
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This is an excellent study showing novel findings of SNPs regulating metabolites in the cerebrospinal 

fluid (CSF) of middle aged or elderly human subjects. In addition, the authors tried to use the finding 

to reveal the possible metabolite-phenotype association.  

 

In the introduction, the authors should refer to previous studies concerning the GWAS on CSF 

metabolomics (metabolite quantitative trait loci: mQTL). Also, I feel the authors should use the word 

mQTL.  

 

The authors should add brief explanation on the elastic net, polygenic score model, ridge regression, 

and LASSO in the results section.  

 

Since schizophrenia develops usually in adolescence or early adulthood, the findings may be limited 

by the use of metabolite-GWAS data obtained from middle aged to elderly people.  

 

In the discussion section, the authors seem to have picked up previous data supporting their 

findings; however, they did not mention data not supporting them. For example, the authors should 

overview postmortem metabolomics studies in schizophrenia patients (e.g., PMID: 27856156).  

 

In the discussion section, the authors should refer to previous studies examining pQTL in human CSF 

sample (e.g., PMID: 28031287)  

 

In the methods section, the authors should describe at least mean age and sex distributions of the 

study subjects.  

 

 

 

 

Reviewer #2 (Remarks to the Author):  

 

It is an interesting and a novel work. My comments are below.  

1. There is no explanation and assessments of MR assumption. Due to the sheer number of genetic 

variants that can be easily included in the MR approach, it is likely that the IV assumption is violated. 

Please look at multiple approaches introduced to detect and correct for violation of the MR 

assumption.  

Ref.  

Bowden, Jack, et al. "A framework for the investigation of pleiotropy in two‐sample summary data 

Mendelian randomization." Statistics in medicine 36.11 (2017): 1783-1802.  

2. To assess MR assumptions no need to know the functional roles of metabolites and the related 

genetic loci. Again see tests for MR assumption. The one that you need to be concerned is a loci with 

pleiotropic effect on the phenotype and metabolite both.  

3. You have found SNPMetabolite and then metabolitePhenotype. In transcriptomic, there are co-

localization approaches to assess if the gene is in the path between the SNP and phenotype. You 

could simply one of the co-localization test to see if the metabolites are in the path from SNP to the 

phenotype.  



Ref.  

Zhu, Zhihong, et al. "Integration of summary data from GWAS and eQTL studies predicts complex 

trait gene targets." Nature genetics 48.5 (2016): 481.  

Plagnol, Vincent, et al. "Statistical independence of the colocalized association signals for type 1 

diabetes and RPS26 gene expression on chromosome 12q13." Biostatistics 10.2 (2009): 327-334.  

 

4. There are some metabolites such as essential amino acids and diet related metabolites as well as 

hormone related metabolites that are not influenced by genetic factors. Could you explain about 

these metabolites while you use SNPs for metabolite imputation?  

 

5. In “Online methods”, section “Metabolite prediction mode”, in addition to you explanation, could 

you provide a chart, a diagram that explains the steps? It helps readers to follow and review the 

steps easier.  

 

6. For imputation of metabolites, you used the summary statistics. Did you have access to all 

summary data? Usually only those that pass a certain threshold levels are available in publications. 

But, for imputation, you need all of them not only the significance.  

Ref.  

Lawlor, Debbie A. "Commentary: Two-sample Mendelian randomization: opportunities and 

challenges." International journal of epidemiology 45.3 (2016): 908.  

 

 

 

 

7. Imputing metabolite missing values by half of the min value might be an easy and common 

approach but not suggested. See multiple papers for metabolomics missing value imputation.  

Ref.  

Using statistical techniques and replication samples for imputation of metabolite missing values, 

arxive  

 

8. For Non- xenobiotic metabolites, you consider threshold 30% for imputation. Could you explain 

your reason? 



It is an interesting and a novel work. My comments are below. 

1. There is no explanation and assessments of MR assumption. Due to the sheer number of genetic 
variants that can be easily included in the MR approach, it is likely that the IV assumption is 
violated. Please look at multiple approaches introduced to detect and correct for violation of the 
MR assumption.  

Ref. 

Bowden, Jack, et al. "A framework for the investigation of pleiotropy in two‐sample summary data 
Mendelian randomization." Statistics in medicine 36.11 (2017): 1783-1802. 

2. To assess MR assumptions no need to know the functional roles of metabolites and the related 
genetic loci. Again see tests for MR assumption. The one that you need to be concerned is a loci 
with pleiotropic effect on the phenotype and metabolite both.    

3. You have found SNPMetabolite and then metabolitePhenotype. In transcriptomic, there are 
co-localization approaches to assess if the gene is in the path between the SNP and phenotype. 
You could simply one of the co-localization test to see if the metabolites are in the path from 
SNP to the phenotype.  

Ref. 

Zhu, Zhihong, et al. "Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets." Nature genetics 48.5 (2016): 481. 

Plagnol, Vincent, et al. "Statistical independence of the colocalized association signals for type 1 diabetes 
and RPS26 gene expression on chromosome 12q13." Biostatistics 10.2 (2009): 327-334. 

 
4. There are some metabolites such as essential amino acids and diet related metabolites as well 

as hormone related metabolites that are not influenced by genetic factors. Could you explain 
about these metabolites while you use SNPs for metabolite imputation? 
 

5. In “Online methods”, section “Metabolite prediction mode”, in addition to you explanation, 
could you provide a chart, a diagram that explains the steps? It helps readers to follow and 
review the steps easier.  
 

6. For imputation of metabolites, you used the summary statistics. Did you have access to all 
summary data? Usually only those that pass a certain threshold levels are available in 
publications. But, for imputation, you need all of them not only the significance.   

Ref. 

Lawlor, Debbie A. "Commentary: Two-sample Mendelian randomization: opportunities and 
challenges." International journal of epidemiology 45.3 (2016): 908. 

 

 

 



 

7. Imputing metabolite missing values by half of the min value might be an easy and common 
approach but not suggested. See multiple papers for metabolomics missing value imputation.  

Ref.  

Using statistical techniques and replication samples for imputation of metabolite missing values, arxive 

 

8. For Non- xenobiotic metabolites, you consider threshold 30% for imputation. Could you explain 
your reason?  
 
 
 
 

 



Response to reviewer comments 

Note: added text is in red. 

 

Response to Reviewer #1 

1. In the introduction, the authors should refer to previous studies concerning the 

GWAS on CSF metabolomics (metabolite quantitative trait loci: mQTL). Also, I feel 

the authors should use the word mQTL. 

To our knowledge, only one GWAS of CSF metabolites has been conducted before, but it 

was limited to just monoamine metabolites (Luykx et al 2014), making our work here the first 

metabolome-wide GWAS in the CSF. We have now included a reference to this previous paper 

in the introduction: 

“To do so, we expanded upon the limited research on the genetics of the CSF metabolome1 

by conducting a CSF metabolome-wide GWAS and then used the results to build CSF metabolite 

prediction models from genetic information to study the association of CSF metabolites with a 

variety of brain-related phenotypes using GWAS summary statistics.” (lines 59-63). 

In the original draft of this manuscript, we avoided the QTL-based abbreviation due to the 

conflict between metabolite QTLs (sometimes “mQTLs” or “metQTLs”) and methylation QTLs 

(also sometimes “mQTLs” or “metQTLs”). However, we agree that it would be worthwhile to 

acknowledge this terminology in the paper because it is often seen in the literature. We have 

added the mQTL abbreviation to the Summary and Introduction as well as included a brief 

parenthetical note about the alternative terminologies in the Results so that the reader may more 

easily connect our work to other work that uses such QTL-based language: 



“We conducted a metabolome-wide, genome-wide association analysis with 338 CSF 

metabolites, identifying 16 genotype-metabolite associations (metabolite quantitative trait loci, 

or mQTLs), 6 of which were novel.” (lines 25-28) 

“A total of 606 significant SNP-CSF metabolite associations (sometimes referred to as 

metabolite quantitative trait loci, or mQTL)…” (lines 93-94) 

 

2. The authors should add brief explanation on the elastic net, polygenic score model, 

ridge regression, and LASSO in the results section. 

