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Supplementary Taxonomic Proposal 

 

Description of “Candidatus Manganitrophus”, gen. nov. 

Manganitrophus [man.gan.i.tro’phus]. N.L. n. manganum, manganese; N.L. Gr. n. trophos, 

feeder; N.L. masc. n. Manganitrophus, manganese feeder. Cells are pleomorphic, crescent shaped 

rods and exhibit a capacity for aerobic, chemolithoautotrophic growth using manganese carbonate 

as sole source of carbon and energy. Colonies have not yet been observed to form from single cells, 

and cells have not yet been grown in the absence of a co-enriched strain of a putative new 

betaproteobacterial species belonging to the genus Ramlibacter. Liquid cultures grown in MnCO3 

defined minimal medium generate small manganese oxide nodules or concretions to which the 

cells associated. Based on phylogenetic reconstructions using 16S rRNA gene and/or protein 

sequences, the genus affiliates within the proposed phylum Nitrospirota (Nitrospirae), is distinct 

from the genera comprising the classes Nitrospiria and Leptospirillia, and clusters with sequences 

from not yet cultivated organisms typically recovered from subsurface karst environments, such 

as that of “Ca. Troglogloea absoloni”. The G+C content of the only representative, type species is 

56.4 mol%. The type candidatus species of the candidatus genus is “Ca. Manganitrophus 

noduliformans”.  

  

Description of “Candidatus Manganitrophus noduliformans” sp. nov.  

 Candidatus “Manganitrophus noduliformans” [nod.ul.i.for’mans]. L. gen. dim. n. noduli, 

of a little knot or nodule; L. part. adj. formans, forming; N.L. part. adj. noduliformans, nodule-

forming. Cells exhibit aerobic, chemolithoautotrophic growth on manganese carbonate, utilizing 

the Mn(II) as sole energy source while fixing inorganic carbon via the reverse Tricarboxylic Acid 

Cycle. Cells form pleomorphic, crescent shaped rods, ca. 1.07 µm by 0.4 µm in dimension. Liquid 

cultures grown in manganese carbonate media generate manganese oxide nodules and concretions 

with which the cells associated. Colonies from single cells have not yet been observed to form in 

or on agar, or to grow in the absence of a co-enriched strain of a putative new betaproteobacterial 

species belonging to the genus Ramlibacter. By genomics, cells are predicted to be capable of 

motility by flagella or twitching, and of chemotaxis, but these have not yet been observed. The 

genome encodes LuxR and LuxI homologs often associated with acyl-homoserine lactone based 

quorum sensing. Growth by Mn(II) oxidation has been observed to occur a pH ranging between 
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5.7 and 7.4. Optimal growth occurs between 34 °C and 40 °C, with no growth observed at or above 

44 °C. Cultures are pasteurized by incubation at 50 °C for 12 hours.  Cells grow at NaCl 

concentrations equating to salinities ranging from 2 ppt to 16 ppt and are predicted by genomics 

to be able to make the compatible solute hydroxyectoine. Respiratory quinones are predicted by 

genomics to be of the naphthoquinone type. By genomics, cells are predicted to be able to 

assimilate sulfate, but unable to grow lithotrophically via the oxidation of either H2, ammonia, 

nitrite, or reduced sulfur substrates, or to grow anaerobically via denitrification or dissimilatory 

nitrate reduction. Based on phylogenetic reconstructions using 16S rRNA gene and/or protein 

sequences, the genus affiliates within the proposed phylum Nitrospirota (Nitrospirae), is distinct 

from the genera comprising the classes Nitrospiria and Leptospirillia, and clusters with sequences 

from not yet cultivated organisms typically recovered from subsurface karst environments, such 

as that of “Ca. Troglogloea absoloni”. 

 The type (meta)genome gene sequence for the candidatus species is: 

DDBJ/ENA/GenBank VTOW00000000TS (DOE-JGI Integrated Microbial Genome ID 

2784132095TS); the 16S rRNA gene sequence is GenBank MN381734TS. These were obtained 

from a two species co-culture along with a putative new species representing the 

betaproteobacterial genus Ramlibacter (Genome sequence: DDBJ/ENA/GenBank 

VTOX00000000 and DOE-JGI Integrated Microbial Genome ID 2778260901; Genbank 16S 

rRNA MN381735). The culture was refined from a mixed enrichment culture initiated with 

manganese carbonate and ca. 250 ml of unsterilized Pasadena (California, USA) municipal 

drinking water distributed from a tap located on the second floor of the North Mudd Laboratories 

at the California Institute of Technology (34°08'12.1"N 118°07'38.3"W). The (meta)genome of 

the type (resolved from the Ramlibacter species) is 5.17 Mbp in size, and has a G+C content of 

56.4 mol%.  

