Supplementary Information

In-situ NMR reveals real-time nanocrystal growth evolution via monomer-attachment or particle-coalescence

Reut Mashiach¹, Haim Weissman¹, Liat Avram², Lothar Houben², Olga Brontvein², Anna Lavie³, Vaishali Arunachalam³, Michal Leskes³, Boris Rybtchinski¹, Amnon Bar-Shir^{1*} ¹Department of Organic Chemistry, ²Department of Chemical Research Support, ³Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel

*Corresponding Author: amnon.barshir@weizmann.ac.il

Methods

Synthesis of AEF₂ NCs coated with AEP

A 25 ml solution of AEP (0.17M) and NaF (0.08M) in ddH₂O (milli-Q grade) pH=7, (neutralized with ammonium hydroxide) was heated to 60°C under stirring. Then, 1 ml $M(NO_3)_2$ (M=Ca⁺²/Sr⁺²) (0.04M) was rapidly added to the hot solution. After 100 min at 60°C, the solution was removed from the heating plate and cooled to room temperature. Then, the solution was centrifuged and washed with ethanol/ddH₂O.

For *in-situ* synthesis, a 1 ml solution of AEP/citrtic acid (0.17M) and NaF (0.08M) in ddH₂O pH=7 (neutralized with ammonium hydroxide) was placed inside a 5 mm NMR tube. Then, $M(NO_3)_2$ (0.04M) was injected and the tube was inserted into the NMR spectrometer at 25°C.

In-situ NMR

In-situ NMR experiments were performed with the sample temperature stabilized at 25°C. ¹⁹F-NMR (376.7 MHz) spectra were acquired with a 30° flip angle, according to Ernst theory. Ernst angle conditions were used in order to maximize SNR in a given time unit and to shorten the experiment time and, thus, to allow optimal temporal resolution . The conditions were determined according to the equation $\cos(\alpha)=e^{-TR/T}$ with TR and according to the T₁ relaxation properties of the studied AEP-MF₂ (M = Ca²⁺ or Sr²⁺) and Cit-CaF₂ NCs. First, T₁=2.7sec was found for AEP-MF₂ (M = Ca²⁺ or Sr²⁺) and T₁=4sec for Cit-CaF₂ from the inversion recovery (IR) experiment. For the in-situ experiment of AEP-MF₂ (M = Ca²⁺ or Sr²⁺) the experiment time was set to 3 min and resulted in the following α and TR values: α =30° and TR=0.39 sec. For Cit-CaF₂ experiment time was set to 3:40 min and resulted in α =30° and TR=0.57 sec. Sequential ¹⁹F-NMR spectra were acquired with 240 scans for all experiments. At the end of all real-time syntheses (1200 min), we obtained an additional ¹⁹F spectrum of the end product together with a capillary filled with triflouroactetae (with a known F- concentration) for an appropriate qualitative and quantitative calibration between the different experiments.

³¹P *in-situ* NMR were acquired according to the following parameters: T_1 =3 sec for AEP-CaF₂/SrF₂ ligands, TR=15 sec, NS=12.

Solid State NMR

 19 F solid state NMR experiments were performed on a 9.4 T (400 MHz) AvanceIII spectrometer using a Bruker 1.3 mm double-resonance probe at magic angle spinning (MAS) rate of 60 kHz. Spectra were recorded within 2 scans using a single pulse excitation of 1.9µs (133 kHz nutation frequency) with a relaxation delay of 30 s between each scan. The relaxation delay was longer than 5 times the longitudinal relaxation time measured by saturation recovery. The chemical shift was references with respect to LiF standard set at -204 ppm.

Line Fitting Procedure

The high-resolution ¹⁹F-NMR spectrum of AEP-CaF₂ NCs shown in Fig 2b was decomposed into three Lorentzian peaks centered at -105, -109 and -120 ppm using nonlinear least squares fit from MATLAB's curve fitting toolbox. The goodness of fit was evaluated using R-square which ranged from 0.96 to 0.98. The integrated area under each Lorentzian peak was obtained using MATLAB's inbuilt function. The ¹⁹F-NMR spectra of AEP-SrF₂ NCs (Fig 3d) and Cit-CaF₂ NCs (Fig 4b) were similarly decomposed and their respective integrated area evaluated.

