seq technologies has allowed larger and larger library sizes in one experiment.
It is common that tissue samples from different sources, for example, patients or mice, may be pooled and sequenced
together. Such type of data can be analyzed together by tessa, which has the advantage of increasing sample size
for parameter estimation and homogeneous inference across different subsets, i.e., patients in the same datasets. In
accordance, tessa implements the rule that TCR networks can only be built with T cells from the same subset of the
data. Let us create an indicator function I(g|g ∈ gk,r), which equals to 1 if the network gk,r contains only clones from
the same source. Otherwise, if the network contains clones from more than one sources, we set I(g|g ∈ gk,r)=0. Then
the joint posterior distribution in (7) is adjusted to,

p(Θ|t, e) ∝ [

K∏
k=1

G0(tk,0;λ)] � [

Q∏
q=1

IG(bq;u, v)]�[
K∏
k=1

P ({tk,1, ..., tk,ϕk}|tk,0, {bq}
Q
q=1,mi)]�TN(a; 0, τ, a > 0)�

IG(σ2;u, v) � [
∏

k=1,...,K

N(ak|a, gσ2)]�[
∏

k=1,...,K

∏
r=1,...,ϕk

N(dek,ck,r|akd
t
k,ck,r

, σ2
e)]�I(g) (15)

The additional requirement does not change any posterior sampling procedure, except for the sampling of network
memberships. The DP probability needs to be updated as p(k∗)I(g

′
), where p(k∗) is the same as (9), and I(g

′
) tests

whether the potential assignment of k∗ to {Λ,K + 1} is in compliance with the prerequisite that networks should only
comprise clones from the same subset of data.

2.5 Linear relationship between TCR and expression of T cells

In this work, we assumed a linear relationship between TCR distances and expression distances of T cells in each
network. One might argue that the linear relationship is not very obvious, as we showed in Extended Data. Fig. 2. In
fact, in Extended Data. Fig. 2, these distances are calculated for all TCR clones of one dataset in a pair-wise manner.
Therefore, in the right segments of each figure, where the TCR distances are large, such distances are more likely to
be from pairs of T cells from different networks. In the left segments, the distances are more likely to be from pairs of
T cells from the same networks. We only assume the intra-network distances to follow the linear relationship in the

4
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tessa model. As can be seen from Extended Data. Fig. 2, the relationship between TCR and expression in the left parts
of the figures conform better to a linear relationship. For Extended Data. Fig. 2a, we subset the pairwise distances
and kept only the top 10% pairs with the smallest TCR distances, likely more of which are intra-network pairs. The
correlation coefficient increased from 0.493 (overall) to 0.784 (within this subset), as expected.

We also look further into the networks inferred by tessa and show that the intra-network pairs of the top three net-
works with the most TCR clones (SN1 Fig 2, dashed lines: regression line between expression distances and TCR
distances, data from the healthy-CD8-3 dataset referred in the Supplementary Table.1). The intra-network expression
and TCR distances confirm better to a linear relationship when viewed in this way.

SN1 Fig. 2: Scatter plots showing the linear relationships between the intra-network distances.

On the other hand, assuming a linear model between TCRs and expression of T cells will have the advantage of being
simple, which can avoid inadvertently forcing a very high and artificial correlation between TCRs and expression. But
our future work can explore other possibilities of assuming non-linear relationships in the tessa model.

3 Simulation study

We conduct simulation studies to evaluate the performance of tessa under various settings. The simulation procedure
is described as follows:

(a) We first define K networks for one simulation experiment denoted as Φ = {ϕk}, for k = 1, ...,K, where ϕK ,
drawn from U(1, 2ϕave), represents the number of clones of each network, and ϕave is the average number of
clones amongK networks. Depending onK and Φ, we generate the simulated network membershipsM = {mi},
where mi ∈ 1, ...,K, for each of the clone i. To simplify the simulation scheme, we skip the step of combining
data from different T cells in the same clone when handling the real data. Instead, we directly generate the
clone-level data.

(b) Each bq, for q ∈ 1, ..., Q, is randomly drawn from an inverse-gamma distribution, the shape and the scale of
which are determined to match the real data, we let Q = 30, the shape of the inverse-gamma distribution equals
to 5, and the scale equals to 2.

(c) For each network, each element of the ’putative center’ tk,0 is randomly drawn from a normal distribution

N(0, (
∑Q
q=1

√
bq

Q ×tdist)2), where k ∈ 1, ...,K, and tdist is a diffusion factor that controls the overall TCR distances
between network centers.

(d) For each network, the embedding of each TCR clonotype sequence is simulated from a normal distribution
N(tk,0,q, bq), where q = {1, ..., Q}, and ϕk different TCR sequences are simulated for the network k. All simulated
TCR sequences are denoted as a matrix of t.

(e) Next, we calculate dtk,ck,r for all k = 1, ...K with t and t0. To simplify the calculation, here we assume that tk,0 and

ck are the same, and both of them are real TCR centers for networks. Therefore, dtk,ck,r =
∑Q
q=1

(tk,r,q−tk,0,q)2
bq

,
where k = 1, ...K.

(f) Next we simulate the expression data for each network. We define a three-element expression vector for each
clone. To simplify the simulation, we assume there are only three genes. Actually, any number of genes can
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3.1 Validation of the simulated data 3 SIMULATION STUDY

be assumed, which has limited effect on the simulation results. Again, since the expression distance in tessa
is calculated between two TCR clones, here we generate simulated expression data at the clonal level directly.
For each network, each of the three elements of a ’putative expression center’ ek,0 is randomly drawn from a
normal distribution N(0, 100)), where k = 1, ...,K, and we define the variance according to our observation of
the real data. Only the center clones’ expressions are simulated in this way. The other clones’ expression are not
simulated directly, but rather the clone-to-clone expressional distances are simulated as described below.

(g) Depending on the linear relationship we described in (1), for each of the network, dek,ck,r is simulated from
dtk,ck,r. For each network k, the expression distance dek,ck,r between clone r and center TCR ck (which is replaced
by tk,0) is randomly drawn from N(ek,0, e

2
dist × dtk,ck,r), where k ∈ 1, ...K, and edist is a diffusion factor that

influences the approximate expression distances between network centers.