 

[Classis ‘Ca. Trogloglia’ is represented by “Ca. Troglogloea absoloni”; while ‘Ca. 

Manganitrophaceae’, fam. nov., and ‘Ca. Manganitrophales’, ord. nov. are typified by “Ca. 

Manganitrophus” and the type (meta)genome sequence DDBJ/ENA/GenBank 

VTOW00000000TS]. 
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Description of Ramlibacter lithotrophicus, sp. nov. 

 Ramlibacter lithotrophicus (li.tho.tro'phi.cus). Gr. n. lithos stone; N.L. masc. adj. trophicus 

(from Gr. adj. trophikos), feeding; N.L. masc. adj. lithotrophicus, a capacity for lithotrophic 

metabolism. Cells exhibit aerobic heterotrophic growth on succinate or tryptone; anaerobic 

heterotrophic growth with nitrate as electron acceptor; and aerobic chemolithotrophic growth on 

H2. Cells are pleomorphic, forming short rods , ca. 1.22 µm by 0.56 µm in dimension, with single, 

central phase bright inclusions at low cell densities; and fabric-like networks of long filaments of 

varying width at high cell densities. Cells exhibit twitching surface motility. Colonies are small 

and featureless on succinate agar defined media or reddish brown on tryptone agar defined media 

incubated aerobically, and become leathery and adherent upon aging; colonies are red when grown 

anaerobically with nitrate. By genomics, cells are predicted to be capable of twitching and flagellar 

motility and to encode putative hydrogenases; putative sox and dsrMKJOP gene clusters for the 

lithotrophic oxidation of reduced sulfur compounds; genes for denitrification; and genes for a 

putative Calvin Cycle. Anaerobic metabolism of aromatic compounds by the tungsten-dependent 

benzoyl-CoA reductase pathway is predicted by genomics, as is acyl-homoserine lactone based 

quorum sensing via LuxR and LuxI homologs. Growth has been observed to occur a pH ranging 

between 5.7 and 7.4, and at temperatures ranging from 20°C to 40°C.   Based on phylogenetic 

reconstructions using 16S rRNA gene and/or protein sequences, the species affiliates within the 

betaproteobacterial genus Ramlibacter, but is distinct in both gene content and in pairwise 

similarities from other Ramlibacter species.  

The type strain for the species is strain RBP-1T; the genome sequence for the type species 

is: DDBJ/ENA/GenBank VTOX00000000 TS and at DOE-JGI Integrated Microbial Genome ID 

2778260901TS; the 16S rRNA gene sequence is GenBank MN381735TS. The strain was isolated 

on succinate minimal agar media from a two species culture (the other organism being “Ca. 

Manganitrophus noduliformans”) refined from a mixed culture enriched using manganese 

carbonate and ca. 250 ml of unsterilized Pasadena (California, USA) municipal drinking water that 

had been distributed from a tap located on the second floor of the North Mudd Laboratories at the 

California Institute of Technology (34°08'12.1"N 118°07'38.3"W). The genome of the type is 5.26 

Mbp in size, and has a G+C content of 69.03  mol%. 
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Supplementary Notes 

 

Supplementary Note 1: Thermodynamic calculation of Mn(II) oxidation 

The Gibbs free energy change of Mn(II) oxidation at pH 7 (ΔG°’) of the following reaction 

is determined to be -68 kJ/mol Mn(II) using the standard Gibbs free energy of formation105: 

Mn(II) + ½O2 + H2O → MnO2 (s) + 2H+ 

Values used are: G°f of Mn(II) = -228 kJ/mol, G°f of 𝛿-MnO2 = -453.1 kJ/mol, G°f of O2 

(g) = 0 kJ/mol, G°f of H+ = 0 kJ/mol, G°f of H2O (l) = -237.18 kJ/mol. The reaction is under standard 

condition except [H+] = 10-7 M. Note that the composition of birnessite (𝛿-MnO2) is not well 

defined and could range from MnO1.74 to MnO1.99106. The Gibbs free energy change of Mn(II) 

oxidation could be -80 kJ/mol Mn(II), if G°f of β-MnO2 (pyrolusite, the most defined and stable 

form) = -465.1 kJ/mol were used. 

The Nernst equation was used to calculate the reduction potential at pH 7 (E°’) of 

MnO2/Mn(II), based on ΔG°’ of 𝛿-MnO2 from above and E°’ of O2/H2O as +818 mV43, to be +466 

mV. 

