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Supplementary Note 1

Modeling the spread

1.1 The unmitigated spread

1.1.1 Population network

We consider M households h = 1, . . . ,M , each including mh individuals, where mh is

a random variable extracted from the household size distribution P (m) (Supplementary

Table 5). Together these households comprise the total population, in which the number

of individuals i = 1, . . . , N is given by N =
∑M

h=1 mh. Hence, the i-th individual, resides

together with her mh − 1 cohabitants at her household h(i). Taking M = 4 × 103, and

the average household size to be 〈m〉 = 2.5, we arrive at a total population of N = 104

individuals.

To construct the social network Gij, we consider two types of links: Within a household

there are no barriers, hence the in-house connection network Bij is simply a union of

disjoint cliques representing (i, j) ∈ Bij ⇐⇒ h(i) = h(j). This results in M isolated

cliques whose size is distributed via P (m). Out of home connections, Aij, can be poten-

tially drawn between any pair of nodes i, j, capturing external social links, occurring at

work, school or other public places. The external network Aij can be admit any desired

degree distribution P (k) via the configuration model framework [1]. In our simulations

we used two archetypal constructions - the Erdős-Rényi (ER) random graph (main text),

in which P (k) is bounded, and a scale-free (SF) network, where P (k) ∼ k−3 (Sec. 2). In

both cases we set the average degree to 〈k〉 = 15. The final network Gij contains all links

in Aij and Bij.

1.1.2 Temporality

The links in Gij are not constantly active. Rather, they represent potential infectious

interactions, switching between periods of activity, when infections can take place, and

inactivity, when infections are barred. Throughout the daily cycle we have Aij active

during the day, 8:00 AM to 8:00 PM, and Bij active during the after-hours, 8:00 PM

to 8:00 AM the next day. This captures a typical routine, in which individuals interact

sporadically, i.e. links are switched on and off, out of home in the day-time, and in-house

at night.

Dividing each day into 15 minute segments, ∆t, we generate a random sequence of tem-

poral activity/inactivity instances for Aij and Bij. During the day, the probability for

activation of each link in Aij per interval ∆t is set to pA. Similarly, during the night we

have probability pB for Bij activation. The result is a stochastic pattern of potentially
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infectious interactions, in which the idling time between subsequent instances of activity

follows a geometric distribution Geom(pA) or Geom(pB) for Aij and Bij, respectively. On

average, we have Aij links active

T1 = 12pA (1)

hours, and Bij active for

T2 = 12pB (2)

hours, per daily cycle.

There are two exceptions to the above random activation rules:

� Isolation. In case node i is known to be infected, i.e. symptomatic (Sec. 1.3), then

i’s entire household h(i) enters isolation. All nodes in h(i) remain at home until

the household is cleared to retain its activity. Under these conditions only Bij is

activated with probability pB throughout the entire 24 hour cycle, and Aij links

remain idle. Consequently, when in isolation, in-house interactions become more

extensive, as they have more potential instances of infection, then during periods

of normal activity.

� Collocation. For consistency, if at a certain instance, both links (i, j) and (i, k) are

simultaneity active, then the triad link (j, k) is also activated. Indeed, a concurrent

collocation of i, j and i, k, implies, by transitivity, an inevitable collocation also of

j, k. This alllows us to capture potential correlations in the temporal patterns of

the interactions.

A summary of all temporal network parameters appears in Supplementary Table 1.

1.2 Mitigation

During mitigation, the quarantined households express only Bij throughout the 24 hour

cycle, with all their Aij links rendered inactive. If a household member is defective, their

Aij links continue to activate as usual. Partitioning the population, as in AQ or HQ, for

example, is done at household level - namely households are randomly split among the

cohorts. In each realization, we instigate the mitigation at a time t0 when the fraction of

infections I(t = t0) exceeds a significant threshold. We set this threshold at

I(t = t0) =
lnN

N
, (3)

namely the time point where the total infected population is of the order of lnN .
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Parameter Description Value

N Population size 104

M Number of households 4× 103

p(k) Aij degree distribution Erdős-Rényi or scale-free
p(m) Household size distribution Empirically obtained, Supp. Table 5
〈k〉 Average Aij degree 15
〈m〉 Average household size 2.5
pA Probability of Aij link activation Varied
pB Probability of Bij link activation Varied
T1 Mean daily infection time via Aij Eq. (1)
T2 Mean daily infection time via Bij Eq. (2)
α Fraction of in-house infections Extracted from data/simulation
β infection growth rate Extracted from data/simulation

Supplementary Table 1: The parameters governing the temporal network. We
list the relevant quantities underlying our temporal network framework. Parameters that
are unknown are varied to capture the breadth of different epidemiological scenarios. For
example P (k) is set to be both bounded (main text) or scale-free (Sec. 2); pA, pB are
varied in our simulations. Parameters α, β are not set, but rather extracted from the
observed spread, as explained in Sec. 1.4.