We consider the basic simulation setting with K = 500, ϕave = 10, tdist = 1.5, and edist = 1, to match the real data.
Additioanl scenarios are considered in Section 3.3. For each scenario, we repeat the simulation study five times using
different random seeds. The MCMC was iterated for 1,000 times, with the first 500 burn-ins.

3.1 Validation of the simulated data

To demonstrate that the data from our simulation experiments mimic real data, we first explored the simulated embed-
ded TCRs with t-SNE plots (the same method as Fig. 1e in the main article) and one typical example (one simulated
dataset with K = 500, ϕave = 10, tdist = 1, edist = 1) is shown in SN1 Fig 3. According to the simulation figure (SN1
Fig 3 below) and Fig. 1c of the main text, the ratios fo within and between network TCR distances, in the simulated
and real data, are on a comparable scale.
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SN1 Fig. 3: T-SNE plots based on the TCR embeddings of the simulated TCR networks. TCRs in the same network were in the
same color. Only the networks with more than 18 TCRs were shown to avoid the figures being overcrowded. The simulated TCR
embeddings were adjusted by the simulated weighting factor b.

We further calculated the pair-wise TCR distances and expression distances of the simulated TCRs, and analyzed the
correlation between the two sets of distances using the same method as in Extended Data Fig. 2 in the main article.
Typical examples (two simulated datasets with K = 500, ϕave = 10, tdist = 1.5, edist = 1, and different random seeds)
were shown in SN1 Fig 4 (the r represents the Pearson correlation coefficient and the shaded area denotes the 95%
confidence intervals for linear regressions). As expected, we found that the similar simulated TCRs were more likely to
share similar simulated expression profiles, and the Pearson correlation coefficients between the two sets of distances
were similar to those in the real datasets.

3.2 Diagnosis for convergence

We employed trace plots and auto-correlation functions (ACFs) to investigate the convergence of the MCMC process
in the tessa model. Key parameters including a, and σ were examined. SN1 Fig 5a and SN1 Fig 6a shows that
four parallel chains, initialized from four different random starting points, were well-mixed within 1000 iterations,
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3.3 Model performance evaluation 3 SIMULATION STUDY

●

●

●

●●

●

●
●
●●
●●
●
●
●
●
●
●

●
●●
●

●
●

●

●
●
●●●

●

●

●

●

●

●
●
●

●●
●

●
●
●

●

●

●
●
●
●●●

●

●

●

●
●

●

●
●
●
●

●
●

●●

●●

●●

●

●
●

●
●

●
●

●●

●

●●

●

●

●

●●●
●
●

●

●

●●
●

●
●
●

●

●
●

●

●

●

●●●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●●●●

●●●
●
●

●

●

●

●
●
●●

●

●

●●

●

●

0

200

400

600

0 50 100 150
TCR distances

E
xp

re
ss

io
n 

di
st

an
ce

s

r = 0.424

●

●
●●
●●●

●
●
●●
●
●
●●
●●●

●●
●●

●●●●
●
●
●●●●

●
●
●

●
●
●●●●●●

●
●
●
●
●●●●

●
●
●●●●

●
●
●
●●●●

●●●
●●●

●●
●●●●●●

●●●●

●
●
●
●

●●●
●
●●
●●●●

●●●●
●●
●
●
●●
●●●

●●
●
●
●

●

●
●●
●
●
●●●

●

●
●
●

●

●●
●

●●
●●●

●
●●
●●
●●
●

●
●●●●

●

●●

●
●

●
●

●●●

●●

●
●

●
●
●

●

●

●

●

0

250

500

750

1000

0 50 100 150
TCR distances

E
xp

re
ss

io
n 

di
st

an
ce

s

r = 0.605

SN1 Fig. 4: Scatter plots showing the relationships between the distances of TCRs and the distances of RNA expression levels.

indicating convergence of of parameters a and σ in the tessa model. From SN1 Fig 5b and SN1 Fig 6b we found that the
autocorrelations of the log-scaled parameters decreased to being not significantly different from zero at about lag 3,
which indicates only small serial correlations and our trace plots are reliable diagnostics for convergence. Furthermore,
we calculated the Gelman-Rubin statistic for all the key parameters, where b achieved a point estimate = 1.05 with
95% upper limit being 1.07. For a and σ, the point estimates were 1.07 and 1.11, and the 95% upper limit were 1.23
and 1.31, respectively. The Gelman-Rubin diagnostic results also suggested the MCMC procedure converged in tessa.
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SN1 Fig. 5: Trace plots and auto-correlation function plots of σ in four parallel chains.

3.3 Model performance evaluation

First we examined the ’accuracy’ of the tessa networks measured by the Adjusted Rand Index (ARI). ARI estimates the
similarity between the simulated clonal memberships Msim = {m1,m2, ...,mi, ...,mN}, where mi ∈ {1, 2, ...,K} and
N is the total number of clones, and the tessa predicted clonal meberships Mpred. An ARI of 0 represents random
labeling, and 1 means that the Msim and Mpred are identical. We vary the following parameters to create different
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4 HYPER-PARAMETER SELECTION IN REAL DATA
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(b) Auto-correlation plots

SN1 Fig. 6: Trace plots and auto-correlation function plots of a in four parallel chains.

simulation scenarios: K ∈ {100, 200, 300, ..., 900, 1000}, ϕave ∈ {1, 2.5, 5, 7.5, 10, 12.5, 15}, tdist ∈ {0.5, 1, 1.5, 2, 2.5, 3},
and edist ∈ {0.01, 0.1, 0.5, 1, 1.5, 2}. We varied one parameter at a time from the basic setting described in the end of
simulation procedure. SN1 Fig 7a and SN1 Fig 7b showed that within the range of numbers used in the simulation,
the number of the total TCR network in each dataset did not have much influence on the accuracy. However, building
tessa networks with larger sizes achieved a higher modeling accuracy. We evaluated the real data and found that,
mostly K is larger than 500 and smaller than 1000, and the average number of clones in the networks ϕave = 10.
Tessa has achieved high ARIs (ARI > 0.90, SD < 0.10) in the simulation tests within the range of the real data.