 

Supplementary Note 2: Growth of Species B 

While Species B could be isolated from the Mn(II)-oxidising consortia heterotrophically, 

its growth varies on different carbon sources tested. On agar plates, Species B grows modestly 

well with succinate and tryptone, poorly with acetate, and weakly with yeast extract. In liquid 

cultures, Species B grows well with tryptone with doubling time of 2.89 ± 0.03 hr (n=3, Extended 

Data Fig. 6c), but poorly with acetate (n=2, Extended Data Fig. 6d), succinate and yeast extract. 

Species B also grows in liquid cultures lithoautotrophically with hydrogen as the energy source 

without any organic carbon addition in the medium.  

 

Supplementary Note 3: Evaluation of FISH oligonucleotide probes for Species A and 

Species B 

Three oligonucleotide probes, two newly designed (NLT499, targeting most members of 

the phylum Nitrospirae (Nitrospirota) to the exclusion of Nitrospiria, and BET867, targeting 

Betaproteobacteria) and one previously designed (BET359 targeting Betaproteobacteria), was 

evaluated using the Clone-FISH method67. No significant fluorescence intensity decrease was 
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found for probes NLT499, BET359 and BET867 up to 45%, 35% and 35% formamide 

concentrations in the hybridization buffer, respectively (Extended Data Fig. 10a-d). No cross-

reaction was found when the two Betaproteobacterial probes were applied to 16S rRNA gene clone 

of Species A (Extended Data Fig. 10a,b), and vice versa when NLT499 probe was applied to 16S 

rRNA gene clone of Species B (Extended Data Fig. 10c,d).  

 

Supplementary Note 4: Evaluation of the ICP-MS method to measure oxidised and reduced 

pools of Mn 

The ICP-MS method used in this study measured the Mn concentration in the “acid-soluble 

fraction” and the “acid-insoluble fraction” similar to a previous study6. Mn(II) compounds, 

including MnCl2, MnSO4, MnCO3, should be soluble or become soluble in acid (0.5 M HCl). On 

the other hand, Mn(IV) oxides should not be acid soluble but solubilized upon reaction with 

hydroxylamine. Accordingly, almost all Mn content for the Mn(II) compounds were found in the 

“acid-soluble fraction”, whereas almost all the Mn content for various preparations of Mn(IV) 

oxides were found in the “acid-insoluble fraction” (Extended Data Fig. 10e).  

Mn(III), which could be the predominant Mn species in the environment107,108, could not 

be clearly distinguished in our method of analysis. Commercial Mn(III)-containing compounds 

including Mn3O4 and Mn2O3 showed partitioning in both the “acid-soluble fraction” and the “acid-

insoluble fraction” (Extended Data Fig. 10e). Mn2O3, with two Mn(III) per compound, partitioned 

almost equally in the two fractions. Mn3O4, with one Mn(II) and two Mn(III) per compound, 

partitioned about 20:80 in the acid-soluble:acid-insoluble fractions. It seems based on these two 

test chemicals, Mn(III) partitioning into the two Mn fractions could not be easily predicted based 

on the average or individual Mn oxidation states. The structure in which hosts Mn(III) likely also 

contribute to the partitioning as well. In our experiments, we would not able to distinguish Mn(III) 

pools and that of Mn(II) and Mn(IV), if Mn(III) were abundant in our cultures. At the end of our 

kinetic experiments after which the cultures have reached stationary phase with no further cell 

growth, part of the total Mn was still measured in the reduced pool (Fig. 2; Extended Data Fig. 2). 

There could be three explanations to this observation: 1) there was still unoxidised Mn(II) left at 

the end of the experiment and thus measured in the acid soluble pool; 2) Mn oxide biologically 

produced react and partition differently than that of Mn(IV) oxides tested, and part of biologically 

produced Mn oxide solubilized and was measured in the reduced pool; 3) there was Mn(III) in the 
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Mn oxides at the end of the experiment and thus measured in both the acid-soluble and acid-

insoluble pools. These three possibilities needs to be addressed in future measurements targeting 

Mn(III)107,108. 

However, since Mn(II) in its various forms can be almost entirely measured in the acid-

soluble fraction with little in the acid-insoluble fraction, any increase in the acid-insoluble fraction 

is an indication of oxidised Mn(II). Therefore, in this paper, we refer to the “acid-soluble fraction” 

as Mn(II), and the “acid-insoluble fraction” as Mn(II) oxidised representing Mn(III/IV). 

