
 
	  
	  
	  

Supplementary Figure 1 

Analysis outline. 

We analyzed the accumulation of knowledge of gene function during the period 2009-2016 and its impact on practical analysis of gene 
lists. Our analysis involved three major steps (I-III). First, we studied the evolution of vocabulary of biological processes and pathways 
from Gene Ontology and the Reactome database (panel I). Second, we studied how gene annotations to these pathways and 
processes have changed over time (panel II). Third, we evaluated the practical impact of knowledge accumulation by performing 
pathway enrichment analysis using current and out-dated functional resources on gene lists derived from recent cancer genomics 
studies (panel III). 
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Supplementary Figure 2 

The vocabulary of biological pathways and processes is growing rapidly.  
 
(A) The number of human biological processes and molecular pathways has doubled during 2009-2016. Similar trends are apparent 
among human cell components and molecular functions. We counted the number of GO terms and Reactome pathways with at least 
one annotated human gene. (B) The numbers of annotated GO terms have also grown rapidly for model organisms. 
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Supplementary Figure 3 

Gene Ontology terms are increasingly specific and interconnected. 
 
(A) Histogram shows mean length of paths in the Gene Ontology connecting a given term and the root term. Significant increase in the 
depth of the GO hierarchy between 2009 and 2016 (P < 10-5, permutation test) indicates that the biological vocabulary is increasingly 
detailed and terms are becoming more specific. (B) The average number of parents per GO term has increased over time (2009-2016, 
1.73 to 2.09; P < 10-5). We used a permutation test (n = 100,000) to compute p-value to evaluate difference of earlier and recent values. 
Error bars represent 95% confidence intervals from resampling. 
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Supplementary Figure 4 

Human genes and pathways are increasingly annotated. 

Violin plots show the comparison of pathway size and gene annotation frequency in 2009 and 2016. In the top panels, the median 
pathway size (total number of genes in pathway) is shown for every gene on log2 scale. In the bottom panels, number of pathways 
annotated per every gene is shown on log2 scale. P-values were computed using permutation tests (n=100,000). Genes without 
annotations were excluded. GO biological processes (left) and Reactome pathways (right) are shown separately. The median number 
of each plot is shown in boldface letters. 
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Supplementary Figure 5 

Genes and pathways of model organisms are increasingly annotated. 
Violin plots show the comparison of pathway size and gene annotation frequency in 2009 and 2016 for human and several model 
organisms. P-values were computed using permutation tests (n = 100,000). Genes without annotations are excluded. 
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Supplementary Figure 6 

Contemporary gene annotations include a prominent class of small and specific pathways from the manually curated Reactome 
resource. 
Two-dimensional density plots of median pathway size per gene and numbers of pathway annotations per gene (Fig. 1b) reveal a 
bimodal distribution of pathways in current annotations from 2016. The group of pathways in the bottom left quadrant of the left panel of 
Figure 1b primarily represents gene annotations of the Reactome resource (98%). The corresponding genes have relatively few 
annotations to pathways (below median value) and the pathways themselves contain relatively few genes (also below median value). 
The group of Reactome pathways is not apparent among annotations of 2009. 
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Supplementary Figure 7 

The fraction of unannotated genes is decreasing consistently. 
In 2009, one of eight high-confidence protein-coding genes (12.4%) from the CCDS database had no annotations in Gene Ontology or 
Reactome while this “dark matter” has decreased to 4.9% in 2016. Dark-matter genes included those with no annotations and also 
genes that only had root-level annotations in GO. We used the closest earlier release of the CCDS database to count annotated genes 
(e.g., the 2015 release of CCDS for 2016 annotations of GO, as CCDS of 2016 had not been released at the time of the analysis).  
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Supplementary Figure 8 

Changes in gene nomenclature affect functional annotations. 
Analysis of human gene lists from current datasets will cause mismatches of gene symbols as standard nomenclature has been 
updated over the years. We compared the HGNC symbols in the latest CCDS database (2015) to earlier database versions and 
counted the number of unmatched symbols.  
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Supplementary Figure 9 

Renamed genes have significantly fewer annotations.   
We investigated the number of annotations for genes whose symbols differed in 2010 and 2016 and found that genes with changed 
symbols have significantly fewer annotations in 2010 than consistently named genes (average number of annotations per gene 3.1 vs 
9.3, permutation test of n=100,000, p<10-5). Error bars represent 95% confidence intervals from resampling. 
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Supplementary Figure 10 

Pathway enrichment analysis of essential genes of breast cancer confirms loss of information in outdated annotations. 
(A) We analysed top-500 essential genes from each of 77 cancer cell lines derived from recent shRNA screens. We studied (i) 
annotations from 2010 and (ii) annotations from 2016, and quantified enrichments using Fisher’s exact test and multiple testing 
correction (FDR P < 0.05). We then compared the resulting enriched terms from both analyses. We found a three-fold increase in 
detected pathways and processes when data were analyzed with current annotations from 2016 (695 pathways and processes per 
median cell line) compared to outdated annotations from 2010 (191 per median cell line, 74% missed when accounting for terms only 
appearing in 2010 annotations). GO biological processes and Reactome pathways were analyzed and respective counts are 
aggregated in the plot. (B) We repeated our pathway enrichment analysis of breast cancer essential genes by analyzing top-100 
essential genes of the same dataset and found a similar difference of the effect of outdated and current pathway annotations (143 v 455 
pathways, 71% missed in earlier annotations). 
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Supplementary Figure 11 

Evolution of pathway information affects recently updated and out-of-date software tools. 

We analyzed significantly mutated driver genes of glioblastoma using gene annotations of 2009-2016 and compared the results of 
2016-era analysis with results of each earlier year. Colors indicate the fraction of commonly detected (yellow), 2016-only (purple) and 
outdated-only (dark blue) pathways from the Reactome resource with statistically significant enrichment (FDR p<0.05). 
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Supplementary Figure 12 

Most missed GO terms in 2010-era analysis involve known pathways and processes that do not associate significantly with input 
genes. 
We compared results of pathway enrichment analyses that used annotations from 2010 and 2016. The majority of pathways missed in 
the outdated annotations (~75%) exist in the 2010 edition of Gene Ontology, however these are not significantly associated to input 
genes. The remaining 25% represent processes added to GO after 2010. 
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Supplementary Figure 13 

Most pathway enrichments from outdated annotations from 2010 are based on low-quality information. 

We repeated the pathway analysis of frequently mutated glioblastoma genes by only analyzing high-quality gene annotations from 2010 
and 2016 (IEA annotations from GO were excluded). We found that 96.5% of results from 2016 analysis were missed when 2010 
annotations were used, showing that earlier annotations are largely based on low-confidence information.  
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Supplementary Figure 14 

Some enriched pathways and processes are missed in relatively recent gene annotations. 