Next we evaluated whether the tdist, the approximate TCR distances between networks, have influence on the accu-
racy. As we expected, increasing the tdist resulted in a more dispersed network structure. Therefore, the results of
tessa are more accurate as the networks become better separated by large distances (SN1 Fig 7c). In the real data,
the estimated tdist value is about 1.5. In SN1 Fig 7c we observed that tessa achieved ARI = 0.94 (SD < 0.001)
when tdist = 1.5. Next we evaluated the edist, which controls the clone-to-clone expression distances within networks.
Increasing the edist resulted in higher ARIs, but the influence was limited (SN1 Fig 7d), which is expected as tessa
does not primarily rely on the clones within the same network have similar or different expression profiles, but rather,
emphasizes the regression between expression and TCRs within each network. In the real data, the estimated edist
value ranges from 0.1 to 1. We found in SN1 Fig 7d that tessa achieved ARI between 0.91 and 0.94 (SD < 0.001)
within the real data range of the edist.

Lastly, we evaluated the tessa estimations of the weighting factor b. As we elaborated in the main article, the weighting
factor b weights the importance of each digit of the TCR sequence embedding, which respect to the expression of T
cells. We compared the bsim vectors that are simulated and the bpred vectors from the tessa estmation results. Under
all simulation conditions,the Pearson correlation coefficients were close to 1, with typical examples shown in SN1 Fig 8.

4 Hyper-parameter selection in real data

In the real data analysis, a standard diffuse prior was chosen for most hyper-parameters, and the inference is not
sensitive to the choice of the value. There are two hyper-parameters that were tuned during the tessa model building,
which are g and ξ. g is used in the prior for ak in the formula (11). g stayed the same for all real datasets and had
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SN1 Fig. 7: ARIs of different simulation experiments. Error bars plotted as SDs of 5 random repeats, hard to be observed because
of small differences.

limited effect on the final estimation outcome. g was chosen to be 0.001 to achieve the best convergence of the model.
The hyper-parameter ξ is from the formula (9). ξ determines how likely TCRs are clustered into networks (larger
number leads to fewer networks). ξ was 25 (default) for all datasets, except for the four healthy-CD8 datasets (Sup-
plementary Table. 1), where ξ was 40. This choice was made to ensure the clustering rates of TCRs are comparable
across the different datasets.

In summary, these simulation analyses have established the robustness of tessa, its good statistics characteristics, and
its capability of accurately mapping the functional landscape of TCR repertoire.
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SN1 Fig. 8: Correlation between bsim generated in the simulation and bpred estimated by tessa.
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Supplementary Note 2: Further bioinformatics analyses and discussion of tessa 

Functional differences between center and non-center T cell clones 

The 10X Immune Profiling technique (the 4 10X datasets) is very powerful and has incorporated 

multiple modalities. One of the modalities is the measurement of expression of a number of cell 

surface protein markers (in addition to regular scRNA expression). The captured markers for 

these cells include cell type sorting markers such as CD3 and CD8, and there are two, HLA-DR 

and PD-1, which can characterize T cell functional status. We examined the top 1% (in terms of 

network size) TCR networks that also have at least 3 different TCR clones, and divided the 

clones into three segments (group 1, group 2, and group 3), according to their tessa-weighted 

distances from the center clones, where group 1 are the most close clones to centers and group 3 

are the most distant clones. We examined the expression of HLA-DR and PD-1 on T cells falling 

into each segment. It is quite interesting that, in each of the four datasets, a decreasing gradient 

can be seen, which means that T cells with TCRs more similar to the center TCRs have higher 

expression of HLA-DR and PD-1. As HLA-DR and PD-1 are markers of T cell activation47-49, 

the results suggest that there is a gradient over group 1 to group 2 to group 3 such that the T cells 

with TCRs more similar to the center TCRs are more activated, consistent with their higher 

clonal expansion (Fig. 2c-e). For all boxplots appearing here and below, box boundaries 

represent interquartile ranges, whiskers extend to the most extreme data point which is no more 

than 1.5 times the interquartile range, and the line in the middle of the box represents the median. 



 

 

SN2 Fig. 1 The expression of HLA-DR on the surface of the T cells in the TCR clones that were 

divided into group1, group2, and group3, across the 4 10X datasets. One-sided Jonckheere test 

was applied to test if there is a decreasing trend of HLR-DR expression from group 1 to group 3. 

The Fisher’s combined p-value for the four datasets is 1.80x10-3. The number of clones in the 

three groups are: N1=7, N2=6, N3=19 (Donor 1), N1=4, N2=4, N3=11 (Donor 2), N1=4, 

N2=4, N3=12 (Donor 3), and N1=7, N2=7, N3=20 (Donor 4), respectively. Same for the figure 

below.  



 

 

SN2 Fig. 2 The expression of PD-1 on the surface of the T cells in the TCR clones that were 

divided into group1, group2, and group3, across the 4 10X datasets. One-sided Jonckheere test 

was applied to test if there is a decreasing trend of PD-1 expression from group 1 to group 3. 

The Fisher’s combined p-value for the four datasets is 1.75x10-3. 

Furthermore, using the RNA expression data of the T cells, we examined genes that showed a 

monotonous increasing or decreasing trend over group 1 to group 2 to group 3. We input them 

into the GOrilla server50,51. We found that, in these datasets, the monotonously changing genes 

are enriched in immune activation (group 1>group 2>group 3) and metabolomic terms (group 

1<group 2<group 3), which echoes the PD-1 and HLA-DR results above. Due to the issue of 

space, we only show the Gene Ontology results from the first dataset. The P values shown are 

from two-sided Hypergeometric tests. The original P values and False Discovery Rates (FDRs) 

of multiple comparisons are both shown.  

 

 

 

 



 

SF2 Table 1 Up-regulated pathways in group 1 T cell clones 

 

SF2 Table 2 Up-regulated pathways in group 3 T cell clones 

 

Further benchmarking tessa against GLIPH, for discovering novel biological insights 

We carried out more systematic analyses to compare the results from tessa and also from GLIPH 

(purely TCR-based analyses) for the datasets used in Fig. 234, in order to demonstrate the 

capability of tessa in deriving novel biological insights in real data applications. 

First we performed the analyses as we did in Fig. 2e, but with GLIPH. Here we show that 

GLIPH is not able to reveal the gradients of antigen binding affinity within the TCR clusters it 

identified. 



 

 

SN2 Fig. 3 GLIPH cannot reveal the decreasing gradient of antigen binding strength for TCRs, 

along with increasing dissimilarity to the center TCRs of the TCR networks. The same analysis 

was done as in Fig. 2e, but with GLIPH instead of tessa. The TCR clonotypes from each dataset 

were divided into six groups of equal size (N(TCR)=198).  