 

Supplementary Note 5: Evaluation of quantitative PCR probes for Species A, Species B 

and Bacteria 

In quantitative PCR analyses, the range of bacterial quantification was 1 × 104 to 1 × 108 

copies per reaction tube (Extended Data Fig. 10g), similar to the results reported previously on this 

set of primer-probe combination74. In our assays, the background signal was equivalent to 

approximately 7.5 × 103 copies per reaction tube, higher than previously reported value of 2.5 × 103 

copies per reaction tube74. High amplification efficiency (101.1% to 102.5%.) was found in the 

bacterial quantification range. There was no difference when either Species A or Species B 16S 

rRNA gene was used as the template for amplification (Extended Data Fig. 10g). For specific 

quantification of Species A and Species B, two probes were designed to use in conjunction with 

the bacterial assay. The quantification ranges of these new probes were found to be 1 × 104 to 1 × 

107 copies and 1 × 103 to 1 × 107 copies per reaction tube for Species A and Species B, respectively 

(Extended Data Fig. 10h). The amplification efficiencies in these ranges were found to be 91.7% 

for the Species A probe and 94.6% for the Species B probe. While 16S rRNA gene copies could 

still be detected above or below the quantification ranges, the amplification efficiencies decreased 

below 90% and thus not used in our analyses. When templates for Species A and Species B were 

mixed in the same reaction tube, no interference in the quantification of either species was found 

with the specific probes. The measured 16S rRNA gene copies of Species A and Species B 

matched closely to that expected in the template mixtures (Extended Data Fig. 10i,j). Overall, our 

analyses suggest that the specific probes developed in this study work in conjunction with a 

previously developed assay to quantify 16S rRNA gene copies of Species A, Species B and all 

Bacteria simultaneously in a single quantitative PCR reaction. 
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Supplementary Note 6: Ammonia as the anabolic N source for the co-culture 

The performance of cultures provided with nitrate as anabolic N source (Main Text) were 

compared with those supplied with ammonia. Although Species A should be able to transport and 

assimilate nitrite, cyanate, urea, and ammonia for anabolic N, genomics predicts that it is incapable 

of assimilating nitrate (Supplementary Table 4). This predicts a dependency on Species B for N in 

nitrate media, as the latter encodes multiple pathways for nitrate reduction (Supplementary Table 

5). Ammonia might be expected to relieve this dependency, meanwhile serving as a superior 

anabolic N source for both bacteria, with resultant improvements in growth and Mn(II) oxidation. 

Curiously, for unexplained reasons this was not the case. Mn(II) oxidation rate is comparable if 

not faster with nitrate than with ammonia: the oxidation rate doubled initially every 6.3 day (s.d. 

= 1.0, n=4) and slowed to every 10.9 day (s.d. = 0.3, n=4) with nitrate, and doubled initially every 

6.0 day (s.d. = 1.2, n=4) and slowed to every 14.5 day (s.d. = 4.0, n=5) with ammonia (Fig. 2a; 

Extended Data Fig. 2e-l).  

For one of the biological replicates with comparable Mn(II) oxidation rate (1 mM nitrate 

replicate 1 shown in Fig. 2a, and 1 mM ammonia replicate 5 shown in Extended Data Fig. 2l), 

qPCR assay was used to measure the growth of Species A and Species B. Cell growth is slower 

with ammonia, with Species A doubling every 9.7 days and Species B doubling every 11.1 days 

(Extended Data Fig. 2m), compared to Species A doubling every 6.2 days and Species B doubling 

every 7.4 days (Main Text; Fig. 2b). This slower cell growth also resulted in lower cell yield of 

roughly half of that of nitrate (Fig. 2c; Extended Data Fig. 2n). Additional experiments are needed 

to confirm and better understand the underlying reasons for this influence of N source on the co-

culture. 

 

Supplementary Note 7: Oxygen respiration and energy conserving respiratory complexes in 

Species A 

On average, the two Mn(II)-derived electrons are generally considered to be of high 

potential [Mn(II)/Mn(IV), E°´=+466 mV; above]. However, the energetics of each of the two 

sequential one-electron transfers can be impacted by inorganic and organic binding ligands22,37, 

leading to a degree of uncertainty here. While the entry point for each Mn(II) derived electron into 

electron transport chains remains uncertain, neither electron likely has sufficient negative 

reduction potential for the reduction of membrane quinones such as ubiquinone (E°’=+113 mV43). 



 9 

Of the respiratory complexes, canonical respiratory Complex I is unlikely to be employed for 

energy conservation, leaving canonical or alternative Complex III, Complex IV, or cytochrome bd 

oxidases as possible candidates for generating a proton motive force during Mn(II) 

chemolithotrophy.  