We compared results of pathway enrichment analyses that used annotations from 2015 and 2016. We focused on the terms that were 
found in the earlier analysis and missed in the most current annotations, including 89/743 (12%) GO terms and 29/116 (25%) 
Reactome pathways. The majority of missing pathways were part of the pathway database or GO in the up-to-date analysis although 
not detected at statistically significant levels (blue tones), while a smaller fraction of terms were entirely missing from the analysis, likely 
because of restructuring of pathways and processes.  
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Supplementary Methods 
 

Collection of pathway tools and citations. We collected web-based pathway 
enrichment analysis tools that included human gene annotations using literature search 
and recent review papers (refs 1,2,3). Tools were compared only in the context of gene 
annotation datasets and not their analytic capacity. The times of the most recent data 
updates were collected from the websites of selected tools. Developers were contacted 
if this information was unavailable. We collected primary publications of software and 
methods from the websites and used Google Scholar to find additional publications. We 
conducted a PubMed query for each selected publication, determined its PubMed ID and 
counted its citations in 2015 by defining a custom time range on publication date 
(01.01.2015-31.12.2015). Citations were summed across multiple publications for the 
same software tools.  
 

Ontologies and pathways. Functional terminology of biological processes, molecular 
functions, and cell components was retrieved from the Gene Ontology4 website 
(http://geneontology.org/page/download-ontology) and comprised January releases of 
each year (2009-2016; Supplementary Table 3). February release of GO was used for 
2012 as the January release was unavailable. Five relationship types were considered 
(is_a, part_of, regulates, positively_regulates, negatively_regulates). Gene annotations 
were derived from the Gene Ontology Annotation database5 (UniProt-GOA, 
http://www.ebi.ac.uk/GOA/archive). We selected GOA datasets that were released 
shortly after the corresponding GO ontologies. Genes were annotated to GO terms as 
well as parent and ancestor terms via all possible paths. Obsolete terms and negative 
relationships in GO were removed. Molecular pathways from the Reactome6 database 
were retrieved from archives and included December releases of previous years. We 
filtered human genes with non-public status and analyzed protein-coding genes of 
matched versions of the NCBI Consensus Coding Sequence Database7 (CCDS, 
https://www.ncbi.nlm.nih.gov/CCDS). The closest earlier release of CCDS was used for 
each annotation dataset. Average path lengths and parent counts of GO terms in 2009 
and 2016 were evaluated with permutation tests. Terms were permuted uniformly for 
100,000 times and simulated mean values derived from permuted terms were compared 
with actual mean values derived from observed terms. Each p-value was computed as 
the number of permutations where values from simulated data exceeded values from 
observed data over the total number of permutations. Pathways, annotations, and 
enrichments were analysed with custom R scripts available on request.     
 

Analysis of gene annotations. Pathway databases were analyzed for growth in total 
number of pathway terms separately for the three main ontologies in GO (biological 
processes, molecular functions, cell components) for each year (2009-2016). The same 
analysis was repeated for human Reactome pathways and GO annotations for model 
organisms (mouse, Arabidopsis thaliana, fly, yeast). We counted GO terms and 
Reactome pathways with at least one annotated gene of the studied species. Path 
lengths and numbers from terms to roots were computed with custom scripts. Human 
annotations of GO terms and Reactome pathways contained high-confidence protein-
coding genes from the nearest previous release of the CCDS database release (e.g. 
2015 release for 2016 annotations) and only included genes with public status. Density 
of human gene annotations was assessed with two-dimensional density plots. For each 
gene, number of associated processes and pathways (Y-axis) and median size of 
corresponding gene sets per gene (Y-axis) were shown. The density plots include non-
annotated genes (i.e. “dark matter”) for density estimation but are not shown. Dark 
matter genes were selected as protein-coding genes of the corresponding CCDS 
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release that had no annotations in GO or Reactome, or only had top-level GO 
annotations (one or more of biological_protess, cell_component, molecular_function). 
GO biological processes per gene were also estimated for model organisms (mouse, A. 
thaliana, fly, yeast) without filtering of CCDS genes and dark matter. The proportion of 
missing gene symbols was estimated from earlier CCDS releases relative to the most 
recent CCDS release of 2015. Quality of human gene annotations was assessed in 
three mutually exclusive categories – genes with at least one Reactome annotation, 
genes with at least one non-electronic (non-IEA) annotation in GO, and genes with only 
IEA (Inferred from Electronic Annotation) annotations in GO. Statistical comparisons of 
gene annotations across years were conducted with permutation tests similarly to the 
tests described above.   
 

Pathway Enrichment Analysis. Pathway enrichment analysis was conducted on GO 
biological processes and Reactome pathways using Fisher’s exact tests. GO cell 
components and molecular functions were excluded prior to analysis. Multiple testing 
was conducted separately for GO and Reactome terms using the Benjamini-Hochberg 
False Discovery Rate (FDR) procedure. Terms with FDR p<0.05 were considered 
significant. Enrichment analysis of GO and Reactome terms conservatively comprised 
separate background gene sets that included all the genes with at least one gene 
annotation of biological process (GO) and Reactome pathway, respectively. We chose 
this general enrichment strategy and did not compare outputs of different tools directly, 
as direct comparison would be confounded by differences in underlying methods, gene 
symbol mapping, and filtering of annotation data. Two sets of enrichment analyses were 
conducted on cancer gene lists using gene annotations from 2016 (corresponding 
to g:Profiler) and 2010 (corresponding to DAVID). First we analyzed essential breast 
cancer genes from recent shRNA screens of 77 cell lines8. We separately analyzed top-
100 and top-500 lists of genes according to per-gene zGARP scores provided by the 
study. We counted shared, outdated-only, and recent-only gene annotations enriched in 
the analyses (FDR p<0.05) and matched these using GO and Reactome term identifiers. 
The most common terms only found in the up-to-date analysis were visualized with 
the WordCloud R package. To simulate practical analysis, we did not manually convert 
outdated gene symbols in breast cancer analysis. We also conducted enrichment 
analyses of essential breast cancer genes after converting these to earlier HGNC 
symbols via EntrezGene identifiers in the CCDS database. We observed no major 
differences of analyses performed with converted and unconverted gene symbols. To 
confirm this observation, we studied the distributions of annotations of genes and found 
that the genes whose symbols changed between 2010 and 2016 had significantly fewer 
annotations than the genes with consistent symbols, and 42% of these corresponded 
to ‘dark matter’ genes with no annotations in 2010. A similar pathway enrichment 
analysis was conducted for 75 frequently mutated glioblastoma genes9,10 derived from 
the IntOGen database11. In this analysis, we manually mapped outdated gene 
symbols to create a more conservative scenario. We compared enriched annotations 
across the years 2009-2015 relative to 2016 and counted common and distinct terms as 
above. We studied the origin of these differences in the context of changed annotations 
and changed functional vocabulary. We also visualized pathway enrichments of 2010 
and 2016 using the Enrichment Map12 app of Cytoscape13. The enrichment map covered 
pathways with at least four genes. Our observations were also confirmed when this filter 
was removed and all pathways were included. Functional themes and signaling 
pathways in the map were curated manually.  
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Supplementary Note | Pathway analysis of glioblastoma genes highlights specific 
processes and druggable pathways missed by earlier annotations 
 