We also performed GLIPH clustering on the BCC datasets of Fig. 3. As in our main text, we 

defined the ‘pre-1, pre-2, post-1, post-2’ subsets based on the clustering results. That is, post-2 

clones are from clusters including only post-treatment clones, pre-2 clones are from pre-

treatment-only clusters, and pre-1 and post-1 are from mixed clusters. We calculated pathway 

activity scores for the four subsets. The exhausted pathway is attached below. The figures show 

that GLIPH clustering is unable to distinguish post-treatment clones into two subsets, because all 

post clones were clustered with pre clones, leaving no post-treatment only clusters.  

 

SN2 Fig. 4 GLIPH clustering is unable to distinguish post-treatment cells into two subsets. The 

numbers of T cells in the six subgroups analyzed were: responders: N(pre-1)=1638, N(post-

1)=830, N(pre-2)=859; non-responders: N(pre-1)=1023, N(post-1)=828, N(pre-2)=1029, 

respectively. 

Next we applied GLIPH clustering on all the single cell datasets and again calculated the 

‘unexplained variations’ as we did in Fig. 4d to test the level of constraint on transcriptomic 

variations by TCRs, in the GLIPH clusters. In Fig. 4d, we took the top 20%, 40%, 60%, and 

80% tessa networks with the largest numbers of unique TCR clones. But GLIPH identified much 



 

fewer clusters with each cluster being much bigger, in each dataset. Therefore, we cannot take 

this subsetting approach for GLIPH, and thus have showed all GLIPH clusters below: 

 

SN2 Fig. 5 The unexplained variance in gene expression of all GLIPH clusters from twelve 

tumor samples of different cancer types and seven healthy donors.  

Our results show that, unlike tessa, GLIPH cannot reveal the differences in unexplained 

variations between tumor and normal scRNA datasets.  

Controlling for T cell stages when interpreting the TCR-transcriptome associations 

In Fig. 4, we derived the observation that the unexplained variations by TCRs are much larger 

for the tumor datasets than the normal datasets. As we discussed in our paper, TCRs and 

intrinsic/extrinsic cues both impact the functions of T cells, which is also the conclusions of 

Tubo et al12 and Buchholz et al13. Therefore, it seems possible that the different levels of 

TCR/transcriptome association are strongly influenced by the differential stimulations in the 

tumor and normal contexts. To investigate this possibility, we divided the T cells into different 

stages, and refined our analyses in Fig. 4d.  

We first categorized the T cells in each tumor/normal dataset into different functional states. As 

in Yost et al31, we observed that the T cells formed a V-shaped distribution. At the joint of the 

two branches, are the naive cells and memory cells. The pseudotime analysis cannot distinguish 

the naive and memory cells, which is also the same as in Yost et al31. One of the branches has the 

activated cells and the other branch has the exhausted cells. We distinguished the activated and 

the memory cells by expression of marker genes. Specifically, we compared the average 

expression levels of five marker genes between the cells from the two branches. The cells in the 

activated branch should have higher expression levels of IFNG, TNF and FOS, and the cells in 

the exhausted branch should highly express ENTPD1 and HAVCR231. One example dataset was 

shown below (the Breast-1 dataset of Supplementary Table 1)  



 

 

SN2 Fig. 6 Pseudotime of T cells. The pseudotime of 2,403 T cells was inferred and overlaid 

onto the diffusion map.  

Next we repeated the analyses in Fig. 4d in each of the naive/memory, activated, and exhausted 

stages. In Fig. 4d, we carried out a percentage-wise sub-sampling approach at several cutoffs and 

observed the same phenomenon. Here, as we limited ourselves to a subset of T cells each time 

(e.g. naive/memory), this sub-sampling approach does not work, as we have lost sample sizes in 

this sub-sampling process. Therefore, the analyses below included all available cells. 

 

SN2 Fig. 7 Unexplained variances by TCRs in each of the naive/memory, activated and 

exhausted stages in the twelve tumor datasets and seven healthy datasets.  

From the figure above, we make two interesting observations:  

(1) The unexplained variances in the activated and exhausted cells in the tumor datasets are still 

larger than the normal datasets (P-values of 0.117 and 0.077 from one-sided Student’s T-tests, 



 

respectively), but the differences are smaller than in Fig. 4d. The unexplained variances in the 

naive/memory cells serve as a control (P-value of 0.186 from one-sided Student’s T-test), which 

shows an opposite trend. These differences suggest that indeed the different functional statuses 

of T cells in tumor and normal contexts, as a consequence of differential stimulation, strongly 

influence how much TCRs constrain the functions of the T cells. Furthermore, the fact that 

activated and exhausted T cells still show more unexplained variances in tumor contexts than 

normal contexts suggest that there could be additional non-TCR-dependent cues from the tumor 

micro-environment that affected the functions of T cells that are supposed to be executing 

cytotoxic roles in tumor cells. 

(2) On the other hand, in the normal contexts, T cells in the activated and exhausted stages have 

less unexplained variances by the TCRs than the naive/memory cells. But this phenomenon is 

reversed in the tumor context. This is also interesting, as in the normal contexts, the 

environmental cues are relatively quiescent, and TCRs may play more important roles in 

influencing T cell transcriptomics, when activated in a TCR-dependent manner. In comparison, 

the tumor microenvironment likely confers more complicated cues upon the T cells, especially 

the activated and exhausted subsets, so that TCRs of T cells could play less influential roles. 

Re-coloring Fig. 3a 

To make it easier to discern the different groups of patients (e.g. responder pre-1) in Fig. 3a, we 

have used 8 different colors to re-label these 8 different groups and shown the figure below. 



 

 

SN2 Fig. 8 t-SNE plot of the pre- and post-treatment T cells from all the BCC patients (dataset 

BCC, Supplementary Table 1). The colors represent clonal level labels.   

This coloring scheme will make it easier to discern the 8 different groups of cells. But the 

coloring scheme in Fig. 3a makes it easier to be compared against Fig. 3b, which has a similar 

coloring scheme. We encourage the readers to consider these three figures together to visualize 

the changes between clone level labels and network level labels. The group of T cells that we 

want the readers to focus on is the “responder post-1” T cells, which is colored in orange in SN2 

Fig. 8. 