We appreciate this suggestion, as we agree that it would be worthwhile to include more detail 

about them since the high-level differences between these models are related to the different 

kinds of genetic architecture each one captures. A brief, high-level intuition about the differences 

between these models has been added to the Methods Overview in the main text, and a fuller 

description of the model types is now present in the relevant Methods section: 

“…using both models with fewer SNPs (e.g., LASSO and elastic net) and many SNPs (e.g., 

ridge regression and polygenic score) to allow for a diversity of possible genetic architectures 

(see Online Methods for details).” (lines 83-85) 

“…were employed: LASSO2, elastic net3, ridge regression4, and polygenic score models5. 

LASSO uses L1 regularization to perform variable selection in a regression model, while ridge 

regression uses L2 regularization and retains all variables in the regression. Elastic net lies 

between LASSO and ridge regression, using a weighted combination of the L1 and L2 penalties. 

Polygenic score models use a weighted combination of SNPs where the weight of each SNP is 



based on the beta coefficient of a GWAS for the model outcome. The 3 penalized regression 

models…” (lines 491-497) 

 

3. Since schizophrenia develops usually in adolescence or early adulthood, the findings 

may be limited by the use of metabolite-GWAS data obtained from middle aged to 

elderly people. 

This comment makes a good point about a potential limitation of our findings for 

schizophrenia based on the sample we had available for training. In fact, more generally, this 

limitation about the training sample versus the target population for the application is relevant to 

potentially other diseases or traits beyond schizophrenia. 

This population-matching issue has been encountered before. The GTEx data set for eQTLs 

has been widely used in TWAS applications, including to schizophrenia, but the GTEx 

population is predominantly older (the version 8 demographics are 83.5% age 40+)6. 

Nevertheless, GTEx has been successfully applied to the study of genes associated with 

schizophrenia. For instance, one study used data from GTEx and the CommonMind Consortium 

(CMC, also an older cohort) to study the role of gene expression in schizophrenia7. Despite the 

older nature of their gene expression data, Huckins et al. were able to identify 67 significantly 

associated genes, the majority of which replicated previously identified genetic loci from GWAS 

studies. Furthermore, as they point out in their discussion section, the “[i]dentification of SCZ-

associated genes primarily expressed prenatally is notable given our adult eQTL reference 

panels, and may reflect common eQTL architecture across development, which is known to be 

partial…” Even with the imputed variable (gene expression, metabolite) being imputed using 



data from an older cohort, relevant associations for a disease typically associated with a younger 

age may still be identified. 

At any rate, the broader types of population mismatch that may affect the applicability of an 

analysis like MWAS are worth including. Thus, the limitations section in the discussion has been 

expanded to also acknowledge the potential impact of this age difference: 

“…Another limitation is the training sample used for building the prediction models. Only 

individuals of European ancestry were studied, which may limit the generalizability of these 

findings to individuals of non-European ancestry, and the population was older, which may limit 

the ability to predict metabolite associations with phenotypes like schizophrenia that may 

develop in younger populations. Future applications…” (lines 288-292) 

 

4. In the discussion section, the authors seem to have picked up previous data 

supporting their findings; however, they did not mention data not supporting them. 

For example, the authors should overview postmortem metabolomics studies in 

schizophrenia patients (e.g., PMID: 27856156). 

One of the major obstacles we faced was the lack of specific overlap in metabolites studied 

between our data set and those of previous metabolomics analyses. In many cases, for a specific 

metabolite we identified as being associated with a disease, we were unable to find any 

metabolomics study in that disease that also measured the same specific metabolite. So positive 

validation of some of our findings was not always straightforward. Similarly, assessing false 

negatives in our data set was also not always easy, as the significant metabolites from a previous 

study may not have been measured in our data set or, if they were measured, they may not have 

happened to be predicted well enough by genetic models to enable analysis. 



These limitations were certainly part of the reason why there were not more direct 

comparisons possible with previous research of schizophrenia. To better illustrate this general 

limitation of the metabolomics literature, our findings for schizophrenia are now used to 

highlight some of the limitations we faced in comparing our results. We have included a 

description of previous schizophrenia metabolomics work (Fujii et al and others) that highlight 

these limitations that we faced in comparing our results to previous findings. 

“Replicating metabolite associations with schizophrenia from previous research was difficult due 

to the lack of overlap in the metabolites, whether because the metabolite was not measured or 

was not well enough predicted by a genetic model to be analyzed. For instance, a study of altered 

metabolites in post-mortem brain samples found increased hippocampal levels of glycylglycine, 

lactic acid, and pyridoxamine8, but of those metabolites, only lactate was present in our data set, 

and its genetic prediction model did not perform well enough for the BADGERS analysis. Other 

studies have reported decreased phosphatidylcholine and phosphatidylethanolamine levels in 

schizophrenia9–11, but only a few such compounds were analyzed here, and none were predicted 

to be significantly associated with schizophrenia, which could reflect a lack of power related to 

the genetic predictors for these metabolites. As metabolomics technology improves and a 

broader array of metabolites are studied, these challenges in comparing results will lessen.” 

(lines 238-248) 

 

5. In the discussion section, the authors should refer to previous studies examining 

pQTL in human CSF sample (e.g., PMID: 28031287) 

The findings from the suggested study by Sasayama et al. in 201712 and the corresponding 

blood pQTL study it references (Lourdusamy et al. 201213) make for a good comparison between 



metabolite QTLs and pQTLs. In both the case of metabolomics (here) and in proteomics (the 

requested reference), we see a partial overlap of QTLs between the CSF and blood. This partial 

overlap is expected given that genetic regulation is known to be at least partly context-specific. 

Thus, it was not surprising that some of our QTLs for CSF metabolites were new despite the 

metabolites being studies in blood or other fluids. 

We have added a reference to this previous work and highlighted the similarity of our 

findings here for CSF metabolites to the findings made previously for CSF proteins. 

“These CSF findings potentially represent genetic loci of control that are unique to the CSF, as 

they have not been identified in non-CSF studies. This partial overlap between CSF and blood 

QTLs for metabolites echoes that seen with studies of CSF protein levels, where only a subset 

(33.9%) of blood cis-protein QTLs (cis-pQTLs) were also significant CSF cis-pQTLs12,13.” (lines 

211-213) 

 

6. In the methods section, the authors should describe at least mean age and sex 

distributions of the study subjects. 

Details about the demographics of the two final study cohorts are available in Supplementary 

Table 1 (copied below for reference). A high-level summary of these details and their 

implications (namely, that the two populations were similar in terms of sex and age) has now 

been added to the Methods Overview section as well. 

“The two study cohorts after data cleaning were similar demographically. The mean age at CSF 

draw was in the early 60s for both cohorts (64.7 in WADRC, 62.0 in WRAP) while the sex 



distribution was similarly about two-thirds female (63.2% in WADRC, 66.2% in WRAP) 

(Supplementary Table 1).” (lines 74-77) 

 

Supplementary Table 1. Study cohort description. 

Cohort N Female (N, %) Age at CSF draw (mean, SD) 
WADRC 155 98 (63.2%) 64.7 (6.4) 
WRAP 136 90 (66.2%) 62.0 (6.6) 

 

 

Response to Reviewer #2 

1. There is no explanation and assessments of MR assumption. Due to the sheer 

number of genetic variants that can be easily included in the MR approach, it is 

likely that the IV assumption is violated. Please look at multiple approaches 

introduced to detect and correct for violation of the MR assumption. 

Ref. 

Bowden, Jack, et al. "A framework for the investigation of pleiotropy in two�

sample summary data Mendelian randomization." Statistics in medicine 36.11 

(2017): 1783-1802. 

2. To assess MR assumptions no need to know the functional roles of metabolites and 

the related genetic loci. Again see tests for MR assumption. The one that you need to 

be concerned is a loci with pleiotropic effect on the phenotype and metabolite both. 

This comment is certainly a fair point regarding the conclusions of causal inference 

techniques like MR. Because the focus of this paper was on identifying associations (not 

necessarily causal) between CSF metabolites and brain-related phenotypes to serve as a first step 



in understanding the role of CSF metabolites, many of which have not been studied in these 

phenotypes, we wanted to keep the discussion similarly focused on the results of the MWAS. 

