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Table S1. Candidate motifs for ER signaling, cell cycle, and apoptosis. 

ER signaling Cell cycle Apoptosis 

V$AP1_C V$NKX3A_01 V$ALPHACP1_01 V$E2F_Q6 V$OCT1_06 V$AHRARNT_01 V$E2F1_Q6_01 

V$AP1_Q2 V$SP1_01 V$AP1_01 V$E2F_Q6_01 V$OCT1_07 V$AHRARNT_02 V$E47_01 

V$AP1_Q2_01 V$SP1_Q2_01 V$AP1_C V$E2F1_Q3 V$OCT1_B V$AHRHIF_Q6 V$E47_02 

V$AP1_Q4 V$SP1_Q4_01 V$AP1_Q2 V$E2F1_Q3_01 V$OCT1_Q5_01 V$AR_01 V$EBOX_Q6_01 

V$AP1_Q4_01 V$SP1_Q6 V$AP1_Q2_01 V$E2F1_Q4 V$OCT1_Q6 V$AR_Q2 V$ER_Q6 

V$AP1_Q6 V$SP1_Q6_01 V$AP1_Q4 V$E2F1_Q4_01 V$P53_01 V$AR_Q6 V$ER_Q6_02 

V$AP1_Q6_01 V$SRF_01 V$AP1_Q4_01 V$E2F1_Q6 V$P53_02 V$ARNT_01 V$FOXO3_01 

V$AP1FJ_Q2 V$SRF_C V$AP1_Q6 V$E2F1_Q6_01 V$P53_DECAMER_Q2 V$ARNT_02 V$FOXO3A_Q1 

V$CEBP_Q2_01 V$SRF_Q4 V$AP1_Q6_01 V$EBOX_Q6_01 V$SP1_01 V$ATF3_Q6 V$HAND1E47_01 

V$CEBP_Q3 V$SRF_Q5_01 V$AP1FJ_Q2 V$ETS_Q4 V$SP1_Q2_01 V$CREB_01 V$MAX_01 

V$CEBPB_01 V$SRF_Q5_02 V$ATF4_Q2 V$ETS_Q6 V$SP1_Q4_01 V$CREB_02 V$MYC_Q2 

V$CEBPB_02 V$SRF_Q6 V$CETS1P54_01 V$ETS1_B V$SP1_Q6 V$CREB_Q2 V$MYCMAX_01 

V$CREB_01 V$STAT_01 V$CMYB_01 V$ETS2_B V$SP1_Q6_01 V$CREB_Q2_01 V$MYCMAX_02 

V$CREB_02 V$STAT_Q6 V$CREB_01 V$MYB_Q3 V$TAXCREB_01 V$CREB_Q3 V$MYCMAX_03 

V$CREB_Q2 V$STAT1_01 V$CREB_02 V$MYB_Q5_01 V$TAXCREB_02 V$CREB_Q4 V$MYCMAX_B 

V$CREB_Q2_01 V$STAT1_02 V$CREB_Q2 V$MYB_Q6 V$USF_01 V$CREB_Q4_01 V$MYOD_Q6_01 

V$CREB_Q3 V$STAT1_03 V$CREB_Q2_01 V$MYOGNF1_01 V$USF_02 V$CREBATF_Q6 V$P53_01 

V$CREB_Q4 V$STAT3_01 V$CREB_Q3 V$NF1_Q6 V$USF_C V$DR3_Q4 V$P53_02 

V$CREB_Q4_01 V$STAT3_02 V$CREB_Q4 V$NF1_Q6_01 V$USF_Q6 V$E12_Q6 V$P53_DECAMER_Q2 

V$CREBATF_Q6 V$STAT4_01 V$CREB_Q4_01 V$NFY_01 V$USF_Q6_01 V$E2A_Q2 V$PBX_Q3 

V$CREBP1_01 V$STAT5A_01 V$CREBATF_Q6 V$NFY_C V$USF2_Q6 V$E2A_Q6 V$PBX1_01 

V$CREBP1_Q2 V$STAT5A_02 V$CREBP1CJUN_01 V$NFY_Q6 V$YY1_01 V$E2F_02 V$PBX1_02 

V$CREBP1CJUN_01 V$STAT5A_03 V$E2F_01 V$NFY_Q6_01 V$YY1_02 V$E2F_03 V$PPARA_02 

V$ELK1_01 V$STAT5A_04 V$E2F_02 V$OCT_C V$YY1_Q6 V$E2F_Q2 V$T3R_Q6 

V$ELK1_02 V$STAT5B_01 V$E2F_03 V$OCT_Q6 V$YY1_Q6_02 V$E2F_Q3_01 V$TAL1_Q6 