X-Ray Diffraction (XRD)

Diffraction measurements were carried out with reflection geometry using an Ultima III (Rigaku, Japan) diffractometer equipped with a sealed, Cu anode X-ray tube operating at 40 kV and 40 mA. A bent graphite monochromator and a scintillation detector were aligned in the diffracted beam. $\theta/2\theta$ scans were performed under specular conditions in the Bragg-Brentano mode with variable slits. The 2 θ scanning range was 10–120 degrees, with a step size of 0.025 degrees and a scan speed of 0.5 degrees per minute. Phase analysis was performed using the PDF-4+ 2015 database (ICDD) and Jade 9.5 software (Materials Data, Inc.).

Dynamic Light Scattering (DLS)

The diameter and size distribution of the obtained nanoparticles were evaluated by dynamic light scattering, Malvern Nano-ZS. Measurements were taken in a 12.5 mm diameter plastic cuvette according to the appropriate solvent viscosity (for water= 0.8827 cp).

Transmission Electron Microscopy (TEM)

STEM and hyperspectral EDS data (Fig.1) were taken in a probe and image-corrected Themis-Z transmission electron microscope (Thermo Fisher Scientific Microscopy Solutions, Hillsboro, USA) equipped with a Super-X SSD detector at an acceleration voltage of 200 kV. Dry samples were prepared by drop cast deposition on an ultra-thin carbon support foil. TEM and high-resolution TEM (HRTEM) images (Fig.5) were acquired with a JEOL JEM 2100 high-resolution electron microscope, Gatan Digital Micrograph. Accelerating voltage was 200 kV, a beam source of an LaB6 thermal emission, and a bottom-mount CCD camera (Gatan Ultra scanXP 2k x 2k).

Cryo-TEM

For the preparation of the cryo-TEM specimens, a 6.5 µL sample (according to the appropriate synthesis upon injection of the second precursor) was applied to a 200-mesh copper grid coated with holey carbon (Pacific Grid-Tech supplies). The grid was subjected to a 1 min glow discharge before sample application. Samples were blotted at 22°C and 95% relative humidity and then plunged into liquid ethane using a Leica EM-GP Automatic Grid Plunger. Specimens were equilibrated at -178°C in the microscope prior to imaging. Cryo-TEM was performed on a Tecnai F20 twin-transmission electron microscope (Thermo-Fisher corporation) operating at an acceleration voltage of 200 kV. Cryogenically preserved samples were loaded into a Gatan 626 cryoholder. Low-dose TEM images were recorded with a Gatan US4000 CCD. Two different samples were prepared: 1. AEP-CaF₂, 6 min after the injection of Ca⁺² into a solution containing both AEP and F⁻ (according to the synthesis described above). 2. AEP-SrF₂, 1000 min after the injection of Ca⁺² into a solution containing both AEP and F⁻ (according to the synthesis described above). Cryo-TEM was performed on a Talos Arctica (TFS) TEM at an acceleration voltage of 200 kV. Low-dose cryo-TEM images were recorded with a Gatan OneView 4kx4k CMOS camera. Two different samples were prepared at different stages of AEP-CaF₂ formation: 200 min and 1000min after the injection of Ca^{+2} into a solution containing both AEP and F⁻ (according to the synthesis described above).

Supporting Figures

Supplementary Figure 1. Characterization of the CaF₂-AEP NC (a) particle size distribution histogram by TEM (D_{TEM} =3.7±0.6 nm) (b) XRD patterns of the crystalline CaF₂. (c) Hydrodynamic size distribution with DLS (D_{DLS} =4.6 ± 1. 2nm).

Supplementary Figure 2. The effect of paramagnetic agent (PA) on the ¹⁹**F-NMR spectra of AEP-CaF₂ NCs in water**. ¹⁹**F -NMR** spectra of AEP-CaF₂ NCs in water and the convolved peak area at -105 ppm, assigned to the surface atoms before (a) and after (b) the addition of SmCl₃ salt as the PA to the studied solution. (c) The ratio of the integrated area of the ¹⁹**F-NMR** peaks assigned to surface (-105 ppm) and core (-109 ppm) atoms, with and without the PA. (d) The hydrodynamic diameter (by DLS) of AEP-CaF₂ NCs in water with and without the addition of SmCl₃ salt as the PA showing no change in the NCs' size.

Supplementary Figure 3. MF₂ (M=Ca²⁺ or Sr²⁺) NCs and their size measurements with TEM ¹⁹F NMR and DLS. (a) PEG-CaF₂ in water (scale bar 50nm, inset is 5nm). (b) OA-SrF₂ in cyclohexane (scale bar 50nm). (c) OA-CaF₂ in cyclohexane (scale bar 100nm).

Supplementary Figure 4. ¹⁹**F NMR of AEP-CaF₂ NCs.** (a) Solid state NMR of a dried powder with MAS of 60 kHz. (b) High resolution ¹⁹F NMR of NCs in water.