While a single Complex IV (cbb3-type heme-copper oxidase) was identified in Species A 

genome, it was not well-expressed (24th percentile) and therefore likely not the main oxygen 

reductase under our experimental conditions. Instead, four unconventional terminal oxidase (TO) 

complexes, each having cytochrome bd oxidase like (bd-like) proteins, dominated expression (Fig. 

3b; Supplementary Table 4). Compared to canonical bd oxidases, bd-like proteins have 9-15 (vs 

8-9) predicted transmembrane helixes, are phylogenetically distinct (Extended Data Fig. 7a), are 

missing conserved residues including the known quinone-binding sites38 (Extended Data Fig. 8). 

Also, the oxygen reduction activity of these bd-like oxidase remains to be biochemically confirmed. 

The bd-like proteins from the 4 terminal oxidases are not alike, and represent 4 distinct 

evolutionary subclades (Extended Data Fig. 7b). Similar observations have been reported for 

nitrite-oxidising Nitrospira, which showed high expression of these bd-like oxidases in active 

cultures38,39. In particular, Nitrospira moscoviensis: the high expression of bd-like oxidases and 

low expression of conventional bd oxidases suggest that the bd-like oxidases are likely used in 

nitrite oxidation, and the conventional oxidases are used for other low potential electron donors39.  

The most highly expressed bd-like terminal oxidase complex in Species A was “TO_1” 

(99th percentile; Fig. 3b), which is also the highest expressed bd-like oxidase in nitrite-oxidising 

N. moscoviensis39. Like homologous complexes from ammonia- and nitrite-oxidising Nitrospira 

(Extended Data Fig. 7b), TO_1 contains a predicted heme b membrane domain homologous to 

ethylbenzene dehydrogenase gamma subunit EbdC109, nitrite oxidoreductase gamma subunit NxrC, 

and other CISM family membrane attachment subunits110,111. However, CISM subunits with 

molybdate-binding motifs (e.g. NxrAB) typically accompanying these subunits were not identified 

in Species A. This suggests that TO_1 may receive electrons from alternative periplasmic carriers, 

such as ferredoxin or cytochrome c (Fig. 3b), perhaps avoiding energy loss associated with electron 

transfer through the quinone. Energy maybe conserved in the same manner as conventional bd 

oxidases, which have two proton transfer pathways to generate a proton motive force through 

scalar reactions without proton pumping102. The second highest expressed terminal oxidase (TO_2; 

83rd percentile; Fig. 3b) also contains a bd-like protein and a membrane-bound, single heme b 
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EbdC/NxrC homolog, but is otherwise highly unusual amongst cultivated organisms [currently 

can only be found in an ammonia-oxidizing Nitrospira sp. RCA112 and 3 other MAGs in clade IIIb 

(Extended Data Fig. 7b)]. The c-terminus of the bd-like protein of this complex has two unusual 

heme c binding sites, and the co-transcribed gene cluster encodes for a split version of the 

membrane cytochrome b of a conventional Complex III (or cytochrome bf complex), multiple 

cytochromes c with 1-4 predicted heme c binding sites, and two H+/Na+ antiporter MrpD-like 

subunits (Supplementary Table 4). MrpD subunits are homologous to the proton pumping subunits 

of Complex I (NuoL/M/N) and various hydrogenases (e.g. CooM, HyfB/D/F, EchA)113. The 

presence of motive-force generating subunits in a terminal oxidase is unprecedented. Perhaps, 

complex TO_2 mediates a process similar to that of electron bifurcation in anaerobic archaea and 

bacteria114, e.g. periplasmic carriers of Mn(II) derived electrons (E°’=+466 mV) might couple the 

thermodynamically favourable reduction of O2 (E°’=+818 mV)43 to unfavourable Q reduction 

(E°’~+113 mV) (Fig. 3b). The bd-like proteins of the third (TO_3) and fourth (TO_4) highest 

expressed terminal oxidase complexes (52nd and 35th percentile, respectively; Fig. 3b) are 

unusually truncated and occur in each complex as pairs (Extended Data Fig. 7b). Both TO_3 and 

TO_4 share some resemblance to canonical Complex III and Alternative Complex III115,116, and 

therefore are predicted to have quinone interactions (Fig. 3b). Their expression suggests that they 

are not the main terminal oxidases, rather may interact with complexes that generate reduced 

quinones, such as TO_2. 