V$ETS_Q4 V$STAT6_01 V$E2F_Q2 V$OCT1_01   V$E2F_Q4_01 V$TAL1ALPHAE47_01 

V$ETS_Q6 V$STAT6_02 V$E2F_Q3 V$OCT1_02   V$E2F_Q6_01 V$TAL1BETAE47_01 

V$NFKB_C V$TAXCREB_01 V$E2F_Q3_01 V$OCT1_03   V$E2F1_Q3 V$TAXCREB_01 

V$NFKB_Q6 V$TAXCREB_02 V$E2F_Q4 V$OCT1_04   V$E2F1_Q3_01 V$TAXCREB_02 

V$NFKB_Q6_01   V$E2F_Q4_01 V$OCT1_05   V$E2F1_Q6 V$WT1_Q6 
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Table S2. GibbsOS identified transcription factors that are up-regulated (+) or down-

regulated (-) in the early-recurrence group of Loi data. 

 

ER-signaling  Apoptosis  

V$STAT_01 + V$FOXO3_01 - 

V$STAT3_02 + V$CREB_02 - 

V$CREB_Q3 + V$TAXCREB_01 - 

V$STAT5A_02 + V$AR_Q6 - 

V$STAT5A_04 + V$EBOX_Q6_01 - 

V$CREB_Q4_01 + V$CREB_Q2 - 

V$TAXCREB_02 + V$DR3_Q4 - 

V$ELK1_02 + V$WT1_Q6 - 

V$CREB_Q4 + V$CREB_Q4 - 

V$CREBP1_01 + V$TAL1ALPHAE47_01 - 

V$ETS_Q6 + V$PPARA_02 - 

V$ELK1_01 + V$E2A_Q6 - 

V$CREB_Q2 + V$HAND1E47_01 - 

V$CEBPB_01 - V$AHRARNT_02 - 

V$CEBP_Q2_01 - V$TAL1_Q6 - 

V$CREB_02 - V$TAXCREB_02 - 

V$TAXCREB_01 - V$CREB_Q4_01 - 

V$ETS_Q6 - V$ER_Q6 - 

V$STAT1_03 - V$E2F_Q2 - 

V$STAT5A_02 - V$CREB_01 - 

V$CREB_Q4 - V$CREB_Q2_01 - 

V$AP1_Q6 -   

V$ELK1_02 -   

V$CREBP1_Q2 -   

V$CREB_01 -   

V$STAT_Q6 -   

V$SP1_Q4_01 -   

V$CREB_Q2 -   
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Table S3. IMPALA identified pathway module genes from the Loi data. 

Module 1 Module 2 Module 3 Module 4 

BCR CAV1 BRCA1 BRCA1 

CREBBP CSF1R BRCA2 CCNA2 

CSNK2A1 ERBB2 CCNA2 CDC2 

EGR1 ESR1 CCNB1 CDC25C 

ESR1 FYN CDC2 CHUK 

FOS HCK CDC25A CSNK2A1 

HDAC2 INPP5D CDC25C E2F1 

HSP90AA1 JAK1 CHEK1 FAS 

HSPA1A LYN E2F1 FYN 

IGF1R PECAM1 PBK HSP90AA1 

IRS1 PTPRC TGFB1 LCK 

IRS2 STAT3 TGFBR2 PRKCA 

JUN STAT5A TOP2A TNFRSF1A 

PTPN11 WAS TP53 WAS 

RPS6KA1   YWHAQ 

SRC    

STAT3    

STMN1    

TOP2A    

TSC2    

YWHAQ    

YWHAZ    
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Table S4. GibbsOS identified transcription factors that are up-regulated (+) or down-

regulated (-) in the early-recurrence group of Symmans data. 