Detailed summary of GBM pathway enrichment results as an Enrichment Map12 shows 
biological themes that are missed when using annotations from 2010 (FDR P < 0.05, 
Figure 1e; Supplementary Tables 4-5). GBM driver genes are enriched in hallmark 
cancer processes14 including cell cycle, apoptosis, cell migration, and signaling. These 
are apparent when analyzing either out-of-date or current annotations, however only few 
general terms appear in 2010 data. 
Enriched pathways in up-to-date analysis are more specific to neuronal context as 
expected from brain cancer genes. For example, while apoptosis is found in both 
analyses, neuronal apoptosis only appears in newer analysis (n=7 genes, FDR P = 
0.018). Similarly, current gene annotations emphasize central nervous system (CNS) 
development (n = 22, FDR P = 1.63x10-8) as well as neurogenesis (n = 26, FDR P = 
1.12x10-6) and gliogenesis (n = 7, FDR P = 0.025), while only CNS development is 
apparent in older data. Functional themes such as immune response (n = 29, FDR P = 
5.2x10-5), neurotransmitter signaling (n = 6, FDR P = 0.0013), circadian clock (n = 8, 
FDR P = 1.5x10-4) and glucose signaling (n = 7, FDR P = 0.0016) are only highlighted in 
new annotations. These processes are expected in the context of current knowledge15,16, 
for example enhanced glucose uptake of brain tumor initiating cells helps these 
overcome nutrient deprivation17.  
Current pathway analysis also highlights specific signaling pathways relevant to GBM 
biology and therapy development18,19,20. For example, Notch (n = 5, FDR P = 0.0019), 
TGF-β (n = 5, FDR P = 0.027), and fibroblast growth factor (n = 12, FDR P = 1.13x10-6) 
pathways are only enriched among up-to-date gene annotations and reveal translational 
hypotheses. Notch is targetable with γ-secretase inhibitors (e.g. R04929097; Roche) for 
malignant glioma and for progressive GBM that are currently in phase I and phase II 
trials, respectively18.  Drugs of the TGF-β pathway inhibit the ligand (Trabedersen, 
Antisense Pharma) or the receptor of the signaling cascade (Galunisertib, Eli Lilly)21. The 
current gene annotations also highlight the enrichment of EGFRvIII22,23 signaling 
pathway (EGFR, KRAS, PIK3CA, PIK3R1, SOS1, FDR P = 1.07x10-5). Aberrant EGFR 
signaling is common to many cancer types, however EGFR kinase inhibitors have been 
unsuccessful in GBM treatment to date. EGFR alterations occur in more than 50% of 
GBMs20 and the most common alteration causes deletion of exons 2-7 of the gene, 
known as the EGFRvIII variant that drives tumor progression and correlates with poor 
prognosis24. The recently developed Rindopepimut vaccine targets EGFRvIII and has 
entered clinical trial25.  
These examples demonstrate the limitations of outdated gene annotations. Glioblastoma 
has extremely poor outcome as the average patient only survives 15 months after 
diagnosis regardless of surgery and aggressive chemotherapy. The specific processes 
and pathways with existing drugs highlight avenues for functional follow-up experiments 
and candidates for future therapy development. Researchers who use outdated software 
for analyzing their experimental data will miss out on relevant functional and translational 
hypotheses. 
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Supplementary Table 1 | Data update times of web-based pathway enrichment 
analysis software tools. 
The table shows 25 web-based pathway enrichment analysis tools and the dates of their 
most recent updates of gene annotation databases. The table reflects information from 
the web sites of corresponding tools and was compiled in February 2016. The list of 
tools was compiled from review papers and additional literature searches. We only 
included tools that allowed analysis of human genes.  
 
Tool URL Last update of 

pathway 
database 

Reference 

GORILLA http://cbl-gorilla.cs.technion.ac.il/ 02-2016 26 

g:Profiler http://biit.cs.ut.ee/gprofiler/ 02-2016 27 

ToppGene https://toppgene.cchmc.org/ 02-2016 28 

PANTHER http://pantherdb.org/ 02-2016 29 

InterMine  
Human Mine 

http://intermine.org/  
http://www.humanmine.org/ 

11-2015 30 

GoEast http://omicslab.genetics.ac.cn/GOEAST/ 11-2015 31 

GeneMerge http://www.genemerge.net/ 09-2015 32 

ConsensusPathDB http://consensuspathdb.org/ 09-2015 33 

GREAT http://bejerano.stanford.edu/great/public/
html/ 

02-2015 34 

Babelomics http://babelomics.bioinfo.cipf.es/ 12-2014 35 

Enrichr http://amp.pharm.mssm.edu/Enrichr/ 11-2014 36 

FuncAssociate http://llama.mshri.on.ca/funcassociate/ 06-2014 37 

gsGator http://gsgator.ewha.ac.kr/ 01-2014 38 

WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/ 01-2013 39 

GeneCodis http://genecodis.cnb.csic.es/ 12-2011 40 

GoMiner http://discover.nci.nih.gov/gominer/ 01-2011 41 

GeneTrail http://genetrail.bioinf.uni-sb.de/ 09-2010 42 

EasyGO http://bioinformatics.cau.edu.cn/easygo/ 05-2010 43 
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GARNet http://biome.ewha.ac.kr:8080/GSEAWeb
App/ 

05-2010 44 

DAVID https://david.ncifcrf.gov/ 01-2010 45 

ConceptGen http://conceptgen.ncibi.org/core/concept
Gen/ 

11-2009 46 

GOToolBox http://genome.crg.es/GOToolBox/ 07-2009 47 

L2L http://depts.washington.edu/l2l/ 07-2007 48 

GoSurfer http://systemsbio.ucsd.edu/GoSurfer/ 03-2007 49 

GOstat http://gostat.wehi.edu.au/ NA 50 
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Supplementary Table 2 | Citation counts of pathway enrichment analysis software 
in 2015.  
The table shows 25 different pathway tools, the number of citations per publication, the 
total number of citations of the tool, and the percentage of all citations in 2015. Lists of 
primary publications of software tools were collected from respective web sites and 
augmented with additional literature searchers. Citation counts of these papers were 
derived from PubMed.  
 