Supplementary Figure 5. Real-time ¹⁹**F NMR of F⁻ concentration during the formation of AEP-CaF₂.** Concentration of AEP-CaF₂ NCs in water (left y-axis, black) or F⁻ ion consumption (right axis, light blue) as a function of the reaction time.

Supplementary Figure 6. Temporal evolution of the ¹⁹F-NMR spectra as a function of the AEP-CaF₂ reaction time. (a) Representative ¹⁹F-NMR spectra of the reaction mixture of AEP-CaF₂ 6 min (black) and 1000 min (grey) after reaction initiation. (b) The temporal evolution of the deconvolved peak assigned to the surface fluorides (at -105 ppm) throughout the formation of AEP-CaF₂ NCs (from bottom to top: 6, 36, 54, 81, 120, 234 and 444 min after reaction initiation). Dashed lines in (a) and (b) are reference lines representing the chemical shift values at -104 ppm (black) and -105 ppm (grey). (c) Left Y-axis: The chemical shift of the deconvolved peaks assigned to the surface fluorides as a function of the reaction time. Right Y-axis: The calculated diameter of the newly formed AEP-CaF₂ NCs as a function of the reaction time.

Supplementary Figure 7. Real-time, high-resolution ¹⁹**F-NMR of AEP-CaF₂ NC evolution in water (first 60 min of the reaction)**. Results from four independent experiments showing the evolution of the AEP-CaF₂ NC diameter (top) and their concentrations (bottom) in water throughout the reaction process.

Supplementary Figure 8. Cryo-TEM of AEP-CaF₂ NCs in water (25 min after reaction initiation); (a) Cryo-TEM image with six (1-6) notations of regions with coalescing NCs, scale bar=50 nm. (b) Zoom-in of regions 1-6 shown in (a), scale bar=5 nm.

Supplementary Figure 9. HR-TEM image of AEP-CaF₂ NCs (25 min after reaction initiation). (a)-(c) Single crystalline particles detected with d spacing of d = 0.315 nm of CaF₂ NCs. (d)-(f) Detected coalesced NCs demonstrating the fusion of the crystalline cores. The inset at the bottom of the lines in green and turquoise illustrates the CaF₂ lattice planes of the two NCs coalesced to form boundary defects.

Supplementary Figure 10. Cryo-TEM of AEP-CaF₂ formation. Cryo-TEM of samples taken from the reaction mixture after (a) 6 min, (b) 200 min and (c) 1000 min. Scale bar 100 nm (inset 50 nm). (d) Particle size distribution histogram of the of AEP-CaF₂ NC by Cryo-TEM at different time point of the synthesis; (e) AEP-CaF₂ NC diameters, as calculated from the Cryo-TEM images (a-c),(a) 6min, D= 2.9 ± 0.8 nm, (b) 200min, D= 3.4 ± 0.7 nm and (c)1000min, D= 4.1 ± 0.9 nm. (f) Correlation between the NC size as measured from Cryo-TEM images and from ¹⁹F-NMR spectra.

Supplementary Figure 11. Real-Time ¹⁹**F HRNMR synthesis of AEP-SrF₂ NCs in water** (a) ¹⁹F core atoms calculated from the deconvoluted peak area at -89ppm, every 3 minutes (in light blue) and ¹⁹F surface atoms calculated from the convoluted peak area at -87ppm, every 3 minutes (in pink) (b) The concentration of AEP-SrF₂ NCs in solution with time calculated from Supplementary Note 2 (c) ¹⁹F NMR monitoring the concentration of F⁻ (peak at -120ppm) in solution during the synthesis of AEP-SrF₂ NCs.

Supplementary Figure 12. ³¹**P-NMR monitoring the AEP ligand in real time**. (a) Schematic illustration of the ligands release during the NCs growth and the appearance of the AEP triplet before, during and at the end of the synthesis. (b) ³¹**P-NMR** of the AEP ligand before the addition of Ca²⁺ and after the AEP-CaF₂ NCs reaction initiation. (c) ³¹**P-NMR** of the AEP ligand before the addition of Sr²⁺ and after the AEP-SrF₂ NCs reaction initiation.

Supplementary Figure 13. TEM image of Cit-CaF₂ after 1000min of reaction with a particle size distribution from TEM of D= 3.2 ± 1.0 nm.(Scale bar 50nm).

Supplementary Figure 14.Statistical analysis of CaF₂ crystallinity (a) Statistical analysis of defected vs. crystalline NCs detected with HR-TEM of AEP-CaF₂ and Cit-CaF₂ NCs. HR-TEM images of single particles either (b) AEP-CaF₂ NCs or (c) Cit-CaF₂ NCs.