Quantifying the mixing effects of the clones in the CTCL patient and the healthy donor 

For Fig. 4ab, we objectively quantified the mixing effects of the clones with Kullback-Leibler 

(KL) divergence between the original clonal distributions and randomly mixed distributions. For 

each dataset, we fixed the positions of cells on the t-SNE plot (Fig. 4ab) and gridded the t-SNE 

space into n x n (we selected n=10) squares. For cells from each clone, we calculated their 

frequency in the n2 bins according to their t-SNE coordinates. Then we randomly permuted the 

clone labels of the cells and calculated their random frequency in these bins again. Then for each 

clone, a KL divergence statistic between the two sets of frequencies was calculated and regarded 

as ‘the relative difficulty for one clone becoming randomly distributed around the t-SNE space’. 



 

The KL divergence calculation was repeated 1,000 times for each clone and the maximum S.D. 

across all the clones was 2.8. The 1,000 repeats were averaged to generate the KL divergence for 

each clone. As we show below, the healthy control clones have generally larger KL divergences. 

Therefore, the clone frequency distributions are less random or less ‘mixed’ than those from the 

CTCL patients. One-tailed student’s t-test was performed between the two groups of KL 

divergence statistics, and the P-value was 0.011.  

 

SN2 Fig. 9 KL divergence statistics of the CTCL T cell clones and the healthy donor T cell 

clones for quantifying the mixing of the clones in the t-SNE space. N(CTCL)=416 and 

N(Healthy)=433. 

This KL divergence calculation used the true sample size and clone size information, which were 

the same for every round of simulation. Therefore, sample sizes and clone sizes were naturally 

controlled.   

Additional discussion on the significance of tessa 

Here we provide additional discussions of the significance of our work. They are adapted from 

the comments of one of our reviewers, whom we acknowledge deeply for providing such a nice 

summary of our work.  

Tessa is built upon the landmark studies of GLIPH and TCRdist, which allowed for an analysis 

of ‘likeness’ or ‘distance’ between TCRs. Prior to this, TCRs were considered either clonally 

distinct or clonally identical, and therefore analyses of TCR repertoires were limited in that there 

was no provision for appreciating the ‘effective diversity’ of any epitope specific population. Our 

current study builds significantly on those by overlaying an analogous TCR distance algorithm 

with an analysis of transcriptional distance, which is of huge significance to the field especially 

in light of the numerous platforms now that support simultaneous resolution of both TCR 

sequences and transcriptional profiling. The bottleneck now really is in the analysis and 



 

interpretation of such parallel datasets and an algorithm, such as tessa, which aligns the two, 

would provide a substantial advance than what is currently available.  

This work is powerful as it will provide not just critical fundamental information about the 

extent, to which TCR groupings are associated with distinct transcriptional profiles (and thus the 

extent to which the TCR is responsible for transcriptional phenotypes), but will enable the 

identification and selection of functionally potent TCR groupings when determined in the 

context of epitope specific populations. This in turn could facilitate the selection of TCRs for 

engineering/optimization/expression in clinical scenarios for the treatment of chronic viral 

infections or cancer immunotherapies. As an extension, one can imagine tessa facilitating the 

structural resolution of TCR recognition of pMHC class I proteins that drives a transcriptionally 

optimal phenotype. That is, by linking TCR clonotypes with transcriptional profiles, it will 

facilitate a deeper understanding of the key recognition characteristics that underpin this 

association. 
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Supplementary Table 1 Data cohorts and details. 

Cohort Reference 
Accession 
methods 

#T cells 

#Unique 
TRB 

sequenc
es 

Role Data type 

TCGA Citation 23 

https://gdc.cancer.g
ov/about-

data/publications/pa
nimmune 

204,881 181,787 
Training 

auto-
encoder 

TCRs called 
from tumor 
RNA-Seq 

Kidney-
bulkRNA 

Citation 24 

https://github.com/jc
ao89757/TESSA/tre
e/master/Tessa_rel

eased_data 

80,801 75,157 
Training 

auto-
encoder 

TCRs called 
from tumor 
RNA-Seq 

IEDB 
https://www.iedb.o

rg/ 

https://www.iedb.org
/database_export_v

3.php 
93 58 

Training 
auto-

encoder 

TCR 
database 

export 

McPAS Citation 26 
http://friedmanlab.w
eizmann.ac.il/McPA

S-TCR/ 
702 521 

Training 
auto-

encoder 

TCR 
database 

export 

NSCLC-1 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

https://support.10xg
enomics.com/single

-cell-
vdj/datasets/2.2.0/v
dj_v1_hs_nsclc_5ge

x 

1,741 1,401 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

NSCLC-2 Citation 26 EGAS00001002430 3,628 845 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

CRC Citation 27 EGAS00001002791 3,463 891 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

HCC Citation 28 EGAS00001002072 3,536 2,506 

Testing 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Breast-1 Citation 29 
GSE114727, 
GSE114724 

6,376 4,145 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Breast-2 Citation 29 Same as above 6,289 4,028 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Breast-3 Citation 29 Same as above 4,455 2,246 
Training 

auto-
encoder & 

ScRNA-Seq 
multiplexed 
with TCR-



Tessa Seq 

Breast-4 Citation 29 Same as above 4,840 2,452 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Breast-5 Citation 29 Same as above 4,189 2,243 

Training 
auto-

encoder & 
Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Healthy-CD8-1 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

https://www.10xgen
omics.com/resource

s/application-
notes/a-new-way-of-
exploring-immunity-

linking-highly-
multiplexed-antigen-

recognition-to-
immune-repertoire-

and-phenotype/ 

12,784 9,502 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Healthy-CD8-2 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

Same as above 16,246 4,846 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Healthy-CD8-3 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

Same as above 7,839 4,389 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Healthy-CD8-4 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

Same as above 10,873 6,817 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Healthy-
PBMC-1 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

https://support.10xg
enomics.com/single

-cell-
vdj/datasets/2.2.0/v
dj_v1_hs_pbmc_5g

ex 

709 589 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Healthy-
PBMC-2 

Chromium Single 
Cell Immune 

Profiling Solution 
on the 10x website 

https://support.10xg
enomics.com/single

-cell-
vdj/datasets/3.0.0/v
dj_v1_hs_pbmc2_5

gex_protein 

540 450 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Melanoma Citation 30 GSE123139 3,615 1,690 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