Tool Citation count 2015 

per publication 
PMID Total 

citations 
in 2015 

Total 
citations in 
% 

Babelomics 2 16845052 44 1.13 

 5 15980512   

 17 20478823   

 3 18515841   

 2 25897133   

 15 14990455   

ConceptGen 6 20007254 6 0.15 

ConsensusPathDB 16 18940869 79 2.04 

 25 21071422   

 38 23143270   

 0 20847220   

DAVID 1417 19131956 2517 64.89 

 261 12734009   

 614 19033363   

 28 14519205   

 72 17576678   

 57 17784955   

 16 17980028   

 21 19728287   

 23 22543366   

 8 18841237   

EasyGO 3 17645808 3 0.08 

Enrichr 61 23586463 61 1.57 

FuncAssociate 13 19717575 21 0.54 
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 8 14668247   

g:Profiler 26 17478515 74 1.91 

 48 21646343   

GARNet 0 21342555 0 0 

GeneCodis 31 17204154 108 2.78 

GeneMerge 4 12724301 4 0.10 

 28 19465387   

 45 22573175   

GeneTrail 12 17526521 14 0.36 

 2 21592396   

GoEast 32 18487275 40 1.03 

 8 19615110   

GoMiner 26 12702209 33 0.85 

 7 15998470   

GORILLA 134 19192299 134 3.45 

GoSurfer 1 15702958 1 0.03 

GOstat 24 14962934 24 0.62 

GOToolBox 3 15575967 3 0.08 

GREAT 142 20436461 145 3.74 

gsGator 0 24423189 0 0.00 

 3 23814184   

InterMine 22 22434830 50 1.29 

 17 17615057   

 9 22080565   

 1 26092688   

 1 25414324   

L2L 0 16168088 0 0 

PANTHER 16 19597783 242 6.24 

 8 17130144   

 132 23193289   

 86 23868073   

ToppGene 72 19465376 72 1.86 

Webgestalt 89 15980575 204 5.26 
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 113 23703215   

 2 24233776   

 0 26656494   

 20 18511468   

TOTAL   3879 100 
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Supplementary Table 3 | GO, Reactome, and CCDS databases used in the study. 
The following versions of GO, Reactome, and CCDS databases were used for each year 
to analyze data described in this manuscript. 
 

Year GO ontology data 
version  

GO annotations 
version 

Reactome 
version CCDS version 

2009 NA 70 27 2009-09-02 
2010 1.1.939 81 31 2009-09-02* 
2011 1.1.1689 93 35 2011-09-07 
2012 1.1.2572 106 39 2012-10-25 
2013 2012-12-31 117 43 2013-11-29 
2014 2013-12-20 129 47 2014-08-07 
2015 2014-12-22 140 51 2015-05-12 
2016 2015-12-22 152 55 2015-05-12* 
*CCDS database from previous year was used as no CCDS is available for that year. 
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Supplementary Table 4 | Enriched pathways and processes of glioblastoma genes 
that remain undetected in 2010-era annotations. 
We found nine major themes (i.e. groups of related pathways and processes) out of 28 
that were only detected as significant when analyzing recent annotations from 2016. 
Similarly, new sub-pathways (spread across different major themes) were discovered 
only when using up-to-date gene annotations. Color indicates type of detected pathway: 
pathways only discovered in 2016-era annotations (pink), and pathways commonly 
discovered in annotations of 2010 and 2016 (yellow). 
 
Major themes/ pathways Sub-pathways 

Catabolism Protein catabolism, RNA catabolism 

GABAergic synaptic 
transmission 

Synaptic plasticity, neurotransmitter transport 

Cognition/ learning/ 
behaviour 

Visual behaviour, associative learning, memory, cognition 

Glucose import/ 
transport 

Carbohydrate homeostasis, response to glucose stimulus 

Circadian clock Regulation of circardian rhythm, BMAL1:CLOCK:NPAS2 
activates circardian gene expression 

Wound healing Coagulation, platelet activation, homeostasis 

Immune signalling Fc receptor signalling pathway, TCR signalling, cytokine 
signalling 

Homeostasis Chemical homeostasis, tissue homeostasis 

Endocytosis Vesicle-mediated transport, receptor-mediated endocytosis 

Adhesion Cell-matrix adhesion, cell-substrate adhesion 

Response to stimulus Response to cAMP/ purine-containing compound 

 Response to EGF 

 Response to UV 

 Response to stress 

 Response to metal ion/ inorganic substances 

 Response to TGFβ 

Cellular component 
organization 

RNP complex biogenesis/ assembly 

 Negative regulation of organelle / cellular component 
organization 

Histones & chromatin H3-K9 methylation 

 Histone acetylation/ peptidyl-lysine acetylation 

 Chromatin (dis)assembly  
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 DNA alkylation/ (de)methylation 

 Histone H3 acetylation 

 Histone deacetylation 

 Peptidyl-lysine acetylation 

 Nucleosome organization 

 Histone H3-K9 acetylation 

 Chromatin modifying enzymes 

DNA replication/ CC 
checkpoint 

Regulation of DNA replication 

Cell cycle/ mitosis mitotic CC phase transition 

 Chromosome segregation/ meta-anaphase transition 

 Sister chromatid cohesion 

 Sister chromatid segregation 

Apoptosis/ Neuron 
death 

Neuron death regulation 

 Chromosome breakage/ programmed DNA elimination 

 Fibroblast apoptotic process 

 Neuron apoptotic process 

 Cell death signalling via NRAGE/ NRIF/ NADE 

 Mesenchymal apoptotic process 

 p75 NTR receptor-mediated signalling 

 Cell type specific apoptotic process 

Protein import/ 
localization 

Protein localization to membrane 

 ECM organization 

 Potassium ion transmembrane transport 

 protein import into nucleus 

Metabolism Regulation of ROS 

 Regulation of TNF 

Signalling  EGFRvIII 

 FGFR 

 Notch 

 VEGF 
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 ERK1 and ERK2 cascade 

 ERBB 

 TGFβ 

Development Tube 

 Neuro/ axono/ gliogenesis 

 Cartilage 

 Head/ body/ face 

 Trachea 

 Eye 

 Sertoli cell  

 Liver 

 Pattern specification 
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Supplementary Table 5a | GBM-associated GO terms of the 2016 analysis 
compared to 2010.  
The table shows the top most significant GO terms in 2016 ranked by FDR adjusted p-
values compared to FDR p-values detected in 2010. 
 