Supplementary Figure 15. ¹⁹**F** T₁ relaxation properties of CaF₂ NCs in water. Cit-CaF₂ T₁ relaxation properties of the deconvolved NC components (core in blue and surface in pink). AEP-CaF₂ T₁ relaxation properties of the deconvolved NC components (core in light blue and surface light light pink).components (core in light blue and surface in light pink).

Supplementary Notes

Supplementary Note 1; Derivation of Equation 1.

Calculating the size of the NCs from the ratio between the convoluted NMR peaks of the surface ¹⁹F atoms and core ¹⁹F atoms.

$$\frac{{}^{19}F_{surface\ atoms}}{{}^{19}F_{core\ atoms}} = \frac{V_{surface} \times d}{V_{core} \times d} = \frac{V_{NC} \times d - V_{Core} \times d}{V_{core} \times d} = \frac{\frac{4}{3}\pi R^3 - \frac{4}{3}\pi (R-r)^3}{\frac{4}{3}\pi (R-r)^3}$$
$$= \frac{R^3}{(R-r)^3} - 1$$

 $^{19}F_{surface\ atoms}$ are calculated from the deconvulated area 1D NMR spectrum at - 105 ppm

 $^{19}F_{core\ atoms}$ are calculated from the deconvulated area 1D NMR spectrum at $-109\ ppm$

d – density of $MF_2 NCs$

 $V_{surface}$ – volume of outer sphere (pink)

V_{core} – *volume of inner sphere* (*ligth blue*)

 V_{NC} – volume of NCs

r – length of the outer surface, attributed to the ionic diameter of fluorine atoms (r = 0.266 nm¹)

Supplementary Note 2; Derivation of Equation 2.

Calculating the concentration of NCs in solution at each reaction time point based on real-time ¹⁹F NMR spectra.

The total number of NCs in solution;

$$N(t) = \frac{\text{Total number of }^{19}\text{F atoms in } NCs(t)}{\text{Number of }^{19}\text{F atoms per } NC(R(t))} = \frac{(1)}{(2)}$$

(1)

The total number of ¹⁹F atoms in a NC is the sum of the deconvoluted peaks assigned to the core and surface atoms at each time point, based on the 1D ¹⁹F NMR spectra.

$$(1) = {}^{19}F_{core} atoms (t) + {}^{19}F_{surface} atoms (t)$$

$${}^{19}F_{core/surface} atoms (t) = C_{core/surface}(t) \times V_{reaction} \times N_A$$

C(t) – concentration of ¹⁹F atoms (core or surface) measured from the calibrated

and convoluted integration area at each time point.

 $V_{reaction}$ - reaction volume of 1 ml. N_A - Avogadro's constant (6.023 × 10²³)

(2)

The number of ¹⁹F atoms in NCs is a function of their radii at each time point and is also determined by the properties of MF₂ (CaF₂ or SrF₂) compounds, such as molecular weight $(M_{W_{MF_2}})$ or atom densities (d_{MF_2}) .

moles of atoms per MF₂ NC:
$$nMF_2 = \frac{d_{MF_2} \times V_{MF_2}}{M_{w_{MF_2}}}$$

 $d_{CaF_2} = 3.18 \frac{gr}{cm^3}$, $M_{w_{CaF_2}} = 78.07 \frac{gr}{mol}$
 $d_{SrF_2} = 4.24 \frac{gr}{cm^3}$, $M_{w_{SrF_2}} = 125.62 \frac{gr}{mol}$
Volume of NCs: $V_{MF_2} = \frac{4\pi (R(t))^3}{3}$

Since each MF_2 has 2 ¹⁹F atoms per NC, the number of ¹⁹F atoms per MF_2 NC can be calculated from:

$$2 \times nMF_2 \times N_A$$

Number of ¹⁹F atoms per $CaF_2 = 204.7 \times R(t)^3$

Number of ¹⁹F atoms per $SrF_2 = 170.3 \times R(t)^3$

Calculating the concentration of NCs(t), C_{NC} , in solution [M].

$$C_{NC} = \frac{N(t)}{N_A \times V_{reaction}} \qquad (Supplementary \text{ Equation 2})$$

N(t) – number of NCs in solution

 $N_A - Avogadro's \ constant \ (6.023 \times 10^{23})$

 $V_{reaction}$ – reaction volume of 1ml.

Supplementary References

1. Haynes, W.M. *CRC handbook of chemistry and physics*, (CRC press, 2014).