ER-signaling  Cell cycle  Apoptosis  

V$SP1_Q4_01 + V$CREB_Q4_01 + V$TAL1BETAE47_01 + 

V$AP1_C + V$NFY_Q6 + V$CREB_Q4_01 + 

V$AP1_Q6_01 + V$AP1_Q4 + V$P53_DECAMER_Q2 + 

V$AP1_Q4_01 + V$USF2_Q6 + V$E2F_Q2 + 

V$STAT1_02 + V$AP1_Q4_01 + V$CREBATF_Q6 + 

V$AP1_Q2 + V$USF_Q6_01 + V$MYOD_Q6_01 + 

V$CREB_Q3 + V$AP1_Q6 + V$E2A_Q6 + 

V$AP1FJ_Q2 + V$CMYB_01 + V$MYCMAX_B + 

V$AP1_Q6 + V$CETS1P54_01 + V$TAL1_Q6 + 

V$STAT3_02 + V$NFY_Q6_01 + V$CREB_02 + 

V$CREB_Q2_01 + V$NF1_Q6 + V$E2A_Q6 - 

V$STAT1_02 - V$SP1_Q4_01 + V$CREB_Q4_01 - 

V$SP1_01 - V$E2F_Q4 + V$TAL1BETAE47_01 - 

V$SP1_Q6 - V$USF_C + V$EBOX_Q6_01 - 

V$CREB_Q2_01 - V$E2F_Q6 + V$ARNT_02 - 

V$CREB_02 - V$CREB_Q2_01 + V$PBX1_01 - 

V$CEBP_Q3 - V$YY1_Q6_02 + V$CREB_Q4 - 

  
V$NFY_01 + V$CREB_01 - 

  
V$MYB_Q5_01 + 

 
 

  
V$CREB_Q3 + 

 
 

  
V$AP1_Q6_01 + 

 
 

  
V$CREBATF_Q6 + 

 
 

  
V$OCT1_Q5_01 -   

  
V$MYB_Q6 - 

 
 

  
V$SP1_Q6 - 

 
 

  
V$YY1_Q6_02 - 

 
 

  
V$MYB_Q5_01 - 

 
 

  
V$USF_Q6_01 - 

 
 

  
V$CREB_Q2_01 - 

 
 

  
V$ETS1_B - 

 
 

  
V$ETS2_B - 

 
 

  
V$YY1_02 - 

 
 

  
V$USF_02 - 

 
 

  
V$NFY_C - 

 
 

  
V$OCT1_B - 
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Table S5. IMPALA identified pathway module genes from the Symmans data. 

Module 1 Module 2 Module 3 Module 4 

BRCA1 ESR1 CDC2 CDK2 

CDC2 HCK E2F1 EGFR 

CDC25C INPP5D EGFR ETS1 

CHUK JAK1 FAS FAS 

CSNK2A1 JUN GRB2 FOS 

E2F1 KHDRBS1 HCK HCK 

GRB2 LCK INPP5D INPP5D 

HDAC2 LCP2 INSR JAK1 

HSP90AA1 LYN LCP2 JUN 

IGF1R MAP4K1 LYN LCK 

INSR PIK3R1 MAP4K1 LCP2 

MAPK1 PTPN6 MET LYN 

PTPN11 SHC1 PTPN6 MAPK1 

SRC SOS1 TNFRSF1A MYOD1 

STMN1 STAT3  NR3C1 

TNFRSF1A   SP1 

TOP2A   STAT3 

YWHAQ    
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Table S6. Average precision of IMPALA and competing algorithms under different 

settings.  

 

Average precision Noise 

Level 

Type I structure  Type II structure 

gene edge gene edge 

IMPALA 0.2 0.960 0.942 0.900 0.836 

Random Color Coding 0.806 0.701 0.851 0.669 

Edge Orientation 0.807 0.695 0.777 0.473 

ILP 0.406 N/A 0.586 N/A 

IMPALA 0.5 0.910 0.835 0.806 0.690 

Random Color Coding 0.801 0.592 0.768 0.568 

Edge Orientation 0.780 0.569 0.738 0.441 

ILP 0.387 N/A 0.570 N/A 

IMPALA 0.8 0.843 0.700 0.800 0.466 

Random Color Coding 0.755 0.481 0.715 0.417 

Edge Orientation 0.716 0.472 0.677 0.351 

ILP 0.364 N/A 0.485 N/A 

 

 

Table S7. Average precision for pathway identification under different proportion of false 

connections (PFC) in simulated pathways.  

 

Average precision PFC Type I structure Type II structure 

gene edge gene Edge 

IMPALA 10% 0.835 0.635 0.768 0.660 

Random Color Coding 0.695 0.426 0.716 0.517 

Edge Orientation 0.675 0.417 0.737 0.490 

ILP 0.372 N/A 0.517 N/A 

IMPALA 25% 0.634 0.309 0.770 0.542 

Random Color Coding 0.439 0.132 0.761 0.435 

Edge Orientation 0.418 0.185 0.701 0.382 

ILP 0.348 N/A 0.472 N/A 

IMPALA 50% 0.494 0.183 0.682 0.525 

Random Color Coding 0.424 0.116 0.664 0.410 

Edge Orientation 0.381 0.136 0.587 0.325 

ILP 0.327 N/A 0.473 N/A 
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Cell cycle         Apoptosis  