GO.ID Description FDR Common genes 
FDR of 
GO.ID in 
2010 

GO:0009893 

positive 
regulation of 
metabolic 
process 

2.69E-14 

AKAP9,ANK3,ARFGEF2,ARH
GAP35,ARHGEF6,ARID1A,A
TRX,BPTF,BRAF,BRCA1,CA
SP1,CHD8,CLOCK,CNOT1,C
UL1,DIS3,EGFR,EZH2,FN1,H
SP90AB1,KALRN,KDM6A,KD
R,KRAS,LRP6,MAP3K4,MAP
4K3,MEN1,MET,NCOR1,NED
D4L,NF1,NFATC4,NR2F2,PA
X5,PIK3CA,PIK3CB,PIK3R1,
PTEN,PTPN11,RB1,SF3B1,S
IN3A,SOS1,SOX9,SPTAN1,S
TAG2,TGFBR2,TP53,TRIO,W
T1,KMT2A 

0.005040439 

GO:0010604 

positive 
regulation of 
macromolecul
e metabolic 
process 

2.61E-13 

AKAP9,ANK3,ARID1A,ATRX,
BPTF,BRAF,BRCA1,CASP1,
CHD8,CLOCK,CNOT1,CUL1,
EGFR,EZH2,FN1,HSP90AB1,
KDM6A,KDR,KRAS,LRP6,MA
P3K4,MAP4K3,MEN1,MET,N
COR1,NEDD4L,NF1,NFATC4
,NR2F2,PAX5,PIK3CA,PIK3C
B,PIK3R1,PTEN,PTPN11,RB
1,SF3B1,SIN3A,SOS1,SOX9,
SPTAN1,STAG2,TGFBR2,TP
53,WT1,KMT2A 

0.024811057 

GO:0070887 

cellular 
response to 
chemical 
stimulus 

5.20E-13 

ADAM10,AKAP9,ANK3,ARH
GEF6,ATRX,BPTF,BRAF,BR
CA1,CAD,CASP1,CUL1,EGF
R,EZH2,FN1,HDAC9,HSP90
AB1,KALRN,KDR,KRAS,LRP
6,MAX,MEN1,MET,NCOR1,N
EDD4L,NF1,NFATC4,NR2F2,
NUP107,PIK3CA,PIK3CB,PIK
3R1,PRPF8,PTEN,PTPN11,R
B1,SIN3A,SOS1,SOX9,SPTA
N1,TGFBR2,TP53,TRIO,WT1
,KMT2A 

ND 
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GO:0048856 
anatomical 
structure 
development 

2.30E-12 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CAD,CARM1,C
HD8,CLOCK,CNOT1,CSDE1,
CUL1,EGFR,EZH2,FAT1,FN1
,HDAC9,HSP90AB1,IDH1,KA
LRN,KDM6A,KDR,KRAS,LRP
6,MAP3K4,MAX,MEN1,MET,
NCOR1,NEDD4L,NF1,NFAT
C4,NR2F2,PAX5,PBRM1,PC
DH18,PIK3CA,PIK3CB,PIK3R
1,PTEN,PTPN11,RB1,SF3B1,
SIN3A,SOS1,SOX9,SPTAN1,
TGFBR2,TJP1,TP53,TRIO,W
T1,RPSA,KMT2A 

0.002983586 

GO:0019222 
regulation of 
metabolic 
process 

2.70E-12 

ACAD8,AKAP9,ANK3,ARFGE
F2,ARHGAP35,ARHGEF6,AR
ID1A,ARID2,ATRX,BPTF,BR
AF,BRCA1,CARM1,CASP1,C
HD8,CLOCK,CLTC,CNOT1,C
SDE1,CUL1,DIS3,EGFR,EZH
2,FN1,HDAC9,HSP90AB1,ID
H1,KALRN,KDM5C,KDM6A,K
DR,KRAS,LRP6,MAP3K4,MA
P4K3,MAX,MEN1,MET,NCO
R1,NEDD4L,NF1,NFATC4,N
R2F2,NUP107,PAX5,PBRM1,
PIK3CA,PIK3CB,PIK3R1,PTE
N,PTPN11,RB1,SF3B1,SIN3
A,SOS1,SOX9,SPTAN1,STA
G2,TGFBR2,TP53,TRIO,WT1
,ZNF814,KMT2A 

0.000413789 

GO:0071840 

cellular 
component 
organization 
or biogenesis 

2.75E-12 

ADAM10,AKAP9,ANK3,ARFG
EF2,ARHGAP35,ARHGEF6,A
RID1A,ARID2,ATRX,BAP1,B
PTF,BRAF,BRCA1,CARM1,C
HD8,CLOCK,CLTC,CNOT1,D
IS3,EGFR,EZH2,FAT1,FN1,H
DAC9,HSP90AB1,KALRN,KD
M5C,KDM6A,KDR,KRAS,LRP
6,MAP3K4,MAX,MEN1,MET,
NCOR1,NEDD4L,NF1,NFAT
C4,NUP107,PAX5,PBRM1,PI
K3CA,PIK3CB,PIK3R1,PRPF
8,PTEN,PTPN11,RB1,RPL5,
SF3B1,SIN3A,SOS1,SOX9,S
PTAN1,STAG2,TJP1,TP53,T
RIO,WT1,RPSA,KMT2A 
 

ND 
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GO:0044260 

cellular 
macromolecul
e metabolic 
process 

2.75E-12 

ACAD8,ADAM10,AKAP9,ANK
3,AQR,ARFGEF2,ARHGAP3
5,ARHGEF6,ARID1A,ARID2,
ATRX,BAP1,BPTF,BRAF,BR
CA1,CAD,CARM1,CASP1,CH
D8,CLOCK,CLTC,CNOT1,CS
DE1,CUL1,DIS3,EGFR,EZH2,
FN1,HDAC9,HSP90AB1,KAL
RN,KDM5C,KDM6A,KDR,KR
AS,LRP6,MAP3K4,MAP4K3,
MAX,MEN1,MET,NCOR1,NE
DD4L,NF1,NFATC4,NR2F2,N
UP107,PAX5,PBRM1,PIK3CA
,PIK3CB,PIK3R1,PRPF8,PTE
N,PTPN11,RB1,RPL5,SF3B1,
SIN3A,SOS1,SOX9,SPTAN1,
STAG2,TGFBR2,TP53,TRIO,
WT1,ZNF814,RPSA,KMT2A 

3.94E-06 

GO:0007275 
multicellular 
organismal 
development 

5.30E-12 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CAD,CARM1,C
HD8,CLOCK,CNOT1,CSDE1,
CUL1,EGFR,EZH2,FN1,HDA
C9,HSP90AB1,IDH1,KALRN,
KDM6A,KDR,KRAS,LRP6,MA
P3K4,MAX,MEN1,MET,NCO
R1,NEDD4L,NF1,NFATC4,N
R2F2,PAX5,PBRM1,PCDH18
,PIK3CA,PIK3CB,PIK3R1,PT
EN,PTPN11,RB1,SF3B1,SIN
3A,SOS1,SOX9,SPTAN1,TG
FBR2,TJP1,TP53,TRIO,WT1,
KMT2A 

0.000751915 

GO:0016043 
cellular 
component 
organization 

5.30E-12 

ADAM10,AKAP9,ANK3,ARFG
EF2,ARHGAP35,ARHGEF6,A
RID1A,ARID2,ATRX,BAP1,B
PTF,BRAF,BRCA1,CARM1,C
HD8,CLOCK,CLTC,CNOT1,E
GFR,EZH2,FAT1,FN1,HDAC
9,HSP90AB1,KALRN,KDM5C
,KDM6A,KDR,KRAS,LRP6,M
AP3K4,MAX,MEN1,MET,NC
OR1,NEDD4L,NF1,NFATC4,
NUP107,PAX5,PBRM1,PIK3
CA,PIK3CB,PIK3R1,PRPF8,P
TEN,PTPN11,RB1,RPL5,SF3
B1,SIN3A,SOS1,SOX9,SPTA
N1,STAG2,TJP1,TP53,TRIO,
WT1,RPSA,KMT2A 