Since our proposed MWAS methodology is somewhat novel, we included the MR analyses as a 

comparison to highlight that an alternative methodology offered some support for several of our 

identified associations. However, we did not want to focus too much on the MR results and 

thereby mislead the reader into thinking the MWAS analyses should be interpreted as causal 

claims. Thus, our discussion of the MR analyses was kept minimal. 

We agree with the point that the MR assumptions are likely violated for the models with 

many SNPs. A specific example of the largest pleiotropic effect (observed for guanosine’s effect 

on schizophrenia) that was identified through the use of MR-Egger (Supplementary Table 12) 

has been added to the discussion section. Additional information about the limitations of the 

application of MR (particularly for the many-SNP models) has also been added to the discussion. 

Finally, the fact that the significant MR results were only for 1- or 2-SNP models has also been 

explicitly called out in the results section. 

“…acetylornithine with cognitive performance (Supplementary Tables 11-12). These significant 

effects were all for models with only 1 or 2 SNPs used as instruments.” (lines 168-169) 

“Finally, the metabolite-phenotype associations identified here may not necessarily be causal. 

Even with the results of the two-sample MR providing significant, consistent support for some of 

the metabolite-phenotype associations, such causal inference approaches require assumptions 

about the presence of pleiotropy that may not hold true14. As more SNPs are included as 

instruments, it becomes more likely that some SNPs have introduced pleiotropic effects that 

would bias the causal effect estimate. Although the significant MR results here were only for 1- 

or 2-SNP models, evidence for pleiotropy when using many SNPs was seen in some of the 



nonsignificant MR analyses. For instance, the predictive model used here for guanosine included 

92 SNPs. When MR-Egger regression15, a technique used to assess the presence of pleiotropy, 

was used to estimate guanosine’s effect on schizophrenia, a significant pleiotropic effect was 

identified (p = 0.0029) that likely explains the difference in effect seen between the inverse-

variance-weighted and MR-Egger results (Supplementary Table 11). As more becomes known 

about the functional roles of these metabolites and their related genetic loci and as data sets grow 

larger, the ability to assess and justify the assumptions necessary for causal inference 

applications will improve. Nevertheless, MWAS provides a powerful tool for the initial 

discovery of metabolite-phenotype associations that can then be followed up experimentally.” 

(lines 293-309) 

 

3. You have found SNPMetabolite and then metabolitePhenotype. In 

transcriptomic, there are co-localization approaches to assess if the gene is in the 

path between the SNP and phenotype. You could simply one of the co-localization 

test to see if the metabolites are in the path from SNP to the phenotype. 

Ref. 

Zhu, Zhihong, et al. "Integration of summary data from GWAS and eQTL studies 

predicts complex trait gene targets." Nature genetics 48.5 (2016): 481. 

Plagnol, Vincent, et al. "Statistical independence of the colocalized association 

signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13." 

Biostatistics 10.2 (2009): 327-334. 

A co-localization analysis between the metabolite and downstream brain-related phenotype 

GWAS would be an alternative method to address whether the two traits are likely to share an 



underlying genetic variant and therefore, as the reviewer points out, whether a common pathway 

of association between the metabolite and phenotype is likely. A co-localization analysis thus 

answers a similar question to what the MWAS addresses. One other important similarity between 

co-localization approaches and MWAS is that both approaches allow for the use of GWAS 

summary statistics as input, which is necessary in the context of this project. 

There are a couple of important differences between co-localization and MWAS that led to 

our choice of using MWAS in this paper. First, co-localization focuses on the overlap of genetic 

associations without incorporating the direction of the effects and ensuring that they are the 

same, which would be an important consideration in assessing the evidence for a common 

pathway between metabolites and disease. 

Second, unlike MWAS, which reports a p-value, co-localization analyses provide a posterior 

probability that the two traits share a common causal variant. Although there are commonly used 

heuristics (probabilities greater than 75% or 80%) for reporting positive results, the posterior 

probability is more difficult to interpret, especially in terms of type I error. 

Third, and perhaps most importantly, co-localization methods require there to be some 

specific locus to be tested. However, many of the metabolites in this study were best predicted by 

a polygenic model with many independent loci. Such nuance would be missed by a co-

localization analysis, making it difficult to draw much of a conclusion from the analysis because 

the underlying genetic architecture is not well represented. This limitation of co-localization 

methods is less of a problem for gene expression analyses, but for metabolites, which are not 

mappable to a specific genomic location like a transcript or protein, this limitation is 

problematic. 



To demonstrate this last point, we conducted a co-localization analysis for each of the top 19 

metabolite-phenotype associations reported by the MWAS. The coloc16 R package was used to 

conduct an approximate Bayes factor co-localization analysis (coloc.abf function). The genetic 

locus to test for each trait pair comprised the set of SNPs within a window of 250 kb around the 

lead SNP of the metabolite GWAS in the combined WADRC/WRAP sample. The results of this 

analysis are shown in the table below: 

 

 

Table columns descriptions 

metabolite_name: biochemical name of the metabolite in the colocalization analysis 

phenotype: name of the phenotype in the colocalization analysis 

nsnps_in_coloc: number of SNPs (present in both metabolite and phenotype GWAS) used in the colocalization 

analysis 

PP.H4.abf: posterior probability that both traits shared the same associated variant 

top_hyp_meaning: a description of the hypothesis with the greatest posterior probability according to coloc 

model: the type of model that best predicted the metabolite 

metabolite_name phenotype
nsnps_in
_coloc PP.H4.abf top_hyp_meaning model

n_snps_in
_model

avg_corr_
by_param
eter_set

avg_r2_b
y_param
eter_set

N6-methyllysine scz 966 0.82 both traits associated, same variant enet 1 0.49 0.25
N-delta-acetylornithine alcoholism 544 0.80 both traits associated, same variant enet 2 0.28 0.08

ethylmalonate scz 905 0.78 both traits associated, same variant enet 1 0.32 0.11
N-delta-acetylornithine scz 544 0.71 both traits associated, same variant enet 2 0.28 0.08
N-delta-acetylornithine cognitive 544 0.66 both traits associated, same variant enet 2 0.28 0.08

2-hydroxy-3-methylvalerate scz 1203 0.17 neither trait has association in region ridge 5111 0.16 0.03
ethylmalonate smoking 905 0.08 both traits associated, but different variants enet 1 0.32 0.11

cysteinylglycine disulfide* sleep 1147 0.01 neither trait has association in region ridge 5019 0.11 0.04
orotate adhd 924 0.01 only trait 1 (metabolite) has association in region ridge 4937 0.03 0.03

cysteinylglycine alcoholism 873 0.00 neither trait has association in region ridge 5097 0.13 0.03
alpha-tocopherol scz 1184 0.00 neither trait has association in region ridge 5159 0.06 0.03

glutaroylcarnitine (C5) cognitive 965 0.00 neither trait has association in region enet 775 0.12 0.03
glycerol alcoholism 837 0.00 only trait 1 (metabolite) has association in region ridge 4941 0.15 0.05

benzoate cognitive 709 0.00 only trait 1 (metabolite) has association in region enet 276 0.17 0.04
X - 24295 ptsd 871 0.00 neither trait has association in region pgs 5236 0.19 0.04
X - 24699 scz 927 0.00 neither trait has association in region enet 190 0.13 0.04
malate adhd 794 0.00 neither trait has association in region enet 673 0.14 0.04
malate scz 794 0.00 neither trait has association in region enet 673 0.14 0.04

guanosine scz 1103 0.00 both traits associated, but different variants pgs 99 0.14 0.04



n_snps_in_model: the number of SNPs used in the best-performing prediction model for the metabolite 

avg_corr_by_parameter_set: the average correlation between the predicted and observed metabolite levels for the 

metabolite from the cross-validation model building 

avg_r2_by_parameter_set: the average R2 between the predicted and observed metabolite levels for the metabolite 

from the cross-validation model building 

 

A general distinction can be seen between the metabolites that can be best-represented by 

one or two genetic loci (e.g., N-delta-acetylornithine) and the metabolites that needed a 

polygenic model (e.g., malate). Only those metabolites with a sparse genetic architecture showed 

much signal for a shared causal variant with their associated phenotype from the MWAS. 