BCC Citation 31 GSE113590 6,207 2,482 Tessa 
ScRNA-Seq 
multiplexed 
with TCR-



Seq 

ECCITE-CTCL Citation 16 GSE126310 1,103 416 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

ECCITE-ctrl Citation 16 GSE126310 1,462 433 Tessa 

ScRNA-Seq 
multiplexed 
with TCR-

Seq 

Glanville Citation 10 
https://www.nature.c
om/articles/nature22

976#MOESM1 
704 207 

Test 
antigen-

specificity 

TCR-
antigen 

specificity 
data 

Dash Citation 11 SRP101659 415 276 
Test 

antigen-
specificity 

TCR-
antigen 

specificity 
data 
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Supplementary Table 2 The genes in the T cell functional pathways
related to Fig. 3e-g and Extended Data Fig. 6.
Naive Memory Activated Exhausted Inhibition
IL7R GZMK IFNG GZMB TGFB1
PABPC1 CST7 JUNB GNLY LDHA
CCR7 DUSP2 SLC2A3 ENTPD1 FTH1
RPS12 SH2D1A CD69 PRF1 SRGN
FTH1 TRAT1 NFKBIA KRT86 MTRNR2L8
LTB TC2N PPP1R15A ACP5 SRSF2
ANXA1 CMC1 TNF GZMH CREM
TCF7 LITAF NR4A2 GAPDH RPS26
S1PR1 EOMES FOS AC092580.4 SH2D2A
RPL13 GIMAP4 CCL4 GALNT2 PABPC1
MT-ND2 CNN2 NR4A1 ITGAE HNRNPUL1
EEF1B2 COTL1 DUSP1 LAYN ATP1B3
CD55 RPS15A HSPA1B CTSW ZFP36

CXCR3 IER2 CXCL13
LDHA GADD45B TNFRSF18
RPS26 JUN AHI1
TRMO CSRNP1 CXCR6
FAM102A CDKN1A VCAM1
APOBEC3G TSC22D3 JAML
MTRNR2L8 ALOX5AP
IL9R LAG3
TGFB1 LSP1
HLA-B PTMS
PLP2 HLA-DRB1
CCR7 HLA-DPB1