1.6E-04 

Nature Methods: doi:10.1038/nmeth.3963



GO:0048731 system 
development 6.03E-12 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CAD,CARM1,C
HD8,CLOCK,CSDE1,CUL1,E
GFR,EZH2,FN1,HDAC9,HSP
90AB1,IDH1,KALRN,KDM6A,
KDR,KRAS,LRP6,MAP3K4,M
AX,MEN1,MET,NCOR1,NED
D4L,NF1,NFATC4,NR2F2,PA
X5,PBRM1,PCDH18,PIK3CA,
PIK3CB,PIK3R1,PTEN,PTPN
11,RB1,SIN3A,SOS1,SOX9,S
PTAN1,TGFBR2,TP53,TRIO,
WT1,KMT2A 

0.005167947 

GO:0032502 developmenta
l process 6.07E-12 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CAD,CARM1,C
HD8,CLOCK,CLTC,CNOT1,C
SDE1,CUL1,EGFR,EZH2,FA
T1,FN1,HDAC9,HSP90AB1,I
DH1,KALRN,KDM6A,KDR,KR
AS,LRP6,MAP3K4,MAX,MEN
1,MET,NCOR1,NEDD4L,NF1,
NFATC4,NR2F2,PAX5,PBRM
1,PCDH18,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,RB1,S
F3B1,SIN3A,SOS1,SOX9,SP
TAN1,STAG2,TGFBR2,TJP1,
TP53,TRIO,WT1,RPSA,KMT2
A 

0.000751915 

GO:0016568 chromatin 
modification 8.74E-12 

ARID1A,ARID2,ATRX,BAP1,
BPTF,BRCA1,CARM1,CHD8,
CLOCK,EZH2,HDAC9,KDM5
C,KDM6A,MEN1,NCOR1,PA
X5,PBRM1,RB1,SIN3A,SOX9
,TP53,KMT2A 

1.06E-07 

GO:0048513 organ 
development 1.03E-11 

AKAP9,ARHGAP35,ARID1A,
ATRX,BPTF,BRAF,BRCA1,C
AD,CARM1,CHD8,CLOCK,C
SDE1,CUL1,EGFR,EZH2,HD
AC9,HSP90AB1,IDH1,KDM6
A,KDR,KRAS,LRP6,MAP3K4,
MAX,MEN1,MET,NCOR1,NF
1,NFATC4,NR2F2,PAX5,PBR
M1,PCDH18,PIK3CA,PIK3R1,
PTEN,PTPN11,RB1,SIN3A,S
OS1,SOX9,TGFBR2,TP53,W
T1,KMT2A 

0.000800217 

Nature Methods: doi:10.1038/nmeth.3963



GO:0060255 

regulation of 
macromolecul
e metabolic 
process 

1.03E-11 

ACAD8,AKAP9,ANK3,ARHG
AP35,ARID1A,ARID2,ATRX,B
PTF,BRAF,BRCA1,CARM1,C
ASP1,CHD8,CLOCK,CLTC,C
NOT1,CSDE1,CUL1,DIS3,EG
FR,EZH2,FN1,HDAC9,HSP90
AB1,KDM5C,KDM6A,KDR,KR
AS,LRP6,MAP3K4,MAP4K3,
MAX,MEN1,MET,NCOR1,NE
DD4L,NF1,NFATC4,NR2F2,N
UP107,PAX5,PBRM1,PIK3CA
,PIK3CB,PIK3R1,PTEN,PTPN
11,RB1,SF3B1,SIN3A,SOS1,
SOX9,SPTAN1,STAG2,TGFB
R2,TP53,WT1,ZNF814,KMT2
A 

0.002467951 

GO:0044767 

single-
organism 
developmenta
l process 

1.46E-11 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CAD,CARM1,C
HD8,CLOCK,CLTC,CNOT1,C
SDE1,CUL1,EGFR,EZH2,FN
1,HDAC9,HSP90AB1,IDH1,K
ALRN,KDM6A,KDR,KRAS,LR
P6,MAP3K4,MAX,MEN1,MET
,NCOR1,NEDD4L,NF1,NFAT
C4,NR2F2,PAX5,PBRM1,PC
DH18,PIK3CA,PIK3CB,PIK3R
1,PTEN,PTPN11,RB1,SF3B1,
SIN3A,SOS1,SOX9,SPTAN1,
STAG2,TGFBR2,TJP1,TP53,
TRIO,WT1,RPSA,KMT2A 
 
 

ND 

GO:0010033 
response to 
organic 
substance 

3.16E-11 

ADAM10,AKAP9,ARHGEF6,A
TRX,BPTF,BRAF,BRCA1,CA
D,CARM1,CASP1,CUL1,EGF
R,EZH2,FN1,HDAC9,HSP90
AB1,IDH1,KALRN,KDR,KRAS
,LRP6,MAP4K3,MAX,MEN1,
NCOR1,NEDD4L,NF1,NR2F2
,NUP107,PIK3CA,PIK3CB,PI
K3R1,PRPF8,PTEN,PTPN11,
SIN3A,SOS1,SOX9,SPTAN1,
TGFBR2,TP53,TRIO,WT1 

0.032600063 

Nature Methods: doi:10.1038/nmeth.3963



GO:0009653 

anatomical 
structure 
morphogenesi
s 

8.42E-11 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BRAF,
BRCA1,CARM1,CUL1,EGFR,
EZH2,FAT1,FN1,HDAC9,HSP
90AB1,KALRN,KDM6A,KDR,
KRAS,LRP6,MET,NEDD4L,N
F1,NFATC4,NR2F2,PAX5,PI
K3CA,PIK3CB,PTEN,PTPN11
,RB1,SF3B1,SOS1,SOX9,SP
TAN1,TGFBR2,TJP1,TP53,T
RIO,WT1 

0.00126693 

GO:0031325 

positive 
regulation of 
cellular 
metabolic 
process 

8.42E-11 

AKAP9,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CASP1,CHD8,
CLOCK,CNOT1,CUL1,EGFR,
EZH2,FN1,HSP90AB1,KDR,K
RAS,LRP6,MAP3K4,MAP4K3
,MEN1,MET,NCOR1,NF1,NF
ATC4,NR2F2,PAX5,PIK3CA,
PIK3CB,PIK3R1,PTEN,PTPN
11,RB1,SIN3A,SOS1,SOX9,S
PTAN1,STAG2,TGFBR2,TP5
3,WT1,KMT2A 