Regional association plots of the GWAS results for these trait-pairs highlight this 

problem. As an example where co-localization works well, the selected genetic region for the N-

delta-acetylornithine/schizophrenia association is shown against the GWAS results for N-delta-

acetylornithine and schizophrenia below (blue line represents the genome-wide significance 

threshold of 5 x 10-8): 



 

Here, the genetic locus of association for the metabolite is strong (in fact, significant after 

multiple testing correction in the GWAS meta-analysis), and the included genetic region for co-

localization (between the two red lines) seems to capture signal of association for both traits. 

This locus is just one of two genetic loci (the other is on chromosome 10) from the entire 

genome to achieve a predictive correlation of 0.28. The posterior probability of co-localization 

with schizophrenia was 71%. 



As an example of when co-localization does not work well, the genetic locus of 

association used for the co-localization of malate and schizophrenia is shown: 

 

The individual locus for malate is much weaker (note the scale of the Y-axis compared to 

the figure for N-delta-acetylornithine), but such a weaker effect of the individual locus is 

expected for a metabolite that was best predicted by a polygenic model. This single locus is just 

one of 673 independent loci that were needed to best predict the level of malate in CSF. By itself, 



this locus does not adequately represent the genetic signal for malate, and as might be expected 

the co-localization analysis fails to find evidence that there is a shared causal variant at this locus 

for both malate and schizophrenia. 

Thus, the MWAS approach, which allowed for the use of polygenic predictors for 

metabolites, was preferred over co-localization. Due to the inability to capture the polygenic 

nature of many of the metabolites, the results of the co-localization analysis were not included in 

this manuscript. 

 

4. There are some metabolites such as essential amino acids and diet related 

metabolites as well as hormone related metabolites that are not influenced by 

genetic factors. Could you explain about these metabolites while you use SNPs for 

metabolite imputation? 

This comment brings up a good question about whether metabolites (like essential amino 

acids, diet-related metabolites, and hormone-related metabolites) that are not influenced by 

genetic factors should be imputed using genetic information. First, regarding the biology of 

metabolites, even if a metabolite is not produced naturally by the body (i.e., the metabolite is 

exogenous), genetic variants may still impact the level of that metabolite in the CSF. Variants 

could impact enzymes that process or utilize the metabolite, transporters that move the 

metabolite into or out of the CSF space, or regulate physiological states that then impact the level 

of the metabolite directly or indirectly17. Thus, exogeneity does not necessarily imply lack of 

genetic influences. The evidence of widespread genetic impact can be seen by the non-zero 

heritabilities of xenobiotic metabolites in plasma, including some as high as 78.1%18. 



Regardless of exogeneity, however, a metabolite may be overwhelmingly driven by non-

genetic influences such that a SNP-based imputation model would seem unreasonable. This point 

is entirely valid and was the rationale for the R2-based filtering for which metabolites would be 

included in the MWAS analysis. Only those metabolites that could be sufficiently predicted by 

SNP information were included in the MWAS analysis. A brief note explaining this rationale 

was added to the Results section: 

“There were 106 models with a positive correlation and a more conservative predictive R2 > 

0.025. These metabolites were considered to be sufficiently well-predicted by SNPs to be 

included in the MWAS and were subsequently tested for association with each of 27 

neurological and psychiatric phenotypes…” (lines 151-154) 

 

5. In “Online methods”, section “Metabolite prediction mode”, in addition to you 

explanation, could you provide a chart, a diagram that explains the steps? It helps 

readers to follow and review the steps easier. 

This is a great suggestion: a visualization of the model building procedure is a useful 

reference to pair with the written description. A new supplementary figure has been added, now 

named Supplementary Figure 25: Metabolite prediction model building process. An image of 

this figure is provided below. The names of the other supplementary figures have been updated 

as appropriate due to the added figure. 

 



 

 

Supplementary Figure 25. Metabolite prediction model building process 

The sequence of steps used to build and select each metabolite prediction model are summarized. 

The combined WADRC and WRAP sample was used to build a variety of predictive models of 

varying sparsity for each metabolite. Four-fold cross-validation was used to select the best model 

for each metabolite based on the average predictive correlation across folds. 

 

6. For imputation of metabolites, you used the summary statistics. Did you have access 

to all summary data? Usually only those that pass a certain threshold levels are 

available in publications. But, for imputation, you need all of them not only the 

significance. 

Ref. 

Lawlor, Debbie A. "Commentary: Two-sample Mendelian randomization: 

opportunities and challenges." International journal of epidemiology 45.3 (2016): 

908. 



As this comment and the reference paper point out, issues arise when incomplete summary 

stats or filtered SNP lists are used in an analysis like MWAS or MR. In this manuscript, only 

complete GWAS summary statistics with the full set of summary data available were used for 

analysis. This important aspect is now explicitly mentioned in the Methods section. 

“The phenotypes for the association analysis were chosen based on the feasibility of the CSF 

metabolome being relevant to the phenotype and the availability of complete GWAS summary 

statistics for the phenotype.” (lines 522-524) 

 

7. Imputing metabolite missing values by half of the min value might be an easy and 

common approach but not suggested. See multiple papers for metabolomics missing 

value imputation. 

Ref. 

Using statistical techniques and replication samples for imputation of metabolite 

missing values, arxive 

This comment brings up a good point about the limitations of imputation methods. We have 

read through the suggested article19 as well as some other related papers on metabolomics 

imputation methods20,21. 

In this paper, we imputed missing metabolite values with half of the minimum value for that 

metabolite according to the recommendation of Metabolon, who generated our metabolomics 

data. The assumption here is that missing values are due to the metabolite being present but 

under the platform’s minimum level of detection. 



As Yazdani and Yazdani point out19, among ARIC metabolite values that were missing in 

one data set but present in the replication data set, the missing metabolite values were not 

consistently on the low end, which would suggest the reason for the missing value in the first 

data set may not be due to the value being below the level of detection. To what extent 

metabolites consistently missing in all data sets were similarly evenly distributed across the 

metabolite’s range of values or whether they were indeed present but under the limit of detection 

seems to still be an open question. 

Alternative methods for imputation include more nuanced approaches, like k-nearest 

neighbor, Bayesian PCA, or multivariate imputation by chained equation, which may outperform 

imputation by half of the minimum value, particularly when those values are missing completely 

at random and not missing due to the level of the metabolite. 

The appropriateness of the imputation approach we use here ultimately depends on that 

assumption of the mechanism of missingness, which we have now explicitly called out in the 

Online Methods: Initial metabolite processing section that discusses the imputation approach. 

 “Imputation was then performed for each cohort’s samples separately. Non-xenobiotics were 

imputed to half the minimum value within each cohort, making the assumption that missingness 

was due to the metabolite being present at a level below the detection limit, while xenobiotics 

were not imputed since they could feasibly be absent from the CSF.” (lines 380-383) 

We also note that for the main metabolite-phenotype associations reported by this paper, 

of the 15 metabolites with a significant association, the highest level of imputation from the 

initial data set was 13.4% (cysteinylglycine), while 10 of the 15 metabolites had no imputed 

values whatsoever: 



 

 

8. For Non- xenobiotic metabolites, you consider threshold 30% for imputation. Could 

you explain your reason? 

In our initial metabolomics data set, the majority of non-xenobiotic metabolites were present 

for nearly all samples. However, there were a few metabolites that seemed to be missing much 

more frequently in the data set. Such high missingness could feasibly make sense for 

xenobiotics, which could represent a drug metabolite that only a few people in a cohort might be 

expected to have at all. However, for non-xenobiotics, metabolites missing frequently were 

believed to potentially represent some systematic issue with the measurement process. Thus, a 

threshold for exclusion of these non-xenobiotic metabolites was used that was stricter than that 

used for xenobiotics. The threshold chosen was selected based on the distribution of missingness 

(below), where the bulk of metabolites appeared to be present for the bulk of samples, with a few 

exceptions. The threshold of 30% was chosen as a conservative threshold to remove the 25 non-

xenobiotics that were missing fairly often across our data sets. 