CCL5
CD74
HLA-DRA
HLA-DPA1
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Supplementary Table 2 The genes in the T cell functional pathways related to Fig. 4e.
IL-2 pathway #1 IL-2 pathway #2 IFN-a/b IL-12 pathway #1 IL-12 pathway #2 Control pathway #1
IRF4 NUP62 APBA2 DCAF17 TPTE IPMK
CD69 ESM1 ZNF574 PAPPA2 CUL2 INPP5D
BATF NPLOC4 ZNHIT3 C2orf88 CCDC70 ALAS2
CCR7 TMPO ZDHHC9 AVEN FANCM YWHAE
IL2RA CD81 XCR1 MB21D1 CEP192 ATG4B
PRDM1 APIP WNT10B GCAT CCDC122 HADHB
MTOR ATP1A2 VAPA PTPRM HAUS6 EFTUD2
HRAS FARP1 UFD1L TRAT1 GPR34 CCNE2
KRAS MAPRE2 TUSC2 ATP1B3 PTGER2 SRSF2
PRF1 RAB6A TULP3 GUCY2C PCGF6 GSTA1
GZMB SH2D2A TTF1 CAPN9 UHRF1BP1L GNS
IFNG DNA2 TSFM NEURL RIBC1 FMO5
HMGCR CIT TRHR LOC389493 USP46 PHKA1
 PDSS1 TPBG DISP1 MDM2 SLC27A2
 VASH1 TMEM85 GTF2H1 PPP1R15B GUCY1A2
 CBFB TMEM30B RAB1A TNPO3 PIDD
 CARHSP1 TMEM159 TIPRL ORC2 ALG9
 UBR7 TIGD5 ZCCHC2 NPEPPS UGT2A3
 TPBG THOC7 RPN1 GRINA CYP2C9
 CCDC41 THBS3 C9orf41 SAMSN1 GM2A
 ANGPTL2 THAP7 MAPRE1 VNN1 PPP1CA
 G2E3 TFEB CEP57L1 LARP4 GRIN2A
 RPA2 TEKT2 TMEM161B MIS12 PRKACG
 STIL TBPL1 CLP1 ASZ1 LDLRAP1
 RBM44 TBC1D23 EIF2B3 MPHOSPH10 RAF1
 STK39 TALDO1 SSPN PLS3 FLT1
 BMP2K SYT7 MLF1IP RAD50 PRPF38A
 WDR62 SYNGR2 BTD UBE2Q2 GTF2H3
 SOD1 SWAP70 ST18 GNL2 PLCD1
 ICA1 STX2 ACTC1 GOLGA7 AOC3
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 CA13 SRPK1 MORC2 SCN7A NEU1
 PMCH SRMS EEPD1 KPTN PMAIP1
 RPA1 SPATA5 IMP4 CEP170 ADCY9
 CLIC4 SON KCNE3 FOLR2 SYNJ1
 CASP7 SNX2 TMEM181 CX3CR1 DCXR
 ACTG1 SLC6A6 WDR45L PDE4DIP ABCA1
 C6orf168 SLC38A4 UMODL1 DNM1L BRAF
 PRICKLE3 SLC35A2 PGM5 HELQ GGT1
 DUSP14 SLC30A1 TRIM66 SESTD1 PPAP2B
 POLE SLC25A28 ZNF18 GSPT2 GYS2
 PMVK SLC22A12 MAB21L3 EEF2K ADSSL1
 FUT4 SLC20A1 GNPDA2 FAF2 FTMT
 EXPH5 SIRT2 SEC24D SLC33A1 UGT1A5
 GPD2 SFTPC SGTA RNF115 ACO1
 LGALS1 4-Sep MED7 PTPLB SDS
 LSM2 10-Sep IL1RL1 CYSLTR2 ENTPD1
 DAP SENP6 FTSJD2 TERF2IP TREH
 LCLAT1 SEMA6C NUDCD1 HINFP CDA
 IL10 SEC23A LRRC59 PTMA GNS
 MYBL1 SEC22B AGPS UTP14A ABL1
 PSMD14 SAR1A MDH2 USP1 HADH
 AMDHD2 SAA4 SBDS NEK4 ADH1A
 EIF4H RYK C15orf57 TIAL1 ITPKB
 PIF1 ROBO3 LCOR HOOK1 NT5C2
 ACER3 RNASE3 SHCBP1L CASP3 PSMD3
 TPI1 RGS4 TMEM97 ATP9B CYP1A1
 MMD RERE CHCHD2 NR4A1 PRIM2
 RDBP RENBP RGAG4 ACACA CRLF2
 BCAT1 REG3G PCCB MRFAP1 RPS6KA2
 HIF1A RAX C7orf42 SBF2 MCEE
 GNB4 RASA4 CKAP2L HNRNPD NRG2
 FBXO5 RAB5A RBL1 DARS PRPS2
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 KDM2B PTPN23 RGMA SCNN1G HMGCS1
 FAM81A PSTPIP2 SDR42E1 PPP1R3B B4GALT1
 ERBB3 PSMC1 ERP27 CBFA2T2 DRD4
 SERPINF1 PRSS58 C21orf91 ZC3H15 ALDH3A1
 INTS7 PRPF8 FSCN3 CLPX ADRB2
 RAD51AP1 PRPF39 RBM25 TBC1D7 PTH2R
 CENPN PRAF2 GALNTL5 NAV2 LYN
 SRGN POU3F3 NUDT3 HNRPLL MARS
 TRIP12 PON1 MRAS PRDM5 BMPR2
 GTSF1 POLR3D SERPINB11 SHROOM2 CASP3
 GINS2 POLR3A SGK1 ODF2L CCL26
 GLRX PLAU CDK9 IDI1 PGK1
 STAU2 PIP4K2C MRPS30 MRPL32 UGT2B10
 SLC25A20 PHLDA2 PCDHB3 VPS33B GGT7
 SLMO2 PGAM2 BDP1 LY96 ACSS3
 FAM111A PEMT BDKRB2 RFX5 GADD45B
 SHC4 PCDH7 RPAP3 SRGAP2 PPAP2C
 DSP P2RX6 APPBP2 GNA13 AK7
 SLC25A10 OR6A2 PLAG1 CDC14A ALG12
 TUBB3 OPRD1 DOPEY1 MRGPRF ABL2
 IL1R2 OMD NUCB1 TMX1 EGFR
 THOC6 ODZ1 SYT12 PVT1 CCR6
 DERL2 NUP62 B4GALT7 CPEB2 PRIM2
 OSBPL9 NRCAM CHIC2 APAF1 WARS
 ORC6 NKAIN1 BICD2 DNAJB2 PIP4K2B
 PRELID2 NCOA1 C20orf94 DNAJC3 BUB1
 ANXA7 NCK2 PRKACA SNX16 CALM2
 CHEK1 NAT6 IL12RB1 NFYA SETD1A
 INCENP NAB1 ST13 CENPF CMPK2
 LITAF NAA11 TOX3 ACER3 PLA2G3
 UBASH3B MYT1 XPNPEP3 TMBIM1 JMJD7-PLA2G4B
 CPD KAT7 DCTN5 TRO CACNA1S
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 RORC MYO10 GCNT2 LAGE3 GPAT2
 UBE2T MXI1 APIP DTX3 ODC1
 MTCH1 MTHFR POLR3A KDELC2 XCR1
 HMGN3 MSH3 GTF2F2 POMT1 POLR2H
 DEPDC1B MRPS7 GABARAPL1 TBL1X UGT2A1
 MELK MRPS18B XIST ABCA7 DCP1A
 TNFRSF9 MRPL3 DDX20 DHX29 RFC2
 HMGB3 MORC4 KIF5B MFSD6 ALOX12
 CYP11A1 MLLT1 CYP4A11 POLK ABCD2
 SPRED1 MINA CYP2C8 CTSD STX19
 KLHDC2 MIF4GD RGS13 ZHX3 PTPLB
 TSSC1 MFNG VWC2 EIF2AK4 PPP3CC
 H2AFX METTL7A RHBDL2 USP37 TP53AIP1
 CDC25C MEST C19orf28 PPAP2A POLD4
 SLC12A8 MCM5 ATXN1 CENPC1 DGAT1
 ZBTB32 MBD4 TAF9 SH3BGRL ASNS
 IL12RB2 MAST2 TOP3B UHMK1 SIAH1
 IFIH1 MAPKAPK5 GNGT1 AIFM2 PIK3CB
 DUSP4 LOC100506612 FAM120C SERPINB12 HSD17B2
 C9orf23 LITAF ACAD8 RNF11 LOC652346
 C9orf41 LGALS9B CCNO ARHGAP5 CCL14