 

Supplementary Note 8: Electron balance between catabolism and anabolism in Species A 

The biomass yield of Species A is estimated to be 100 mg dry biomass × (mol Mn(II) 

oxidised)-1, based on DNA yield of 3.1 × 106 ng DNA × (mol Mn(II) oxidised)-1 (Extended Data 

Fig. 2d), and 3.1% of dry weight of Escherichia coli is DNA27. Assuming [CH2O] as a simplified 

composition estimate for biomass (30 g dry weight per mol), and given 4 mol electrons needed to 

reduce 1 mol of CO2 to 1 mol of [CH2O], then approximately 0.013 mol of electrons are in the 

biomass per mol Mn(II) oxidised. With 2 electrons from the Mn(II) oxidation to Mn(IV)O2, 

approximately 0.7% of the electrons from Mn(II) oxidation could be recovered in the biomass. 
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Supplementary Note 9: Stable isotope probing and nanoSIMS analysis 

Mn(II)-dependent CO2 fixation was examined directly in a closed system, using stable 

isotope probing with Mn13CO3 as the sole source of energy and carbon, after oxidation and growth 

by cultures that had been initiated with a 10% inoculum from an unlabelled culture. If cells in the 

culture had engaged in carbon fixation during Mn(II) oxidation, the 13C-dissolved inorganic carbon 

released from the substrate would be the source of label incorporated into the biomass. Before 

examining for such, the extent of Mn residuum remaining in the samples was examined by 

nanoSIMS. This was done in order to assess the effectiveness of the Mn oxide nodule dissolution 

procedure on a fine scale, and to rule out any colocalization of Mn with 13C that would indicate 

that unreacted Mn13CO3 remained in the analysed samples. If associated with cells, unreacted 

Mn13CO3 would conflict with any proper interpretation on the analysis of the composition of the 

biomass, but none was observed (Extended Data Fig. 9v).  

Because of the high 13C amount in our labelled sample, to better resolve the 15N12C 

secondary ion from that of the 14N13C (both having mass 27): 13C12C and 12C12C secondary ions 

were measured instead 13C and 12C ions for the carbon stable isotopes. Since there are two possible 

combinations to obtain 13C12C ion of mass 25, 25R is twice of 13R based on probability (P): 

 

R	"# =
C	$% C	$"

C	$" C	$"
	= 	

P( C	$% ) ∙ P( C	$" ) + P( C	$" ) ∙ P( C	$% )
P( C	$" ) ∙ P( C	$" ) =

2 ∙ P( C	$% )
P( C	$" ) = 2 ∙ R	$%  

Carbon isotope was calculated as follows: 
13R = 13C/12C = 25R/2 

13F = 13C/(12C+13C) = 13R/(1+13R) 

Atom percent 13C	=	13F⋅100 

Secondary ions 14N12C and 15N12C were measured on the nanoSIMS for nitrogen stable 

isotopes 14N and 15N respectively.  

Nitrogen isotope was calculated as follows: 
15R = 15N/14N = 15N12C/14N12C 

15F = 15N/(14N+15N) = 15N12C/(14N12C+15N12C) = 15R/(1+15R) 

Atom percent 15N	=	15F⋅100	

 



 12 

The application of nanoSIMS revealed that both species fixed Mn13CO3-derived inorganic 

carbon into cell material. In cell preparations hybridized with species specific fluorescent 

oligonucleotides, the 13C atom percent in Mn13CO3-grown biomass was determined to be 35.57% 

(s.d=9.57, n=107) and 7.93% (s.d=5.62, n=27) for cells of Species A and Species B, respectively. 

These values are strikingly higher than that of 13C natural abundance. Cells grown under the same 

conditions, but with MnCO3 synthesized with unlabelled inorganic carbon, were of 13C natural 

abundance as expected (Extended Data Fig. 9a). Moreover, these values almost certainly 

underestimate of the full extent of incorporation of inorganic C by both organisms (see discussion 

on reagents, below). Taking into account the higher 13C atom percent and the markedly higher 

abundance of Species A cells in the co-culture (Extended Data Fig. 3a), the results indicate that 

the bulk of the labelled chemosynthate is associated with, and can be attributed to, the activities of 

Species A.  