Imputed values Total values Percent imputed Imputed values Total values Percent imputed Imputed values Total values Percent imputed
N-delta-acetylornithine 17 155 10.97 11 136 8.09 28 291 9.62
Alpha-tocopheral 0 155 0 0 136 0 0 291 0
Ethylmalonate 0 155 0 0 136 0 0 291 0
Cysteinylglycine disulfide 0 155 0 0 136 0 0 291 0
N6-methyllysine 0 155 0 0 136 0 0 291 0
Glutaroylcarnitine 15 155 9.68 19 136 13.97 34 291 11.68
X-24295 3 155 1.94 5 136 3.68 8 291 2.75
Orotate 0 155 0 0 136 0 0 291 0
Malate 0 155 0 0 136 0 0 291 0
Guanosine 0 155 0 1 136 0.74 1 291 0.34
Glycerol 0 155 0 0 136 0 0 291 0
Cysteinylglycine 25 155 16.13 14 136 10.29 39 291 13.4
Benzoate 0 155 0 0 136 0 0 291 0
X-24699 0 155 0 0 136 0 0 291 0
2-hydroxy-3-methylvalerate 0 155 0 0 136 0 0 291 0

TotalWRAPWADRC



 

A note about the rationale for this stricter threshold has been added: 

“Non-xenobiotic metabolites, which were expected to be present in most samples, were removed 

if they were missing for ≥ 30% of samples.” (lines 373-374) 
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Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

I think that the authors have made revisions adequately according to the comments of the reviewers 

and the manuscript seems to be acceptable.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The manuscript has an innovative idea, I have not seen metabolite prediction/imputation previously.  

The main goal of the manuscript is genetic-metabolite association. But a problem that I see is 

supportive approaches on page 28. Many packages are applied but no clear explanation of 

assumptions and how to satisfy them. It is better to focus on one package and satisfy assumptions 

than applying many packages without explaining the assumptions.  

If the authors apply MR, they need to mention MR assumptions and how they are satisfied. I believe 

the application of packages on page 28 as it is currently, is not appropriate for this journal. Please 

see the comment #5 for more details.  

Major comments.  

1. Lines 66-69, Method overview is not informative, please provide a flowchart in the body to explain 

the steps in more details. Explain why we use summary statistics from GWAS in step 3, while we are 

imputing metabolites in step 2. Which summary statistics we are using from GWAS and etc. There 

are different approaches for using summary statistics and two-sample MR. Which one you are using? 

For each package, you should write a brief explanation of main steps. Only applying multiple 

packages without talking about the details and underlying assumptions are not good signs.  

2. Page 28, you talk about two-sample summary statistics and multiple packages. But, you do not 

talk about the approach and the underlying assumptions. How the summary statistics are integrated 

with the imputed metabolites.  

3. The same is true for two-sample MR. You have applied multiple packages without talking about 

MR assumptions and how to hold them.  

4. You can run two-sample MR in different ways. You should mention which one you are using. Are 

both samples with summary statistics or one sample with summary data the other sample with 

individual level data? And please explain why you are using either of them.  

5. In table 11, you have b, effect size. Please write the effect of metabolite on phenotype. Then, in 

this table, for the low number of instruments (n_SNP<=2, column “bonf_sig”=TRUE), you need to 

provide the LD between SNPs and the z-score for the effect of SNP on metabolite. Are the 

metabolites predicted by these SNPs? These are the requirements for MR/instrumental variables 

(here the SNPs).  

 

For the large number of instruments, you should mention in the online method section that what 

the package is doing. For example, what MR Egger does with more than 3000 SNPs.  

 

If we predict metabolites with SNPs in an accurate way, we can claim the pleiotropic effect is 

controlled. You should remove or edit the sentence in line 300 (the sentence with the reference 85 

at the end) because the reference 85 is telling us how to control for pleiotropic action while the 

pleiotropy is present. However, this sentence in the manuscript does not convey that.  

 

Answering this comment adds further values to the manuscript. Please pay attention to this 



comment and answer it carefully.  

 

6. In table 11, why different MR methods, column “Method”, are used for different metabolites. Was 

not it possible to apply one method for all metabolites? I may miss your explanation in the 

manuscript.  

7. A flowchart for page 28 is recommended. This is an important page of the manuscript while it 

does not seem that the packages are applied carefully. The way that it is written it gives the 

impression that only multiple packages are run without paying attention to the assumptions.  

Minor comments.  

8. Line 81, how did you do meta-analysis, did you use any package? It should be mentioned. You 

mention later. But, it is good to mention it here too.  

9. Line 89, you have cited BADGERS approach but, you should write a few lines about it and what it 

does, even if you write about it later.  

10. Lines 83-84, you should provide the reference for this approach. It won’t be on metabolites, but 

it has been applied previously on gene expression. You have referred in another place, please 

explicitly mention it here too.  

11. Line 83, you say independent SNP as predictors. What is your definition/threshold to determine 

independency? Is it independent statistically? How did you select SNPs for prediction of each 

metabolite? Did you use their effect size from line 80? 



Response to reviewer comments 

Note: added text is in red. 

 

Response to Reviewer #1 

1. I think that the authors have made revisions adequately according to the comments 

of the reviewers and the manuscript seems to be acceptable. 

We thank Reviewer #1 for their time in reviewing this manuscript. 

 

 

Response to Reviewer #2 

1. Lines 66-69, Method overview is not informative, please provide a flowchart in the 

body to explain the steps in more details. Explain why we use summary statistics 

from GWAS in step 3, while we are imputing metabolites in step 2. Which summary 

statistics we are using from GWAS and etc. There are different approaches for 

using summary statistics and two-sample MR. Which one you are using? For each 

package, you should write a brief explanation of main steps. Only applying multiple 

packages without talking about the details and underlying assumptions are not good 

signs. 

There are a couple of different concerns brought up in this comment. Regarding the first 

concern about the role of the Methods Overview, since we are presenting a new general 

workflow for analyzing the association of metabolites with phenotypes using GWAS summary 

statistics and since the MWAS procedure has three discrete steps that serve as a framework for 



the later presentation of the manuscript’s results, we included an overview of those three key 

steps in the main manuscript to explicitly introduce that structure to the reader. However, we 

intentionally keep the Methods Overview high-level and avoid too much detail in the main body 

since those details are already provided in the Methods section. To address the reviewer’s 

concern about the lack of detail in this overview section, we have added additional text to 

explain the role of each major step, including the reason why GWAS summary statistics are 

used: 

“Step 1 is used to demonstrate that SNP-metabolite associations do indeed exist and thus justify 

the building of metabolite prediction models in step 2 on a cohort where both genotype and 

metabolite data are present. Step 3 uses the prediction models in conjunction with publicly 

available GWAS summary statistics on neurological phenotypes to test metabolite-phenotype 

associations. The advantage of MWAS is that it allows for this metabolite-phenotype association 

testing to occur in GWAS data sets where only genotypes and phenotypes (not metabolites) were 

originally measured. Further details on these methods may be found in the Methods section.” 

(lines 69-76) 

 We have also added a new supplementary figure as a flow chart, as suggested, that lays 

out the steps of the MWAS procedure as applied in this project, copied below for reference: 

 



 

 

Supplementary Figure 1. Overview of MWAS 

The flow chart highlights the main sequence of steps in the MWAS methodology as applied in this paper. 

After strict genotype and metabolite quality control, a GWAS of each CSF metabolite was performed, 

first in WADRC as a discovery cohort and then in WRAP as a replication cohort. The results were meta-

analyzed together and the resulting SNP-metabolite loci reviewed for feasibility with regional association 

plots, gene and eQTL annotation, and comparison to previous non-CSF metabolomics GWAS. The 

combined WADRC/WRAP data set was then used to build metabolite prediction models from genotypes, 

and the resulting models were used to test for metabolite-phenotype associations with neurological and 

psychiatric phenotypes in a summary-statistic-based TWAS-like method (BADGERS). 

WADRC sample collection 

WADRC data cleaning 

WRAP sample collection 

WRAP data cleaning 

GWAS meta-analysis 

Regional association plots, gene annotation, eQTL 
look-up, comparison to non-CSF studies 

Genotype-metabolite prediction model building 

Metabolite-phenotype association testing 
(BADGERS) 

WADRC CSF metabolite GWAS WRAP CSF metabolite GWAS 



Regarding which summary statistics were used in the MWAS analysis, those details are 

provided in the Methods section (lines 560-562) and in Supplementary Table 9. As to why 

summary statistics are used in MWAS (via BADGERS) and not individual-level data, there are a 

few explanations for this approach. First, we were interested in studying CSF metabolites in 

many neurological and psychiatric phenotypes where individual-level data sets may not even 

exist. From the outset, the very nature of the problem we were addressing was trying to develop 

a method for studying CSF metabolites without directly measuring them, so analyses with 

individual-level data were not appropriate. Second, one of the major advantages of 

transcriptome-wide association study (TWAS) is that it can be performed with only summary-

statistic level information (e.g., S-PrediXcan1). The reason why it works is elaborated on in the 

Barbeira et al paper, but essentially it comes down to the idea that the only mathematical terms 

needed to calculate the metabolite-phenotype associations can be derived from GWAS summary 

statistics of the metabolite, GWAS summary statistics of the phenotype, and an LD reference 

panel. 