 

Figure S1. Cell cycle and apoptosis signaling pathway networks identified by IMPALA using Loi 

data. Gene colors represent the log2 fold change of gene expression between ‘early recurrence’ and ‘late 

recurrence’ patients in the Loi dataset (red: over-expressed in ‘early recurrence’ group; green: over-

expressed in ‘late recurrence’ group). Gene size is proportional to the probability (sampling frequency) 

estimated by GIST. 
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(a)         (b) 

Figure S2. Prediction analysis of ER signaling modules identified from Loi data. (a) Threefold 

cross-validation using Loi data returned area of ROC curve (AUC) 0.8. Independent test of the 

classifier on Symmans data returned AUC of 0.79. (b) Kaplan Meier plot of predicted grouping of 

Symmans samples (group 1 for ‘late recurrence’ and group 2 for ‘early recurrence’) returned a hazard 

ratio of 3.26 (p-value = 1.6e-2). 
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Cell cycle         Apoptosis  

 

Figure S3. Cell cycle and apoptosis signaling pathway networks identified by IMPALA using 

Symmans data. Gene colors represent the log2 fold change of gene expression between ‘early recurrence’ 

and ‘late recurrence’ patients in the Symmans dataset (red: over-expressed in ‘early recurrence’ group; 

green: over-expressed in ‘late recurrence’ group). Gene size is proportional to the probability (sampling 

frequency) estimated by GIST. 
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Figure S4. Gene expression in MCF7-STR and MCF7R-STR cell lines for IMPALA identified 

genes using Loi data. 
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Figure S5. Gene expression in LCC1 and LCC2 cell lines for IMPALA identified genes using Loi 

data. 
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Supplementary Methods 

Building flow network 

GIST applies Gibbs sampling to a regularized structure which we refer to as "flow 

network". Given the source and target gene(s), we build a directed pathway flow 

network of L layers from the original PPI as shown in Fig. S6. First, we start from the 

source genes (genes in the first layer) and search their neighbors in the PPI network. 

The direct neighbors of the source genes are included into the second layer, based on 

which we successively define the third layer, forth layer, etc. This is called the “forward 

search” of the PPI network, and the target gene will present at the Lth layer (the target 

gene can also show up in the upper layers if there is a path between source and target 

that has length smaller than L). In the meanwhile, we also perform a “backward search” 

starting from the target gene and rebuild L layers in the reverse direction. For each layer 

we only keep the genes that present at both “forward” and “backward” networks and 

obtain the final flow network. 

 

Figure S6. An illustration of constructing flow network from PPI data 
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Sampling flow network with a modified Gibbs sampler and Markov 

property 

We illustrate the sampling procedure as shown in Fig. S7. The current pathway is 

highlighted in the shaded area. A Gibbs sampler updates one gene 
i  at a time, and 

iteratively updates the other module members. Suppose we want to update the third 

gene 
3   in the pathway. Based on the flow network, three genes in the third layer 

(marked 1, 2, and 3) are potential candidates that connect the existing genes to the 

second and fourth layer. We calculate the pathway probabilities for all three 

corresponding pathways and then probabilistically accept one of the genes to update 

the previous gene (gene 2 is selected to update 
3 ). We also correspondingly update the 

edges of the new gene. This procedure will be sequentially applied to the fourth, fifth 

until the Lth layer, and will be repeated for many iterations until convergence. 

 

In order that through enough sampling iterations, the estimated distribution will be a 

stationary distribution that is irrelevant to its initial states, the proposed Gibbs sampler 

should have some basic properties such as irreducibility and ergodicity. Unfortunately, 

this property cannot always be satisfied when we sample pathways from the PPI 

network and only allows changing one layer in the current path at a time. Here we 

propose a simple modification of the previous Gibbs sampler by introducing a small 

baseline sampling frequency δ to states (pathway configurations) that are not allowed 

by the initial flow network, so that any two states in Θ  communicate with each other. 