To better track the synthesis of new biomass, the incorporation of 15N-nitrate and its 

colocalization with 13C was also examined (and contrasted with the co-localization of Mn and 13C, 

above) during stable isotope probing analyses. The 15N atom percent in cells were determined to 

be 57.59% (s.d=8.20, n=107) and 15.77% (s.d=13.30, n=27) for Species A and Species B, 

respectively (Extended Data Fig. 9a). These results are also consistent with Species A having 

generated the bulk of the new biomass in the co-culture, given its higher 15N atom percent 

(Extended Data Fig. 9a) and higher cell abundance (Extended Data Fig. 3a). Such results are not 

inconsistent with Species A having reductively assimilated the nitrate into its cell material. Yet 

genomes predict interspecies N crossfeeding from Species B to Species A when growing with 

nitrate: Species A lacks a recognisable pathway for assimilatory nitrate reduction (Supplementary 

Table 4), whereas Species B is predicted to be capable of both assimilating and dissimilating nitrate 

(Supplementary Table 5). Inspection of the FISH coupled nanoSIMS 12C14N ion image revealed 

that while Species B cells can have higher 14N contents, Species A cells have higher 15N and a 

greater ratio of 15N/14N (Extended Data Fig. 9b-u; Fig. 4). This indicates that either Species B 

reduces nitrate and shares much of the reduced nitrogen with Species A without incorporating to 

the same degree itself, or that Species A encodes an unrecognised enzyme for assimilatory nitrate 

reduction. It is worthnoting that Nitrospira inopinata, a relative of Species A in the phylum 

Nitrospirae, does not assimilate either nitrate or nitrite9. In any event, the nanoSIMS results 

confirms that nitrate can serve as the N source for both species in the co-culture, but the 
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interspecies interaction and effect of ammonia (Supplementary Note 6 above) on the co-culture 

remain mysterious. 

Different preparation methods for samples of cells prior to nanoSIMS analyses can often 

dilute the stable isotope labels in the biomass, resulting in an underestimate of the actual amounts 

of 13C and 15N that had been incorporated117. We therefore also performed nanoSIMS analyses on 

cells without paraformaldehyde fixation and FISH. The resulting atom percent for 13C and 15N in 

Species A cells increased to 56.56% (s.d=6.51, n=394) and 69.01% (s.d=6.34, n=394), respectively 

(Extended Data Fig. 9a). There are, however, two main steps in nanoSIMS sample preparation that 

remain that could dilute the stable isotope label: 1) the dissolution procedure employed to obtain 

cells from the Mn oxide nodules contained unlabelled reagents (0.05 M sodium dithionite, 0.1 M 

sodium citrate, 0.1 M sodium bicarbonate and 0.1 M EDTA), and 2) the DAPI-citifuor staining 

and localization of cells prior to nanoSIMS analysis. Both procedures can dilute the 13C isotopic 

label in the biomass, thus even these 13C and 15N atom percent values (Extended Data Fig. 9a) 

likely remain as underestimates of the actual degree of authentic label incorporation that had 

occurred.  

It is not possible from these analyses to ascertain whether or not absolutely 100% of all 

biomass carbon in the co-culture is derived from CO2, and thus chemosynthetic in nature. However, 

such a degree of incorporation is not necessary to conform to one existing definition of autotrophy8, 

i.e. that a majority of cell carbon is derived from CO2-fixation. In such a context and in 

combination with other evidence, including the composition of the cultivation medium and the 

expressed CO2-fixation pathway genes (Main Text and below), we propose that Species A is 

operating as a chemolithoautotroph in the manganese-oxidising co-culture.  

 

Supplementary Note 10: Carbon assimilation pathways in Species A 

All components in the reverse tricarboxylic acid (rTCA) cycle to produce acetyl-CoA from 

2 CO2 were identified in the Species A genome (Fig. 3b; Supplementary Table 4), except for one 

of the subunits of fumarate reductase. The fumarate reductase of Species A conforms to the Type 

E quinone:fumarate oxidoreductases, which contain a catalytic flavoprotein subunit A (SdhA) and 

an iron-sulfur subunit B (SdhB), but here the canonical membrane subunits C and D (SdhC/D) 

have been replaced by non-homologous subunits E and F (SdhE/F)118. SdhE with a duplicated 

motif rich in cysteines CX31-35CCGX38-39CX2C, homologous to heterodisulfide reductase 
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subunit B, was found in Species A as well as other species in the phylum including Nitrospira and 

Leptospirillum38,41,119. However, the small membrane anchor (SdhF) that is thought to link the 

protein complex to the cell membrane is missing in Species A and its relatives in the phylum, as 

has been noted previously38,41. The genes in the rTCA cycle of Species A were found to be 

expressed, including the oft cited key genes for ATP-citrate lyase, oxoglutarate:ferredoxin 

oxidoreductase (of the O2 tolerant form with 5 subunits) and fumarate reductase42 (Supplementary 

Table 4). Carbon assimilation from pyruvate is thought to proceed via the Embden-Meyerhof-