 LRR1 LEPREL2 CERCAM NSMCE2 CPS1
 ABCC4 LCT PDE4D ADSS CDC5L
 MAP2K3 LAMA5 TNFAIP6 CCDC41 STX10
 RAF1 LAMA4 FAM53B BCAP29 SCP2
 TYMS KTN1 C17orf108 TBC1D5 FPGS
 GCNT1 KRT6A PAFAH1B1 PHACTR4 GADD45G
 GPR25 KPNA6 ALG14 SLC30A6 LYPLA2
 CCDC18 KLF4 DACH1 LGR4 PIGX
 FHL2 KLF12 MYO3B DEK SEPHS1
 SMC6 KCNK3 OAZ2 FBXW11 LDHD
 PCNA KCMF1 WNT5A HNRNPA3 LIPA
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 ERMN ITGAV DNAJB4 MMD ADI1
 C3orf37 IQGAP2 CLIC4 ARHGAP12 NDUFB6
 CYB5B INMT PIGH SLAMF6 ZNRD1
 PASK IL1R1 FAM65B RNF25 SLC8A1
 CYTH2 IL1A ACER2 A1CF STMN1
 PSMD13 IFIT3 CLASP1 TPMT CCNE2
 KIAA1522 IFIT2 U2SURP RAF1 MAP2K2
 ADAP1 IER3 EIF4A1 AHRR LTA
 HMOX1 IBSP SPG20  DCP1B
 KLC3 HTR3A GRPEL1  RAC2
 CKAP2L HSPA5 PPP2R5E  ADRA2A
 EHBP1L1 HPD SLC1A4  PRKACB
 RTCD1 HOXB7 HNRNPM  TCIRG1
 BRIP1 GRPEL2 BCAS1  AARS
 GSR GNPTG C17orf89  PLA2G3
 FAM156A GJA4 TRIO  ADH1A
 GSTM5 GFRA1 ELN  DLAT
 BCL3 GABRB1 COQ3  GOT1
 SEMA4C G0S2 KIRREL3  GALR2
 BLM FZD9 CYP7A1  GPX5
 EPDR1 FRAT1 ALX1  UGT2A3
 ANKRD50 FOSB DNAJC24  COX5A
 RAPGEF5 FOLR2 BCAP29  RPN2
 TREX1 FKBP5 AMMECR1L  CCR2
 C11orf31 FKBP10 NEU2  LPAR3
 FKBP2 FGD1 CSMD1  RPL34
 FOXM1 FCER2 EGLN3  BDH1
 C11orf51 FAM110A PSEN1  MGAT3
 SMTN EPHB2 CEP128  PDE6H
 SNRNP25 EOMES ASNS  GAD2
 SH3RF1 ENO1 ATF3  PSMC6
 KIF20B EIF2B4 FLJ37453  ACADM
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 STOM EFNA5 CD80  CARS
 CDKN1A E2F5 NDUFA12  DPYD
 TOX2 DVL2 VWA3A  RPL27A
 NUP93 DUT XYLB  ARSA
 EHD4 DPF3 DNAJC12  JMJD7-PLA2G4B
 PTGIR DNAJB13 C3orf22  MDH1
 POC1A DKK3 KIAA1161  CERK
 UBL4A DEK CLTC  TAF9
 NUCB1 DEGS1 DRGX  CD70
 FMR1 DDX10 ALS2  AHCY
 FIGNL1 DCAF13 NUP43  AWAT2
 ELF4 CYR61 KRT4  GFPT1
 GARS CYP2A6 QRICH1  TGFB1
 TIMP2 CTSC C9orf93  P4HA1
 TUFT1 CSRP1 DDX39A  LTB4R2
 SRSF12 CRX HDHD3  LIF
 KIF18A CREBBP SIPA1L1  CACNA2D4
 BEND4 COX7A1 TMED5  RPA3
 AGPAT9 COL8A1 RALYL  HAGH
 C16orf61 COASY PKD2L2  POLR2B
 NSMAF CMA1 ANKRD34A  S1PR4
 ARHGAP19 CLPTM1L CUL3  SEC11A
 GCG CLP1 TAF1B  GRID1
 EXO1 CIDEC IL10  GPD1L
 HMMR CFI LINC00301  AGTR1
 TUBE1 CELF1 EXOSC8  GNPDA2
 BLMH CDV3 NAA50  FABP7
 E2F8 CDKN2D GHSR  UGT1A10
 PRICKLE1 CD70 EIF3B  AMDHD2
 UBXN8 CCND1 EIF2B5  LSM3
 CDC45 CCL4 USP37  YWHAH
 BUB1 CCKAR YTHDF2  CCNB2
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 FRMD4B CCDC6 OR4E2  HGSNAT
 IQGAP3 CCDC28B TAL1  PPAP2B
 PYCARD CBFA2T3 EIF2C3  LAPTM4A
 KIF18B CAT SRRM1  RAD50
 RCC1 CAPZA2 LYPLA2  CCND2
 UBR5 CAMK2D P2RY14  ADH5
 POLH CA3 MMP3  PPCDC
 C15orf23 C9orf78 CLVS2  LAMTOR3
 CDK2AP1 C20orf30 PAK1IP1  GCAT
 MMP16 C12orf41 ABCC3  PSMB11
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Control pathway #2
B4GALT1
LAPTM4B
POLL
TAF2
DHRS9
CAMK2G
ALDH7A1
PLCB3
ALDH9A1
EHHADH
ABCA13
C1GALT1
LCMT2
CCKAR
ALDH9A1
PPP3CA
B3GNT1
UGT2B4
HTR4
RBX1
PNLIPRP2
GALC
CNTF
ATP2B2
FDFT1
DPYS
ABCB8
PSME2
ADORA2B
TRIM37
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FGF6
SUOX
HNRNPU
SULT2B1
GALT
QDPR
NAT6
HRH1
DNMT3B
PIK3R1
XAB2
MAP2K7
CLTB
TAB1
DGKQ
RELT
FPGS
MAN2B1
ATP6V0A2
IL15RA
GFPT2
GSTT1
RPA4
IDUA
RNASEH2A
RAC1
BCAT2
CYP26C1
TYMP
BUB3
LOC650621
CDC16
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PIK3CD
ATG12
POLR1D
ACOX2
CYP2E1
ACER2
RBKS
RPS9
CCNE1
ALDH2
ATP8
EHHADH
GNG7
EDAR
AP3S2
UGT2B7
COX7A2L
CACNA2D1
IL29
NT5C3
PNP
MGST3
CYP3A5
NT5C1A
CYP1A1
GSTA4
SOAT2
GRB2
ALDH6A1
PRUNE
ATP12A
CDKN2A
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IFNGR1
PTH2R
CLTA
GMPR
GUCY2D
LYN
ADCY6
ALDH9A1
ADCY1
CXCL10
MAP2K3
FADS2
GOT1
PGAM4
GSTK1
RPL3
FTCD
UGT1A10
PTAFR
BAAT
SPTLC2
PRKCA
FPR1
UGT2A3
PPAP2A
LPAR2
HTR1A
SYNJ2
ALDH5A1
RYR2
PRIM2
SORD
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CHMP4A
GLB1
LTC4S
SFN
RAD50
GK
GDF5
TRPV1
ETNK2
ABCC8
CYSLTR1
MKNK2
CACNA1I
ATP6V1H
RDH11
POLR3D
POLR1A
GGT1
HSD17B12
ALDH2
IDS
AKR1B10
GSTM3
AKT2
DUT
INS
EDC4
OXCT1
ZAK
M6PR
GNG12
UGT1A9
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PLD1
TSHR
GLS2
METTL2B
CCNE2
PIGZ
B4GALT4
GNG5
ALDH9A1
ACO2
BCAT1
CES1
UGT1A10
TBXAS1
GRM5
GSTM2
TAF11
VAMP3
IL5RA
ALDH2
PIGG
IFNG
FADS2
IFNA7
HAGH
AMH
TAF4B
ADCY8
GOT1
CHST4
POLR2G
IL4I1
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ULK2
PPAP2C
HRH1
TIAM1
CDC42
TREH
UGP2
ITCH
POLR3B
TCIRG1
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