0.003630204 

GO:0048608 
reproductive 
structure 
development 

8.42E-11 

AKAP9,ARID1A,ATRX,BPTF,
CSDE1,EGFR,HSP90AB1,ID
H1,KDR,LRP6,MAP3K4,MEN
1,MET,NR2F2,PBRM1,PTEN,
PTPN11,SOX9,WT1 

0.015434574 

GO:0071363 

cellular 
response to 
growth factor 
stimulus 

8.42E-11 

AKAP9,ARHGEF6,BPTF,BRA
F,CAD,EGFR,FN1,KALRN,K
DR,KRAS,MEN1,NCOR1,NE
DD4L,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1,
SOX9,SPTAN1,TGFBR2,TP5
3,TRIO 

ND 

GO:0061458 
reproductive 
system 
development 

8.63E-11 

AKAP9,ARID1A,ATRX,BPTF,
CSDE1,EGFR,HSP90AB1,ID
H1,KDR,LRP6,MAP3K4,MEN
1,MET,NR2F2,PBRM1,PTEN,
PTPN11,SOX9,WT1 

ND 
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GO:0043170 
macromolecul
e metabolic 
process 

9.74E-11 

ACAD8,ADAM10,AKAP9,ANK
3,AQR,ARFGEF2,ARHGAP3
5,ARHGEF6,ARID1A,ARID2,
ATRX,BAP1,BPTF,BRAF,BR
CA1,CAD,CARM1,CASP1,CH
D8,CLOCK,CLTC,CNOT1,CS
DE1,CUL1,DIS3,EGFR,EZH2,
FN1,HDAC9,HSP90AB1,KAL
RN,KDM5C,KDM6A,KDR,KR
AS,LRP6,MAP3K4,MAP4K3,
MAX,MEN1,MET,NCOR1,NE
DD4L,NF1,NFATC4,NR2F2,N
UP107,PAX5,PBRM1,PIK3CA
,PIK3CB,PIK3R1,PRPF8,PTE
N,PTPN11,RB1,RPL5,SF3B1,
SIN3A,SOS1,SOX9,SPTAN1,
STAG2,TGFBR2,TP53,TRIO,
WT1,ZNF814,RPSA,KMT2A 

2.36E-05 

GO:0007399 
nervous 
system 
development 

1.08E-10 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARID1A,ATRX,BPTF,
BRAF,BRCA1,CARM1,CHD8,
EGFR,EZH2,FN1,HDAC9,HS
P90AB1,KALRN,KDM6A,KRA
S,LRP6,MEN1,MET,NCOR1,
NEDD4L,NF1,NFATC4,NR2F
2,PAX5,PCDH18,PTEN,PTP
N11,RB1,SOS1,SOX9,SPTA
N1,TGFBR2,TP53,TRIO 

ND 

GO:0010467 gene 
expression 1.23E-10 

ACAD8,ADAM10,ANK3,AQR,
ARHGAP35,ARID1A,ARID2,A
TRX,BPTF,BRAF,BRCA1,CA
RM1,CASP1,CHD8,CLOCK,C
NOT1,CSDE1,DIS3,EGFR,EZ
H2,FN1,HDAC9,KDM5C,KDM
6A,KRAS,LRP6,MAP3K4,MA
X,MEN1,MET,NCOR1,NEDD
4L,NF1,NFATC4,NR2F2,NUP
107,PAX5,PBRM1,PIK3CA,PI
K3CB,PIK3R1,PRPF8,PTEN,
RB1,RPL5,SF3B1,SIN3A,SO
X9,STAG2,TGFBR2,TP53,W
T1,ZNF814,RPSA,KMT2A 

0.000703641 

GO:0070848 response to 
growth factor 1.23E-10 

AKAP9,ARHGEF6,BPTF,BRA
F,CAD,EGFR,FN1,KALRN,K
DR,KRAS,MEN1,NCOR1,NE
DD4L,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1,
SOX9,SPTAN1,TGFBR2,TP5
3,TRIO 

ND 
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GO:0048518 

positive 
regulation of 
biological 
process 

1.23E-10 

ADAM10,AKAP9,ANK3,ARFG
EF2,ARHGAP35,ARHGEF6,A
RID1A,ATRX,BAP1,BPTF,BR
AF,BRCA1,CARM1,CASP1,C
HD8,CLOCK,CNOT1,CUL1,D
IS3,EGFR,EZH2,FN1,HDAC9
,HSP90AB1,KALRN,KDM6A,
KDR,KRAS,LRP6,MAP3K4,M
AP4K3,MEN1,MET,NCOR1,N
EDD4L,NF1,NFATC4,NR2F2,
PAX5,PIK3CA,PIK3CB,PIK3R
1,PTEN,PTPN11,RB1,SF3B1,
SIN3A,SOS1,SOX9,SPTAN1,
STAG2,TGFBR2,TP53,TRIO,
WT1,KMT2A 

3.11E-05 

GO:0048522 

positive 
regulation of 
cellular 
process 

1.61E-10 

ADAM10,AKAP9,ANK3,ARH
GAP35,ARHGEF6,ARID1A,A
TRX,BAP1,BPTF,BRAF,BRC
A1,CARM1,CASP1,CHD8,CL
OCK,CNOT1,CUL1,EGFR,EZ
H2,FN1,HDAC9,HSP90AB1,K
ALRN,KDR,KRAS,LRP6,MAP
3K4,MAP4K3,MEN1,MET,NC
OR1,NEDD4L,NF1,NFATC4,
NR2F2,PAX5,PIK3CA,PIK3C
B,PIK3R1,PTEN,PTPN11,RB
1,SIN3A,SOS1,SOX9,SPTAN
1,STAG2,TGFBR2,TP53,TRI
O,WT1,KMT2A 
 

5.84E-06 

GO:0051276 chromosome 
organization 1.76E-10 

ARID1A,ARID2,ATRX,BAP1,
BPTF,BRCA1,CARM1,CHD8,
CLOCK,EZH2,HDAC9,KDM5
C,KDM6A,MAP3K4,MEN1,NC
OR1,NUP107,PAX5,PBRM1,
PTEN,RB1,SIN3A,SOX9,STA
G2,TP53,KMT2A 

1.34E-06 

GO:0006325 chromatin 
organization 1.88E-10 

ARID1A,ARID2,ATRX,BAP1,
BPTF,BRCA1,CARM1,CHD8,
CLOCK,EZH2,HDAC9,KDM5
C,KDM6A,MEN1,NCOR1,PA
X5,PBRM1,RB1,SIN3A,SOX9
,TP53,KMT2A 

1.95E-06 
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GO:0010468 
regulation of 
gene 
expression 

1.89E-10 

ACAD8,ANK3,ARHGAP35,A
RID1A,ARID2,ATRX,BPTF,B
RAF,BRCA1,CARM1,CHD8,C
LOCK,CNOT1,CSDE1,DIS3,E
GFR,EZH2,FN1,HDAC9,KDM
5C,KDM6A,KRAS,LRP6,MAP
3K4,MAX,MEN1,MET,NCOR1
,NEDD4L,NF1,NFATC4,NR2F
2,NUP107,PAX5,PBRM1,PIK
3CA,PIK3CB,PIK3R1,PTEN,R
B1,SF3B1,SIN3A,SOX9,STA
G2,TGFBR2,TP53,WT1,ZNF8
14,KMT2A 

0.004212933 
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Supplementary Table 5b | GBM-associated Reactome pathways of the 2016 
analysis compared to 2010.  
The table shows the top most significant Reactome terms in 2016 ranked by FDR 
adjusted p-values compared to FDR p-values detected in 2010. 
 