1.3 Disease dynamics

We begin with a fully susceptible (S) population, and introduce a small fraction of exposed

(E) individuals. The potential transitions that ensue are shown in Supplementary Figure

1, whose main transitions include:

� Infection. At any encounter between a susceptible node i and a pre-symptomatic

or infected node j, i may become exposed. By encounter we relate to an instance

∆t in which the i, j link in Aij or Bij is active. The probability of infection at

each encounter depends on the nature of the link, set to p1 for Aij links and p2 for

Bij. External interactions Aij, between associates, are typically less physical than

in-house interactions between e.g., family members, hence, typically p2 > p1. In

practice, however, we can incorporate these probabilities into the encounter prob-

abilities themselves, pA, pB. Indeed, stating that i and j interact with probability

pA and then infect with probability p1, is equivalent to setting their interaction

probability to pAp1, and having infections occurring with 100% certainty. Hence,

for simplicity we set p1 = p2 = 1, and encapsulate the infection probabilities within

the parameters T1, T2 in (1) and (2).

� Infection classification. During the simulation of the spread we keep count of

the type of each infection. Infections occurring via Bij links add to the in-house

infection count θIn; infections occurring out of home, through Aij contribute to θOut.
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� Infection cycle. Once a node becomes exposed it begins to transition between

states according to Supplementary Figure 1a. Exposed nodes have contracted

the virus, but are not yet infectious. These nodes are randomly split between ES

with probability pS and EAS with probability pAS = 1 − pS. This decides whether

these nodes are pre-symptomatic, and eventually will develop symptoms, or asymp-

tomatic, reaching recovery R without even experiencing symptoms. The remaining

disease cycle continues according to the illustration. For example, nodes in ES

will later transition to one of the infected stated IM, IS or IC with probabilities

pM = 0.55, pS = 0.1 and pC = 0.05, respectively; the remaining 30% are accounted

for in the EAS trajectory. Similarly, IS nodes, after some time enter the hospitalized

state H, after which the recover with probability pHR = 0.85, and decease with

probability pHD = 0.15.

Note that ventilated individuals V are, by definition, also hospitalized. However,

in out implementation we consider these as two isolated groups, i.e. ventilated vs.

hospitalized without ventilation. Therefore, at all times we have S(t) + E(t) +

INS(t) + I(t) + R(t) + V(t) + H(t) + D(t) = N , comprising the entire population.

Presenting our results we used the normalized compartments S(t) = S(t)/N,E(t) =

E(t)/N, INS(t) = INS(t)/N, . . . , which satisfy

S(t) + E(t) + INS(t) + I(t) +R(t) + V (t) +H(t) +D(t) = 1. (4)

� Transition times. The amount of time a node remains at a state X (other than

S) is chosen at random according to probability density PX(t). We identify specific

processes for which variability in the transition time may impact the effectiveness of

alternating quarantine (AQ). For example, the time from exposure to infectiousness,

or the time for asymptomatic individuals to recover are crucial. Deviations from

the mean in these transition times may interfere with AQ’s disease cycle synchro-

nization. For instance, if a node remains asymptomatic for, e.g., 3 weeks, which

is beyond the average time to recovery, its infectiousness may spillover between

AQ’s subsequent activity cycles, allowing it to resume activity while still infectious.

Similarly, if the pre-symptomatic stage is extended significantly beyond the 5 day

average, an infected individual in week 1 may not yet develop symptoms during

their isolation at week 2, once again, reducing the efficiency of AQ in removing

invisible spreaders. Therefore, for these highly relevant transitions we placed a

special emphasis to avoid underestimating their potential time-scale heterogeneity.