Regarding which approach was used for the summary statistic-based association testing, 

BADGERS is used, as is described on lines 570-572 in the Methods Overview. An important 

clarification is that the reason there is no discussion of MR at this point in the manuscript is that 

no MR of any sort was performed as part of MWAS; MR was only used in this project as a 

secondary analysis (lines 176-177) to demonstrate whether the associations identified by MWAS 

could also be replicated using two-sample MR, a more conservative method with a nice causal 

interpretation. Thus, no details about MR were needed during the overview of MWAS. We 

appreciate this comment, as we have realized that the basis of MWAS on TWAS was not 

sufficiently made clear in the text. 



 

2. Page 28, you talk about two-sample summary statistics and multiple packages. But, you 

do not talk about the approach and the underlying assumptions. How the summary 

statistics are integrated with the imputed metabolites. 

To clarify, there was only one metabolite-phenotype association method/package used in 

MWAS: BADGERS. BADGERS uses estimated SNP effect model weights (here, from the 

genotype-metabolite predictive models) and combines them with GWAS summary statistics for 

the phenotype of interest (here, the publicly available GWAS of neurological phenotypes in 

Supplementary Table 9). Just like with summary-statistic-based TWAS applications (e.g., S-

PrediXcan1), BADGERS essentially imputes the intermediate variable (here, CSF metabolite 

levels) using genotypes in order to estimate the intermediate variable-phenotype association. In 

addition to the BADGERS paper cited in the manuscript that includes the details on the method, 

we have added the following additional text to summarize how BADGERS works: 

“Briefly, BADGERS functions as a summary-statistic-based TWAS-like approach that 

tests the association between an intermediate variable and a downstream phenotype by 

combining 1) a set of SNP weights for each SNP’s effect on the intermediate variable with 2) 

GWAS summary statistics for the downstream phenotype.” (lines 97-100) 

 

3. The same is true for two-sample MR. You have applied multiple packages without 

talking about MR assumptions and how to hold them. 

The reviewer brings up an important point, which is that MR analyses only provide 

evidence for causality when one has met the three main assumptions of MR. Our response from 

the first round of review (copied for reference below) lays out the reasons why an in-depth look 



at the MR assumptions for causal inference were out of scope for this manuscript, where causal 

inference was explicitly not claimed (Discussion, line 309) and where MR was used as a 

secondary analysis to demonstrate replications in association between MWAS (the focus of this 

paper) and a different method frequently used in metabolome-wide and proteome-wide analyses 

(MR). 

To more explicitly convey the use of MR in this manuscript to the reader, the following 

text has been added to the Results section and Methods section: 

“To demonstrate whether the MWAS associations could be seen using an alternative 

methodology (MR), a two-sample MR analysis was performed for the 19 significant metabolite-

phenotype associations.” (lines 176-178) 

“The goal of using MR was to demonstrate whether the results from MWAS could be 

replicated using an alternative method (two-sample MR).” (lines 586-587) 

The text added to the manuscript in the previous round of review (see below) specifically 

addresses how our data here may not necessarily be causal because pleiotropy may be an issue, 

which might be the case with some of the MR analyses. 

 

[response from first round of review] 

This comment is certainly a fair point regarding the conclusions of causal inference 

techniques like MR. Because the focus of this paper was on identifying associations (not 

necessarily causal) between CSF metabolites and brain-related phenotypes to serve as a first 

step in understanding the role of CSF metabolites, many of which have not been studied in these 

phenotypes, we wanted to keep the discussion similarly focused on the results of the MWAS. 



Since our proposed MWAS methodology is somewhat novel, we included the MR analyses as a 

comparison to highlight that an alternative methodology offered some support for several of our 

identified associations. However, we did not want to focus too much on the MR results and 

thereby mislead the reader into thinking the MWAS analyses should be interpreted as causal 

claims. Thus, our discussion of the MR analyses was kept minimal. 

We agree with the point that the MR assumptions are likely violated for the models with 

many SNPs. A specific example of the largest pleiotropic effect (observed for guanosine’s effect 

on schizophrenia) that was identified through the use of MR-Egger (Supplementary Table 12) 

has been added to the discussion section. Additional information about the limitations of the 

application of MR (particularly for the many-SNP models) has also been added to the 

discussion. Finally, the fact that the significant MR results were only for 1- or 2-SNP models has 

also been explicitly called out in the results section. 

“…acetylornithine with cognitive performance (Supplementary Tables 11-12). These significant 

effects were all for models with only 1 or 2 SNPs used as instruments.” (lines 168-169) 

“Finally, the metabolite-phenotype associations identified here may not necessarily be causal. 

Even with the results of the two-sample MR providing significant, consistent support for some of 

the metabolite-phenotype associations, such causal inference approaches require assumptions 

about the presence of pleiotropy that may not hold true2. As more SNPs are included as 

instruments, it becomes more likely that some SNPs have introduced pleiotropic effects that 

would bias the causal effect estimate. Although the significant MR results here were only for 1- 

or 2-SNP models, evidence for pleiotropy when using many SNPs was seen in some of the 

nonsignificant MR analyses. For instance, the predictive model used here for guanosine included 

92 SNPs. When MR-Egger regression3, a technique used to assess the presence of pleiotropy, 



was used to estimate guanosine’s effect on schizophrenia, a significant pleiotropic effect was 

identified (MR-Egger intercept p = 0.0029) that likely explains the difference in effect seen 

between the inverse-variance-weighted and MR-Egger results (Supplementary Table 11). As 

more becomes known about the functional roles of these metabolites and their related genetic 

loci and as data sets grow larger, the ability to assess and justify the assumptions necessary for 

causal inference applications will improve. Nevertheless, MWAS provides a powerful tool for the 

initial discovery of metabolite-phenotype associations that can then be followed up 

experimentally.” (lines 293-309) 

Finally, as a positive example where the MR assumptions seem to be supported, 

additional text has been added to the Discussion focused on the strongest association identified in 

the MR (between N-delta-acetylornithine and schizophrenia): 

“However, as a positive example, there is support for the MR assumptions for some of 

the simpler metabolite models. The strongest MWAS and MR results were both for the effect of 

N-delta-acetylornithine on schizophrenia. The two instruments used for N-delta-acetylornithine 

(rs10201159, rs4934469) in the MR analysis were located near the NAT8 and SLC16A12 genes. 

NAT8 encodes N-acetyltransferase 8, which has been associated with N-acetylornithine4, and 

SLC16A12 encodes the transporter protein solute carrier family 16 member 12 that is 

documented to transport acetate, which can be converted into acetylornithine5. Thus, it is 

plausible that the SNPs used in this model are tagging genetic loci with a causal impact on N-

delta-acetylornithine levels, satisfying the MR assumption for instrument validity. Furthermore, 

regarding the assumption of no direct effect of the instruments on the outcome, neither of these 

instruments seem to be associated with schizophrenia directly in the studies used here6,7 nor in 

the GWAS Catalog.” (lines 327-338) 



 

4. You can run two-sample MR in different ways. You should mention which one you are 

using. Are both samples with summary statistics or one sample with summary data the 

other sample with individual level data? And please explain why you are using either of 

them. 