React.ID Description FDR Common genes 
FDR of 
Reactome.ID 
in 2010 

R-HSA-
1266738 

Development
al Biology 3.44E-06 

ADAM10,AKAP9,ANK3,ARH
GAP35,BRAF,CARM1,CLTC
,EGFR,EZH2,FN1,HSP90AB
1,KALRN,KDM6A,KDR,KRA
S,MET,NCOR1,NF1,NR2F2,
PTPN11,SOS1,SPTAN1,TRI
O 

ND 

R-HSA-
210993 Tie2 Signaling 3.44E-06 KRAS,PIK3CA,PIK3CB,PIK3

R1,PTPN11,SOS1 1.26E-05 

R-HSA-
1236394 

Signaling by 
ERBB4 3.54E-06 

AKAP9,BRAF,CUL1,EGFR,
FN1,KRAS,NCOR1,NF1,PIK
3CA,PIK3CB,PIK3R1,PTEN,
PTPN11,SOS1,SPTAN1 

ND 

R-HSA-
422475 

Axon 
guidance 9.12E-06 

ADAM10,AKAP9,ANK3,ARH
GAP35,BRAF,CLTC,EGFR,
FN1,HSP90AB1,KALRN,KD
R,KRAS,MET,NF1,PTPN11,
SOS1,SPTAN1,TRIO 

ND 

R-HSA-
5637810 

Constitutive 
Signaling by 
EGFRvIII 

1.58E-05 EGFR,KRAS,PIK3CA,PIK3R
1,SOS1 ND 

R-HSA-
5637812 

Signaling by 
EGFRvIII in 
Cancer 

1.58E-05 EGFR,KRAS,PIK3CA,PIK3R
1,SOS1 ND 

R-HSA-
5663202 

Diseases of 
signal 
transduction 

1.67E-05 

ADAM10,CUL1,EGFR,HDA
C9,KRAS,LRP6,NCOR1,PIK
3CA,PIK3CB,PIK3R1,PTPN
11,SOS1,TGFBR2 

ND 

R-HSA-
166520 

Signalling by 
NGF 1.67E-05 

AKAP9,ARHGEF6,BRAF,E
GFR,FN1,KALRN,KRAS,NF
1,PIK3CA,PIK3CB,PIK3R1,
PTEN,PTPN11,SOS1,SPTA
N1,TRIO 

0.00410468 

R-HSA-
449147 

Signaling by 
Interleukins 1.76E-05 

AKAP9,BRAF,CASP1,CUL1,
EGFR,FN1,KRAS,NF1,PIK3
CA,PIK3CB,PIK3R1,PTPN1
1,SOS1,SPTAN1 

ND 

R-HSA-
177929 

Signaling by 
EGFR 2.31E-05 

ADAM10,AKAP9,BRAF,EGF
R,FN1,KRAS,NF1,PIK3CA,P
IK3CB,PIK3R1,PTEN,PTPN
11,SOS1,SPTAN1 

1.26E-05 

Nature Methods: doi:10.1038/nmeth.3963



R-HSA-
1236382 

Constitutive 
Signaling by 
Ligand-
Responsive 
EGFR Cancer 
Variants 

2.39E-05 EGFR,KRAS,PIK3CA,PIK3R
1,SOS1 ND 

R-HSA-
1643685 Disease 2.39E-05 

ADAM10,CUL1,EGFR,HDA
C9,HSP90AB1,IDH1,KRAS,
LRP6,NCOR1,NEDD4L,NU
P107,PIK3CA,PIK3CB,PIK3
R1,PTPN11,RPL5,SOS1,TG
FBR2,RPSA 

ND 

R-HSA-
2454202 

Fc epsilon 
receptor 
(FCERI) 
signaling 

2.39E-05 

AKAP9,BRAF,CUL1,EGFR,
FN1,KRAS,NF1,PIK3CA,PIK
3CB,PIK3R1,PTEN,PTPN11
,SOS1,SPTAN1 

ND 

R-HSA-
1643713 

Signaling by 
EGFR in 
Cancer 

2.39E-05 EGFR,KRAS,PIK3CA,PIK3R
1,SOS1 ND 

R-HSA-
5637815 

Signaling by 
Ligand-
Responsive 
EGFR 
Variants in 
Cancer 

2.39E-05 EGFR,KRAS,PIK3CA,PIK3R
1,SOS1 ND 

R-HSA-
5654687 

Downstream 
signaling of 
activated 
FGFR1 

2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
5654696 

Downstream 
signaling of 
activated 
FGFR2 

2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
5654708 

Downstream 
signaling of 
activated 
FGFR3 

2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
5654716 

Downstream 
signaling of 
activated 
FGFR4 

2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
512988 

Interleukin-3, 
5 and GM-
CSF signaling 

2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTPN11,SOS1,SPTA
N1 

ND 

R-HSA-
5654736 

Signaling by 
FGFR1 2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 
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R-HSA-
5654741 

Signaling by 
FGFR3 2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
5654743 

Signaling by 
FGFR4 2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
1433557 

Signaling by 
SCF-KIT 2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
4420097 

VEGFA-
VEGFR2 
Pathway 

2.97E-05 

AKAP9,BRAF,EGFR,FN1,K
DR,KRAS,NCF2,NF1,PIK3C
A,PIK3CB,PIK3R1,SOS1,SP
TAN1 

ND 

R-HSA-
190236 

Signaling by 
FGFR 3.07E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
5654738 

Signaling by 
FGFR2 3.07E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
1227986 

Signaling by 
ERBB2 3.18E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

ND 

R-HSA-
194138 

Signaling by 
VEGF 3.18E-05 

AKAP9,BRAF,EGFR,FN1,K
DR,KRAS,NCF2,NF1,PIK3C
A,PIK3CB,PIK3R1,SOS1,SP
TAN1 

ND 

R-HSA-
186763 

Downstream 
signal 
transduction 

3.30E-05 

AKAP9,BRAF,EGFR,FN1,K
RAS,NF1,PIK3CA,PIK3CB,P
IK3R1,PTEN,PTPN11,SOS1
,SPTAN1 

0.000443176 
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