In particular we identified four relevant processes: PEAS
(t), the time until an ex-

posed asymptomatic individual (EAS) becomes infectious (IAS); PIAS
, the time until

an asymptomatic infectious node recovers; PES
(t), the time until an exposed pre-

symptomatic individual (ES) becomes infectious (IPS) and PIS(t), the time for an

infectious pre-symptomatic (IPS) to show symptoms (IM, IS or IC). For these four

functions we used a Weibull distribution, as explained in Sec. 4.1. This distribution

allows us to capture the potentially variable time-scales across the population, thus
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testing AQ under realistically challenging conditions.

1.4 Evaluating α and β

Our model parameters control the spreading dynamics via the temporal probabilities pA
and pB, and their subsequent T1 and T2 in (1) and (2), that govern the rate of infections in

and out of home. Once these parameters are set, the simulating results of the unmitigated

spread allow us to evaluate the infection growth rate β and the in-house transmission rate

α:

� In-house infection rate α. During the simulation we keep count of the source of

all infections. Infections occurring via Aij, amounting to θOut are external, while

those that transmit along Bij links, θIn, are internal. The parameter α captures the

percentage of transmissions that occurred in-house as

α =
θIn

θIn + θOut

. (5)

� The infection growth rate β. To evaluate β we observe the overall infected

population I(t) vs t at the early stages of the spread, and fit it to an exponential

of the form

I(t) ∼ eβt. (6)

Obtaining the slope of the resulting growth on semi-logarithmic axes we extract β

from the simulation results. Note that β depends on the slope, not on the pre-factor,

hence it is insensitive to the size of the initial outbreak, or to the fraction of cases

detected via testing, providing a fair comparison between different realizations or

empirical datasets.
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Supplementary Figure 1: The infection cycle of SARS-CoV-2. Extracted from
Fig. 1 of the main text.
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A crucial point is to select the range in t from which to extract the slope. Indeed,

for very small t, due to the stochastic nature of our simulations, I(t) is still small,

and still discrete. In this limit, the observed results are subject to high levels of

noise and may not yet exhibit a clear exponential behavior. On the other hand if

t is too large, we approach the peak of I(t), where the exponential approximation

fails again, this time due to the accumulation of herd immunity. Therefore, to be

consistent across all our simulations we evaluated β from the time window

t?

4
≤ t ≤ t?

2
(7)

where t? = arg max I(t) is the time of peak infection. Evaluating β from empirical

data is explained in Sec. 4.

Note, that α and β are not the model parameters. Rather they emerge from the stochastic

simulation results, after setting the model parameters pA and pB. Therefore, we do not

have direct control over these parameters, as seen in, e.g., Fig. 4 of the main text, where

α, β were only approximately equal across the different panels. Roughly speaking, we can

link these parameters to each other. A large pA, pB, for example enhances transmission,

and hence increases β. The parameter α, on the other hand, grows as pB is increased

and pA is decreased, capturing a state in which in-house transmissions are more prevalent

than external ones.

1.5 Evaluating R0

Our disease cycle is elaborate and includes many different paths. It is, therefore difficult

to accurately calculate the reproduction number R0. Instead we use an approximate ap-

proach, based on an SIS-like rationale. Consider the SIS model [2] and its two parameters:

ω, the recovery rate, and µ, the infection rate. In this model we have

R0 =
µ

ω
, (8)

capturing the number of transmissions that an average individual generates (µ) during

their period of infectiousness, which typically lasts for τ = 1/ω days. The exponential

growth rate in the SIS model at the early stages of the outbreak is given by I(t) ∼ eβt as

in (6) with

β = µ− ω. (9)

To adapt (8) to our more complex disease cycle we seek the relevant period of infectious-

ness τ that arises from the cycle of Supplementary Figure 1. To evaluate τ we track the

path of the average individual: with probability 0.3 this individual is asymptomatic, in
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which case they will remain infectious until their recovery for an average of 7 days; an

additional ∼ 0.3-fraction infect at home (θIn), here over an average period of roughly 8

days. The remaining 0.4-fraction of infected individuals cease to transmit the virus once

they enter isolation, on average 2 days posterior to the onset of the pre-symptomatic

phase. Together we approximate the period of infectiousness as

τ = 0.3 + 0.3× 8 + 0.4× 2 = 5.3 days, (10)

allowing us to evaluate the effective recovery rate by

ωeff =
1

τ
= 0.19 days−1. (11)

We can now substitute ω in (8) and (9) with ωeff to write
R0 =

µ

ωeff

β = µ− ωeff

, (12)

which, setting ωeff = 0.19 and β = 0.26 provides µ = 0.45 and

R0 ≈ 2.4. (13)
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Supplementary Note 2

Results obtained under a scale-free Aij

Our strategy in testing AQ is to examine it systematically under varying relevant sce-

narios. Specifically, for unknown parameters, such as α and β, we simulated an array of

different setting, scanning the space of potential α, β values (e.g., Fig. 4 of main text).