The specific methods and packages used to conduct the two-sample MR are provided in 

the Methods section, copied here for reference: 

“A two-sample Mendelian Randomization was performed for each of the significant 

metabolite-phenotype associations from BADGERS, using the meta-analysis GWAS results for 

the metabolites described above and a phenotype GWAS from the IEU GWAS Database 

(Supplementary Table 11). The goal of using MR was to demonstrate whether the results from 

MWAS could be replicated using an alternative method (two-sample MR)…When possible, the 

same phenotype GWAS that was used in BADGERS was used for the MR analysis; otherwise, a 

similar phenotype from a different study was used (Supplementary Table 12)7–12. The MR 

analysis was conducted using the TwoSampleMR10 (version 0.5.0) package, using the Wald ratio 

(“mr_wald_ratio”), inverse-variance-weighted (“mr_ivw”), Egger regression 

(“mr_egger_regression”), and weighted median (“mr_weighted_median”) methods…Multiple 

two-sample MR methods were used here to compare the results from MWAS to a diversity of 

MR implementations. A Bonferroni-corrected significance threshold for the number of MR 

analyses performed (42) was used for reporting significant results (p = 0.05 / 42 = 1.2x10-3).” 

(lines 583-617) 

To conduct one-sample MR, one must have a data set with all variables of interest 

measured simultaneously (here, SNP, metabolite, and phenotype). Since our data sets in 



WADRC and WRAP only consisted of SNP and metabolite data without the neurological 

phenotypes we were interested in studying, one-sample MR was not an option. GWAS summary 

stats were used both for the SNP-metabolite effects and the SNP-phenotype effects. The former 

were input using summary statistics to enable easier replication of our work by other groups who 

will have immediate access to our GWAS summary statistics, and the latter were input using 

summary statistics since those were the only data sets available for us to use for those 

phenotypes. Some additional text has been added to the Methods section to explicitly explain this 

choice of methods: 

“Two-sample MR was used instead of one-sample MR because the neurological 

phenotypes studied were not available for the individuals in WADRC and WRAP on whom the 

CSF metabolites were measured, which is a requirement of one-sample approaches. In the 

implementation of two-sample MR, GWAS summary stats were used for both the CSF 

metabolites and the neurological phenotypes to allow for easier replication of our results by other 

groups who can use our GWAS summary statistics for the metabolites.” (lines 587-593) 

 

5. In table 11, you have b, effect size. Please write the effect of metabolite on phenotype. 

Then, in this table, for the low number of instruments (n_SNP<=2, column 

“bonf_sig”=TRUE), you need to provide the LD between SNPs and the z-score for the 

effect of SNP on metabolite. Are the metabolites predicted by these SNPs? These are the 

requirements for MR/instrumental variables (here the SNPs). 

For the large number of instruments, you should mention in the online method 

section that what the package is doing. For example, what MR Egger does with more than 

3000 SNPs. 



If we predict metabolites with SNPs in an accurate way, we can claim the pleiotropic 

effect is controlled. You should remove or edit the sentence in line 300 (the sentence with 

the reference 85 at the end) because the reference 85 is telling us how to control for 

pleiotropic action while the pleiotropy is present. However, this sentence in the manuscript 

does not convey that. 

Answering this comment adds further values to the manuscript. Please pay attention 

to this comment and answer it carefully. 

6. In table 11, why different MR methods, column “Method”, are used for different 

metabolites. Was not it possible to apply one method for all metabolites? I may miss your 

explanation in the manuscript. 

7. A flowchart for page 28 is recommended. This is an important page of the 

manuscript while it does not seem that the packages are applied carefully. The way that it 

is written it gives the impression that only multiple packages are run without paying 

attention to the assumptions. 

 

Regarding the first comment about the text description of the “b” column, the meaning in 

Supplementary Table 11 has been changed to “Effect estimate of the metabolite on the 

phenotype.” For the LD between the SNPs for those analyses where the metabolite was predicted 

with 2 SNPs, there was only one such metabolite model, and that was for N-delta-

acetylornithine. The two SNPs here (rs10201159, rs4934469) are located on different 

chromosomes (2 and 10, respectively), and thus a column describing the LD between them 

would not be meaningful. The Z score for the SNPs’ effect on the metabolite as determined by 

the GWAS meta-analysis for the metabolites can be calculated from the GWAS summary 



statistics using the beta effect estimate and the SE (Supplementary Table 4 and online resource 

of full GWAS summary statistics as described in the Data and code availability section at 

ftp://ftp.biostat.wisc.edu/pub/lu_group/Projects/MWAS/). As requested, these Z scores for the 

models with 2 or fewer SNPs have been added to Supplementary Table 11. 

As to whether these instrument SNPs predicted their metabolites, since BADGERS only 

tested metabolites that were predicted by their SNPs with an R2 > 0.025, and since only the 

significant associations from BADGERS were tested with MR, all of the MR-tested metabolites 

were necessarily predicted by their SNPs at the same minimum threshold. However, a reasonable 

predictive performance of penalized linear regression (here, our CSF metabolite imputation 

model) may not rule out horizontal pleiotropy. It remains possible that SNPs included in the 

metabolite imputation models could have direct effects on the tested neurological traits. 

We appreciate the chance to clarify (and make more explicit to the reader) that we are not 

using the MR analyses to necessarily claim causality. The goal of this paper was to identify 

novel metabolite-phenotype associations. Multiple MR methods were used only as a way to 

show how the associations (not causal effects) from MWAS (a TWAS-based approach) could be 

replicated by a fundamentally different approach (MR) and some of its more popular variations. 

We recognize that MR overall and the various implementations of MR have different 

assumptions and theoretical properties. We have added additional text to the Methods section 

and have rewritten part of the Discussion section to clarify why MR was used as a secondary 

analysis and some brief notes about these different MR implementations. However, as this paper 

is fundamentally focused on a TWAS-based approach, we intentionally avoid providing too 

much detail and emphasis on what was solely a secondary analysis (the MR analyses) in order to 



avoid distracting from the main TWAS-based method (MWAS) and its findings. The updated 

Discussion section on the study limitations regarding causality now reads… 

“Finally, the metabolite-phenotype associations identified here may not necessarily be 

causal. Using MWAS, an approach based on TWAS, we can identify metabolite-phenotype 

associations, but the identification of causal metabolite-phenotype effects requires additional 

assumptions to be met. The results from the MR analyses, used here to assess whether the 

associations from a TWAS-based approach could be replicated with an MR-based methodology, 

did provide significant, consistent support for some of the metabolite-phenotype associations, but 

we do not necessarily claim causality from these secondary analyses. The assumptions of MR 

would need to be met before such causal claims could be made, and there was evidence here that 

among the more polygenic models, there could be pleiotropy present that could violate those 

assumptions. For instance, the predictive model used here for guanosine included 92 SNPs. 

When MR-Egger regression3 was used to estimate guanosine’s effect on schizophrenia, a 

significant pleiotropic effect was identified (MR-Egger intercept p = 0.0029) that likely explains 

the difference in effect seen between the inverse-variance-weighted and MR-Egger results 

(Supplementary Table 11).” (lines 309-327) 

 

The updated Methods section on MR now reads… 

“A two-sample Mendelian Randomization was performed for each of the significant 

metabolite-phenotype associations from BADGERS, using the meta-analysis GWAS results for 

the metabolites described above and a phenotype GWAS from the IEU GWAS Database 

(Supplementary Table 11). The goal of using MR was to demonstrate whether the results from 

MWAS could be replicated using an alternative method (two-sample MR). Two-sample MR was 



used instead of one-sample MR because the neurological phenotypes studied were not available 

for the individuals in WADRC and WRAP on whom the CSF metabolites were measured, which 

is a requirement of one-sample approaches. In the implementation of two-sample MR, GWAS 

summary stats were used for both the CSF metabolites and the neurological phenotypes to allow 

for easier replication of our results by other groups who can use our GWAS summary statistics 

for the metabolites. In selecting the SNPs to use as instruments for each metabolite, the set of 

independent SNPs chosen by the best metabolite prediction model in the MWAS pipeline was 

used for each metabolite. Since only the significant results from the BADGERS analysis were 

analyzed by MR, all metabolites met the minimum predictive R2 criteria for being predicted by 

their model SNPs as was used for the BADGERS analysis (see above). When possible, the same 

phenotype GWAS that was used in BADGERS was used for the MR analysis; otherwise, a 

similar phenotype from a different study was used (Supplementary Table 12)7–12. The MR 

analysis was conducted using the TwoSampleMR10 (version 0.5.0) package, using the Wald ratio 