Edges connecting genes in two adjacent layers that are not connected in the original 

PPI are referred to as "pseudo-edges" (non -directed lines in Fig. 8). Then, genes in any 

two adjacent layers are mutually connected regardless of whether they are truly 

connected in the original PPI network or not. The Gibbs sampling process on the 

modified flow network has defined an irreducible Markov chain that draw samples 

(states) from an enlarged state space Θ  (Fig. S8(b)) and Θ Θ , where Θ  is the 

state space of all "valid pathways" defined by the original flow network (Fig. S8(a)).  
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(a)      (b)      (c) 

Figure S7. Sampling on the flow network. (a) A flow network was constructed among given source(s) 

and target(s) using protein-protein interactions where ‘triangle’ represented source genes; ‘cycle’ 

represented pathway genes; ‘rectangular’ represented target transcription factors. (b) Genes and edges 

were assigned weights based on potential functions as defined in the main text, using gene expression 

data. Different gene colors represented different subcellular compartments (‘green’ for membrane 

receptors; ‘yellow’ for cytoplasm genes; ‘red’ for nucleus transcription factors. (c) A sampled pathway 

by GIST from the flow network. 

 

 

Figure S8. An example of irreducibility for pathway sampling 
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Truncation of pathways samples to estimate edge probability 

When the number of genes in   is large, the sample space Θ  becomes huge. In this 

case, it is not computationally feasible to sample all possible pathways to calculate the 

posterior probability of every directed edges. Practically, we are interested in the top 

ranked pathway samples with the highest inter-correlation. Therefore, we offer a non-

normalized edge probability based on truncated samples as follows: 
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where K
Θ denotes top K truncated pathway samples. 

,

K

i jp  is not a probability but a 

score function for ranking valid pathway samples. In Eq. (S1) we only used gene and 

edge potentials because samples from K
Θ  have already been well constrained by prior 

knowledge (e.g., cellular locations). The confidence of edge direction was defined as 

follows: 
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Simulating alternative and crosstalk pathways 

 

Figure S9. Type I and Type II alternative pathway structures. 

 

To construct alternative pathways, Gong et al. proposed five basic types of alternative 

pathways including: A (divergent), V (convergent), O (single/multiple), M 

(multiple/multiple) and N (nested) 1. We summarize these into two major types of 

alternative pathway structures: type I, alternative pathways between single source and 

single target; type II, alternative pathways among multiple sources and multiple targets. 

A schematic diagram of the two pathway structures is shown in Fig. S9. It can be found 

that type I structure is a special case of type N (nested) pathway between a single source 

gene and a single target gene, which embraces type O (single/multiple) pathways as 

sub-components. Type II structure is actually a more general case of the type N (nested) 

structure among multiple source genes and multiple target genes. It has a mixture 

structure of type A (divergent), type V (convergent) and type M (multiple/multiple) 

pathways.  

 

Both type I and type II structures are designed to study alternative signal transduction, 

while the latter is also used to model crosstalk among multiple pathways. To generate 

simulation pathways for each structure, a subnetwork centered at some putative hub 

genes within the human PPI network was selected as the base topology. Genes that are 

involved in canonical pathways (MAPK, ERBB, JAK/STAT, et al.) were also extracted 

from the knowledge database 2,3 as the candidate pool for building ground truth 

pathways. We also collected subcellular location information for the human proteome. 

To keep the models simple and logical for this study, we assumed that a valid path 
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should start from the extracellular space/plasma membrane and end in the nucleus. A 

mixture model was used to synthesize the edge z-scores plus different levels of noise 

so that we can simulate real biological scenarios with experimental/biological noise. An 

exhaustive search was conducted to obtain the ground truth distributions of both genes 

and edges. 
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Gene expression noise level = 0.2 

 

Pathway gene identification 

 

Pathway interaction identification 

 

Gene expression noise level = 0.5 

 

Pathway gene identification 

 

Pathway interaction identification 

 

Gene expression noise level = 0.8 

 

Pathway gene identification 

 

Pathway interaction identification 

 

Figure S10. Precision-Recall curves for pathway gene/interaction identification on type I pathway 

structure under different noise levels. 
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Gene expression noise level = 0.2 

 

Pathway gene identification 

 

Pathway interaction identification 

 

Gene expression noise level = 0.5 

 

Pathway gene identification 

 

Pathway interaction identification 

 

Gene expression noise level = 0.8 

 

Pathway gene identification 

 

Pathway interaction identification 

 

Figure S11. Precision-Recall curves for pathway gene/interaction identification on type II 

pathway structure under different noise levels. 
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Pathway network false interaction rate = 10% 
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Pathway network false interaction rate = 25% 
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Pathway network false interaction rate = 50% 
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Figure S12. Precision-Recall curve for gene/edge identification on type I pathway structure under 

different false interaction rates in simulated pathways. 
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Pathway network false interaction rate = 10% 
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Pathway network false interaction rate = 25% 
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Pathway network false interaction rate = 50% 
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Figure S13. Precision-Recall curve for gene/edge identification on type II pathway structure under 

different false interaction rates in simulated pathways. 
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