Other unknown factors relate to the structural characteristics of the external network Aij.

Most importantly, in the context of epidemic spreading - its degree distribution, which

has been shown to significantly impact the patterns of spread [2]. To eliminate this po-

tentially confounding factor we now re-examine AQ, repeating our simulations, this time

extracting Aij from the scale-free network ensemble (P (k) ∼ k−3, N = 104, 〈k〉 = 15).

We find, in Figs. 2 and 3 that AQ continues to provide the optimal mitigation also under

these conditions.
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Supplementary Figure 2: The impact of alternating quarantine for a scale-free
Aij. Reconstructing Fig. 4 of the main text, this time using a scale-free external network.
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Supplementary Note 3

Synergistic measures

3.1 Alternating quarantine under selective isolation

In the main take we used a typical disease cycle, capturing the average individual’s

response to SARS-CoV-2. We now consider two parallel cycles, one for healthy individuals

and the other for the vulnerable, such as people with background diseases or the elderly.

The two cycles differ mainly in their transition probabilities. For example, while only

4% of the healthy individuals develop critical symptoms (IC), among the vulnerable

population the number is set to 10%. The complete disease cycle for the Typical, Healthy

and Vulnerable population [3–5] appears in Supplementary Table 2.

To track the spread in the presence of healthy/vulnerable populations we repeated the

simulation described in Sec. 1, this time splitting the population into 80% healthy and

20% vulnerable nodes [6]. We track three indicators that help us assess the performance

of all strategies (Supplementary Figure 4): Hospitalization rate H(t), ventilation rate

V (t) and mortality D(t). As expected, AQ (Supplementary Figure 4)a,d,g, light blue)

continues to outperform IQ (light turquoise) and HQ (light red) also under this variable

disease cycle.

Next, we added an additional component of selective isolation, in which the vulnerable

nodes (20%) remain under constant quarantine. For example, in AQ this implies that

the weekly alternations are limited only to the healthy 80%. Under these conditions the

vulnerable individuals cannot be infected via external links Aij. They can still, however,

experience secondary infection through Bij, in case one of their healthy cohabitants con-

tracted the virus. As expected, such selective isolation enhances the performance of all

the strategies, lowering hospitalization, ventilation and mortality (Supplementary Figure

4b,e,h). This improvement, we emphasize, is not unique to AQ, making it clear that

selective isolation is a desirable component within any mitigation strategy. In Supple-

mentary Figure 4c,f,i we present our three performance measures, HPeak, VPeak and ∆D

with (dark) and without (light) selective isolation, further indicating the importance of

protecting the vulnerable population.

3.2 Alternating quarantine with population-wide testing

Thanks to the synchronization with the disease cycle, each weekly quarantine filters out

a fraction of the infected individuals. It is therefore natural to reinforce this filtering with

systematic testing of the quarantined cohort before they resume activity. If an individual

is detected positive, their entire household must remain in isolation until all members are

cleared. To examine this effect we added a component of random testing to both AQ
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Supplementary Figure 4: The impact of selective isolation on the different
mitigation approaches. (a) The fraction of hospitalized individuals H(t) vs. t under
no mitigation (light orange, UM), intermittent quarantine (IQ, light turquoise), half
quarantine (HQ, light red) and alternating quarantine (AQ, light blue). (b) Similar results
(dark colors), this time with selectively isolating the vulnerable population. (c) Peak
hospitalization under all strategies with (light) and without (dark) selective isolation.
(d) - (f) Ventilated population V (t) vs. t with/without selective isolation. (g) - (i)
Mortality D(t) and the residual mortality ∆D.
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Probability Typical Healthy Vulnerable

pAS 0.3 0.32 0.25
pM 0.55 0.56 0.45
pS 0.1 0.08 0.2
pC 0.05 0.04 0.1
pHR 0.85 0.86 0.79
pHD 0.15 0.14 0.21
pV R 0.5 0.5 0.5
pV D 0.5 0.5 0.5

Supplementary Table 2: Transition probabilities between COVID-19 states.
We constructed three disease cycles - the Typical cycle, used in the main text, the Healthy
cycle, capturing the impact of the disease on healthy individuals, and the Vulnerable cycle,
adapted to individuals of age or ones with pre-existing conditions.

and IQ. Given the limited resources, we assume a testing capacity of a χ-fraction of the

population per week. As expected, we find that the greater is χ the more effective is our

mitigation (Supplementary Figure 5a,b).