Parnas (EMP) pathway in Nitrospira and Leptospirillum38,41,119. However, one of the key genes 

for the EMP pathway that is found in the related genomes, Class I fructose-bisphosphate aldolase, 

was not found in the Species A genome. This may or may not be due to any incompleteness in the 

genome assembly. A homolog of Class II fructose-bisphosphate aldolase (IMG gene ID 

2784403887) was found in Species A, but sequence comparisons with characterized class II 

fructose/tagatose aldolases reveal significant differences, thus whether its substrate is fructose or 

not remains unclear. In principle, synthesis of hexose sugars from pyruvate can proceed through 

the Entner-Doudoroff (ED) pathway; however, Species A is missing a recognisable key gene for 

6-phosphogluconate dehydratase. A dihydroxy-acid dehydratase101 homolog of 6-

phosphogluconate dehydratase can be identified in the Species A genome (IMG gene ID 

2784405073), but a phylogenetic analysis building on that of a previous study101 suggest that it is 

not a good candidate for encoding missing ED pathway enzyme (Extended Data Fig. 5d). Thus 

from genomics, it is not entirely clear how the biosynthesis of hexoses from pyruvate proceeds in 

Species A. 

In addition to the rTCA cycle, functions of relevance to a partial oxidative TCA (oTCA) 

cycle could also be identified in Species A, including citrate synthetase, pyruvate carboxylase, and 

pyruvate dehydrogenase (Fig. 3b; Supplementary Table 4). The only exception in the oTCA cycle 

not found in Species A is the 2-oxoglutarate dehydrogenase (OGDH) complex, which is belongs 

to the protein family of 2-oxo acid dehydrogenase complexes120. All known E1 component of 

OGDHs are homodimers, but all 5 homologs of the E1 component in the Species A genome were 

heterotetrameric versions found in pyruvate dehydrogenase and branched-chain 2-oxo acid 

dehydrogenase complexes but not OGDH complexes120. No OGDH with homodimeric versions of 

the E1 component were identified in characterized relatives in the phylum Nitrospirae such as Ca. 

Nitrospira defluvii38, or the genomes of Nitrospira inopinata and Nitrospira moscoviensis. The 2-
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oxoglutarate:ferredoxin oxidoreductase that typical of rTCA cycle has been hypothesized to 

substitute for this enzymatic step in oTCA cycle with the production of low-potential ferredoxin 

rather than NADH38, but this scenario would be energetically challenging, if possible at all, under 

physiological conditions. A more likely scenario is that the oTCA cycles in Species A and 

members of the phylum Nitrospirae are incomplete, as they are so in many autotrophs and non-

respiratory, fermentative bacteria. In that case, a partial oTCA branch is probably only for 

anabolism to generate key intermediate such as 2-oxoglutarate from pyruvate, rather than for 

respiration and acetate mineralization. Correspondingly, characterized bacteria in the phylum 

Nitrospirae48,121 either cannot grow on organic compounds other than formate as the electron donor, 

or they are incomplete oxidisers122 producing acetate rather than CO2. 

Of genes of the EMP, rTCA, and oTCA pathways that were identified, all were expressed. 

Of the carbon metabolic genes, the most highly expressed in Species A were aconitate hydratase, 

ATP-citrate lyase and the genes for the three complexes catalyzing CO2 fixation steps (2-

oxoglutarate:ferredoxin oxidoreductase, isocitrate dehydrogenase and pyruvate:ferredoxin 

oxidoreductase; Fig. 3b). Thus, gene expression under the Mn(II)-oxidation-dependent growth 

conditions is consistent with CO2 fixation via the rTCA cycle.  

 

Supplementary Note 11: Unrestricted manganese oxidation calculation 

The world manganese ore reserve is estimated to be 630 million metric tonnes123. Starting 

with a single cell each of Species A and B, and using the estimated doubling time of 6.1 days for 

Species A (Fig. 2b) and Mn(II) oxidation rate of 1.188⋅10-11 g substrate⋅cell-1⋅day-1 (converted 

from 9.0 ⋅10-15 mol substrate⋅cell-1⋅hr-1, Extended Data Fig. 3g), the time (t) needed to generate 

MnO2 equalling global Mn reserves with unrestricted chemolithotrophic growth could be 

estimated by the equation below, which would be within 2 years: 

𝑀𝑛(𝐼𝐼)	𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑑 = : 𝑁& ∙ k ∙ 2
' () 	𝑑𝜏

*

&
 

where, 

N0 = starting cell number 

t = time needed 

k = Mn(II) oxidation rate 

g = doubling time 
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