(“mr_wald_ratio”), inverse-variance-weighted (“mr_ivw”), Egger regression 

(“mr_egger_regression”), and weighted median (“mr_weighted_median”) methods10. Briefly,  

the Wald ratio approach was used when only a single SNP was used as an instrument, as was the 

case with the ethylmalonate analyses. When multiple SNPs were used as instruments, the 

inverse-variance-weighted, Egger regression, and weighted median approaches were used. The 

inverse-variance-weighted approach combines all of the ratio estimates similar to an inverse-

variance-weighted, random effects meta-analysis. The Egger regression MR approach3 uses 

multiple instruments as a way to assess the presence of pleiotropy and to adjust for biases arising 

from a specific type of pleiotropy where the instruments’ effects on the outcome are independent 

of their effects on the exposure. The weighted median approach13,14 is similar to Egger regression 



in that it helps to address pleiotropy when using multiple SNP instruments and is robust so long 

as no more than 50% of the instruments are pleiotropic. The method’s benefit comes from using 

the median effect of the instrument SNPs and weights the contribution of the SNPs by the 

inverse variance. Multiple two-sample MR methods were used here to compare the results from 

MWAS to a diversity of MR implementations. A Bonferroni-corrected significance threshold for 

the number of MR analyses performed (42) was used for reporting significant results (p = 0.05 / 

42 = 1.2x10-3).” (lines 583-617) 

Regarding the addition of a separate supplementary figure to show the MR analyses, we 

have added a flowchart for the overall MWAS approach (Supplementary Figure 1) to help orient 

the reader to the general outline of the paper. Since the MR analyses were not part of the central 

MWAS pipeline presented by this manuscript, we have left the MR analyses out of that figure 

and have instead relied on a text description of the secondary analyses that were performed, 

including MR. 

 

 

Minor comments. 

8. Line 81, how did you do meta-analysis, did you use any package? It should be 

mentioned. You mention later. But, it is good to mention it here too. 

To clarify the package used to conduct the meta-analysis in the Methods Overview, this 

line now reads: “Both GWAS results were then meta-analyzed with METAL15 to maximize 

statistical power.” (lines 88-89) 



 

9. Line 89, you have cited BADGERS approach but, you should write a few lines about it 

and what it does, even if you write about it later. 

Please see the added text as part of comment #2 above, which addresses this comment. 

 

10. Lines 83-84, you should provide the reference for this approach. It won’t be on 

metabolites, but it has been applied previously on gene expression. You have referred in 

another place, please explicitly mention it here too. 

To highlight the similarity of our metabolite predictive models with those used in TWAS 

for gene expression, we have now added the following text: 

“Genome-wide prediction models were built for each CSF metabolite with independent 

SNPs as predictors, using both models with fewer SNPs (e.g., LASSO and elastic net) and many 

SNPs (e.g., ridge regression and polygenic score) to allow for a diversity of possible genetic 

architectures (see Methods for details), similar to gene expression prediction models used in 

TWAS16.” (lines 89-93) 

For reference, the Methods text describing the details of this approach are copied below: 

“Metabolite prediction models were built for each metabolite within each fold of training 

data. Four general model types covering a range of genetic architecture assumptions were 

employed: LASSO17, elastic net18, ridge regression19, and polygenic score models20. LASSO 

uses L1 regularization to perform variable selection in a regression model, while ridge regression 

uses L2 regularization and retains all variables in the regression. Elastic net lies between LASSO 

and ridge regression, using a weighted combination of the L1 and L2 penalties. Polygenic score 



models use a weighted combination of SNPs where the weight of each SNP is based on the beta 

coefficient of a GWAS for the model outcome. The 3 penalized regression models (LASSO, 

elastic net, and ridge regression) were implemented using the R package glmnet21 (version 2.0-

18). An 11x11 grid of parameter combinations (lambda and alpha) was created. Lambdas ranged 

from 1.0x10-5 to 1.0 (10 raised to exponents incremented by 0.5); alphas ranged from 0.0 to 1.0 

(incremented by 0.1). Models were classified based on the alpha value (1.0 = LASSO, 0.0 = 

ridge regression, others = elastic net). Model predictors included all clumped SNPs and the same 

covariates used for the fold-specific GWAS, but the regularization penalty was only applied to 

the SNPs. The polygenic score models were implemented using PRSice22 (version 2.2.4). Three 

p-value thresholds were used: 0.0001, 0.001, and 0.01. 

Each fold-specific metabolite prediction model was tested on the corresponding testing fold to 

determine the correlation and R2 between the predicted and actual metabolite values 

(Supplementary Figure 27). The mean predictive correlation was taken across all folds for each 

model, with the highest-correlated model chosen as the best predictive model for that metabolite. 

For each metabolite, the type of model, mean number of SNPs used, and presence of significant 

meta-analysis GWAS loci were recorded (Supplementary Table 7).” (lines 524-545) 

 

11. Line 83, you say independent SNP as predictors. What is your definition/threshold to 

determine independency? Is it independent statistically? How did you select SNPs for 

prediction of each metabolite? Did you use their effect size from line 80? 

The details on how independent SNPs were defined are laid out in the Methods section: 



“The resulting fold-specific GWAS files were then clumped down to independent SNPs 

(r2 < 0.1 within a 1000 kb window using the 1000 Genomes CEU reference panel for LD 

estimation) with a p-value threshold of 0.01 using PLINK.” (lines 521-523) 

To clarify the general independence procedure used, the following text was added to the 

Methods Overview section: 

“Genome-wide prediction models were built for each CSF metabolite with independent 

SNPs as predictors (based on SNP clumping), using both models…” (lines 89-90) 

The selection of SNPs to predict each metabolite was based on which prediction method 

was used. The way PRS and ridge regression models work is by using all input SNPs as 

predictors. LASSO and elastic net models, on the other hand, induce sparsity in the set of 

predictors, excluding predictors that are not useful to the model. PRS models use the beta effect 

sizes from the GWAS as the SNP coefficients while the other models, being regression models, 

estimate SNP effect sizes when the model is fit. 
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REVIEWERS' COMMENTS:  

 

Reviewer #2 (Remarks to the Author):  

 

A flowchart for lines 574-588 is required. I asked it in my previous comments. If you have provided it, 

please direct me there. The supplementary Figure 1 is not sufficient. At least, in the method section 

a flowchart that explains the steps for two-sample MR is necessary. The explanations in the body is 

not informative at it is. I have a very hard time to follow the steps. You may want to use my 

suggestion below:  

 

Since multiple data sets are used, you may want to put in the flowchart as sample 1(SNP and 

metabolite), sample 2 (SNP and phenotype). Then, show SNPs from which sample is used as an IV in 

the other sample; and etc. 



Response to reviewer comments 

Note: added text is in red. 

 

Response to Reviewer #2 

1. A flowchart for lines 574-588 is required. I asked it in my previous comments. If you 

have provided it, please direct me there. The supplementary Figure 1 is not 

sufficient. At least, in the method section a flowchart that explains the steps for two-

sample MR is necessary. The explanations in the body is not informative at it is. I 

have a very hard time to follow the steps. You may want to use my suggestion 

below: 

 

Since multiple data sets are used, you may want to put in the flowchart as sample 1 

(SNP and metabolite), sample 2 (SNP and phenotype). Then, show SNPs from which 

sample is used as an IV in the other sample; and etc. 

 

We have added a new supplementary figure, Supplementary Figure 29 (copied below, 

referenced in the appropriate Methods section) that highlights where the data sets come from for 

each part of the 2-sample MR. In the caption for this figure, we additionally explain how SNPs 

were chosen for the MR analyses. 

 



 

Supplementary Figure 29. Two-sample Mendelian Randomization model set-up 

An overview of the sources of each data set used in the two-sample Mendelian Randomization analysis. 
The set of metabolite-phenotype pairs to analyze was the set of significant metabolite-phenotype 
associations from the MWAS analysis. For each subsequent MR analysis, the set of instrument SNPs for 
each metabolite were those that were in the best predictive model for that metabolite from the MWAS 
analysis; the GWAS summary statistics for the metabolites were those from the WADRC/WRAP GWAS 
meta-analysis; and the GWAS summary statistics for the phenotypes were taken from summary statistics 
in the IEU GWAS Database (Supplementary Table 12). 

Sample 1: CSF metabolite 
GWAS from WADRC/WRAP 

Sample 2: Phenotype GWAS 
from IEU GWAS Database 

SNP CSF metabolite Phenotype