The crucial point, however, is that AQ’s breakdown of the population into separated

cohorts provides an intrinsic advantage. Indeed, testing is most effective when conducted

on the quarantined cohort, whose state is frozen during the week. One can then spread

the testing across the entire week, and detect infected individuals before they return to

activity. Hence, the fact that one only needs to focus on half of the population at a

time, enhances the effectiveness of such a testing policy. To understand this, consider the

case where χ ≈ 0.5, namely we have the capacity to test 50% of the population within a

single week. Under these conditions, thanks to AQ’s partitioning, one can simply invest

all tests in the inactive cohort, then resume activity in week 2 with a guaranteed clean

workforce.

To examine this advantage we focus specifically on the case where χ = 0.5. We apply

the tests selectively to the quarantined cohort in each shift, which, indeed, constitutes

roughly half of the population (minor discrepancies arise due to statistical variations,

and uneven household sizes). Within a one week cycle we arrive at an almost 100%

uninfected active workforce, after which the only bottleneck for the decay of I(t) is the

residual in-house infections. In that sense, after approximately 1− 2 weeks, AQ becomes

as effective as FQ. Indeed, Supplementary Figure 5c shows that AQ (blue) exhibits the

same rate of I(t) decay as FQ (grey), albeit at a 10 day delay, precisely the predicted

1 − 2 weeks. Hence, extensive testing provides a crucial complement to AQ, potentially

achieving FQ mitigation efficiency, without crippling socioeconomic activity.
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Supplementary Figure 5: Testing the population before resuming activity. (a)
We combine AQ with testing at a weekly capacity of χ. Directing all tests towards the
quarantined cohort at each week, we prohibit individuals who tested positive (and their
households) from resuming activity. Unsurprisingly, as χ increases (darker) we observe
an enhanced mitigation, thanks to the systematic pruning of infected individuals from
the active cohort. (b) Testing also improved the performance of Intermittent quarantines
(IQ). As opposed to AQ, in IQ, as the entire population transitions from quarantine to
activity in unison, the testing cannot be selectively directed to the quarantined cohort,
but rather spread evenly across the entire population. (c) In the limit where χ → 0.5,
a capacity to screen 50% of the population within one week, AQ becomes extremely
efficient, thanks to its natural partitioning of the population. The entire quarantined
cohort can be tested, and within 1 − 2 weeks AQ has almost no out of home infections.
Indeed, we observe that AQ follows a similar decay as the Full quarantine (FQ, grey),
albeit with a 10 day delay, capturing roughly 1−2 testing cycles. In contrast, IQ, lacking
such partitioning of the population, exhibits a more minor benefit under the same testing
capacity. Simulations represent an average over 20 stochastic realizations. The in-house
infection rate was set to the intermediate level α ≈ 0.15.
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Supplementary Note 4

Data analysis and parameter selection

4.1 Constructing the distributions PX(t)

Most of the parameters described in Section 1 were chosen based on observed values of

the characteristic SARS-CoV-2 infection cycle. For the density functions PX(t), we have

used a Weibull or a Geometric distribution, the former - inspired both by other infections

of the Corona variety [7], as well as recent inidcations pretainig to SARS-CoV-2 [8–10].

The Weibull distribution allows for potentially high variability across the population,

providing a challenging testing ground for AQ.

To estimate the parameters of the Weibull distributions we collected data on the average

TAv and median TMed of the relevant transition times [7, 8]. This allowed us to infer the

Weibull parameters λ and k via

TAv = λΓ(1 + 1/k);

TMed = λ(ln 2)1/k.

As median values were available only for PIAS
and PIPS

, we first calculated the parameter

k for these transitions, obtaining, for both k = 1.47. This is not surprising as k, the

shape parameter, controls the type of the Weibull distribution, which is expected to be

similar for processes driven by similar mechanisms. This is as opposed to λ, the location

parameter, which is not intrinsic to the shape of the distribution, but rather shifts right

or left as the mean is changed. Hence, it is expected that k is uniform for the different

transition-time distributions, while λ may change according to their mean. With this in

mind, we estimated k = 1.47 for the other two distributions, PEAS
and PES

, where the

median was inaccessible from data. See Supplementary Table 3 for the different values

of mean, and median we have used, and the inferred λ and k.

4.2 Estimating the infection growth β

As defined above, the parameter β represents the exponential growth rate of the known

infectious nodes I(t) := IM(t)+IS(t)+IC(t). This parameter is difficult to predict directly

from the knwon disease time-scales, especially as the infection rate is hidden, hence we

must infer it from observation. Moreover, as the disease progresses, precautions like social

distancing and wearing masks affect both the rate of interaction and the probability of

infection, leading β to change over time. Therefore, to asses β for the unmitigated spread,

we have focus on the period before such measures were taken.

We collected data on the number of confirmed cases in 12 countries. These countries
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Duration Distribution Observations Parameters

Mean Median λ k

PEAS
(t) Weibull 4 3.44∗ 4.42 1.47∗

PIAS
(t) Weibull 10 8.6 11.04 1.47

PES
(t) Weibull 2 1.72∗ 2.21 1.47∗

PIPS
(t) Weibull 5 4.3 5.52 1.47

Mean p

PIM(t) Geometric 5 0.2
PIS(t) Geometric 4 0.25
PIC(t) Geometric 3 0.333
PIH(t) Geometric 11 0.091
PIV(t) Geometric 13 0.077

Supplementary Table 3: Estimating the distribution parameters. With data on
the mean and median transition times, we reconstructed the distributions PX(t). For the
first four transitions we used a Weibull distribution, since the potentially high variability
is key for testing AQ. The remaining distributions were taken to be Geometric, since only
the mean matters for these transitions. Asterisked median values are reconstructed.

have been selected for their prominent number of casesm and to obtain a balanced

representation between southern and northern hemisphere destinations. The data set

was compiled by and obtained from the Johns Hopkins University Center for Systems

Science and Engineering (JHU CSSE) on April 11th 2020 and is available online here:

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases [11].

To capture the relevant time-window for the exponential growth approximation we used

data-points starting 5 days before lock-down and ending 3 days after it. Indeed, earlier

than this point, cases may be underestimated by a yet unprepared system, and beyond

this window, the lock-down may begin affecting the observed slope. As clearly seen in

Fig. 3 of the main text, within this time-window the spread I(t) can be well-approximated

by an exponential growth of the form (6). To extract the slope we used linear regression

on ln I(t), yielding the estimator β̂ for the growth rate in each country, as detailed in

Supplementary Table 4 and in Supplementary Figure 6. We find that estimators are

narrowly distributed around an average of β = 0.26, the value we used as our default, i.e.

unmitigated spreading parameter.

4.3 Estimating the household size distribution P (m)

We used a United Nations database [12] to collect data on the distribution of household

sizes across different countries. The data, summarized in Supplementary Table 5, was

compiled by and obtained from the United Nations, Department of Economic and Social

Affairs, Population division.
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Supplementary Figure 6: The variability of infection rates across countries.
Histogram of the estimator β̂ values by countries.

Country Population First case Lock-
down

β̂

Italy 60 10 38 0.32
USA 328 3 61 0.3
Spain 47 19 43 0.34
Israel 9 36 54 0.19
Germany 83 7 52 0.26
Norway 5.4 38 49 0.32
Colombia 52 49 56 0.28
Argentina 45 45 50 0.22
Netherlands 17 39 54 0.21
N. S. Wales 8 5 52 0.18
Austria 9 35 45 0.3
UK 56 10 46 0.29

Supplementary Table 4: Estimating β per country. Population is given in millions.
First case and Lock-down are given in days relative to 22/1. The parameter β̂ represents
the estimation for β, as extracted from the relevant country data. See Supplementary
Figure 6 for a histogram of β̂.
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Country 1 2-3 4-5 6 Average

Italy 0.31 0.47 0.21 0.01 2.4
Germany 0.39 0.47 0.13 0.01 2.05
USA 0.28 0.49 0.19 0.04 2.5
Israel 0.21 0.4 0.28 0.11 3.14
Spain 0.19 0.53 0.26 0.02 2.69
Norway 0.4 0.41 0.18 0.01 2.22
Model 0.3 0.46 0.2 0.04 2.6

Supplementary Table 5: Household size distribution P (m) per country. For
each country we show the fraction of households with 1, 2 − 3, 4 − 5 or 6 cohabitants,
as obtained from the UN database [12]. We also show the average household size in each
country.
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