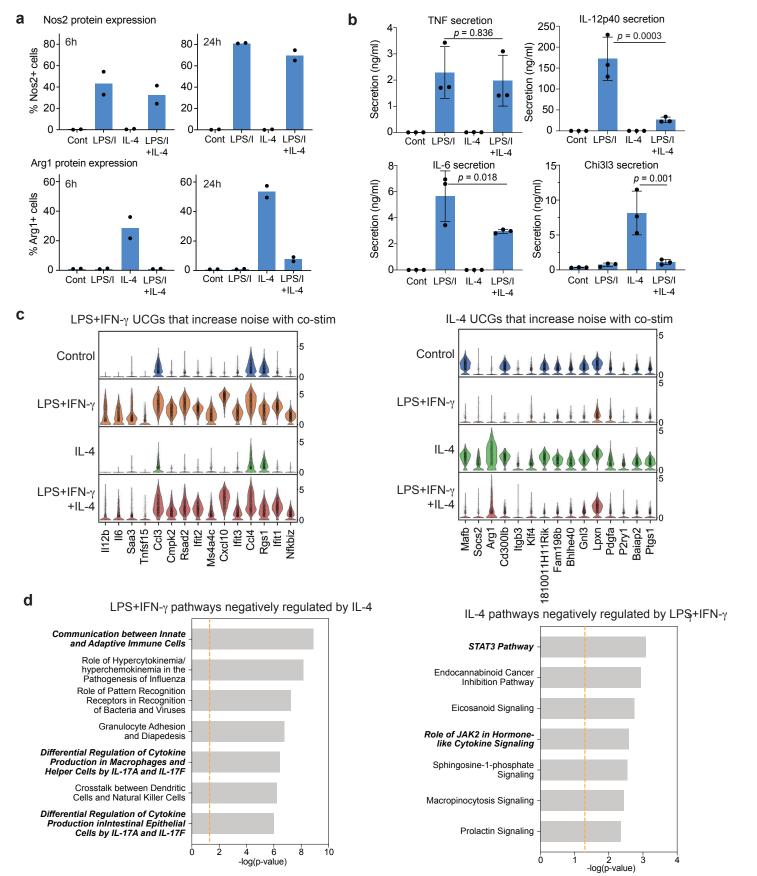
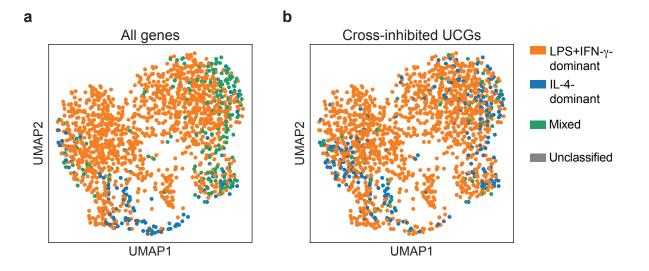
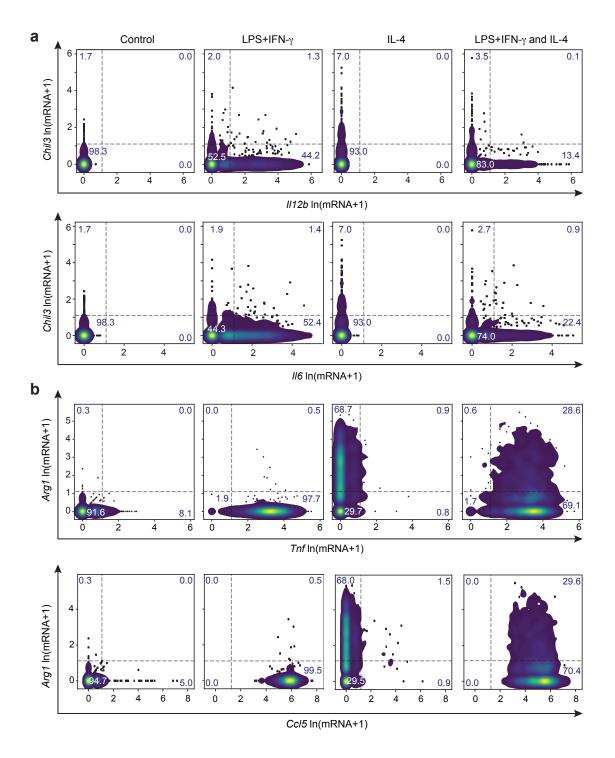

Co-stimulation with opposing macrophage polarization cues leads to orthogonal secretion


programs in individual cells

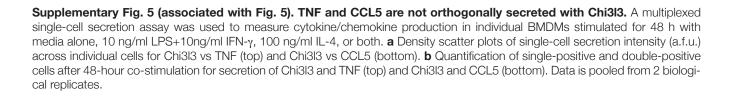
Muñoz-Rojas et al.


Supplementary Information

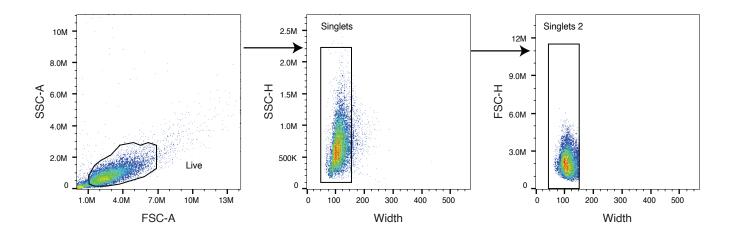


Supplementary Fig. 2 (associated with Fig. 2). Cross-inhibition and cell-to-cell noise in gene expression after co-stimulation. a Levels of Nos2 (top) and Arg1 (bottom) protein detected by flow cytometry after stimulation for 6 h (left) and 24 h (right) with 10 ng/ml LPS+10 ng/ml IFN- γ , 100 ng/ml IL-4, or the combination (mean, n=2 biological replicates). b Levels of TNF, IL-12p40, IL-6 and Chi3l3 secretion after stimulation for 24 h with 10 ng/ml LPS+10 ng/ml IFN- γ , 100 ng/ml IL-4, or the combination (mean ± SEM, n=3 biological replicates). P-values determined with two-sided one-way ANOVA with Sidak correction for multiple comparisons. c Violin plots of scRNA-seq measurements of LPS+IFN- γ -induced (top) and IL-4-induced (bottom) genes with the highest change in cell-to-cell gene expression noise measured by Fano factor. d Result from Ingenuity Pathway Analysis listing the top 7 canonical pathways that are associated with the set of LPS+IFN- γ -induced (top) or IL-4-induced (bottom) genes that are inhibited after co-stimulation. *P*-values indicate the significance of the overlap between the canonical pathway and the inhibited genes (determined by one-sided Fisher's exact test). Source data are provided as a Source Data file.

Supplementary Fig. 3 (associated with Fig 3). Neural network classifier results identify clusters of mixed and single-stimuli-dominant cells. a-b UMAP representation of classification results from the neural network classifier trained on all genes (a) or UCGs that displayed cross-inhibition after co-stimulation (b).


Supplementary Fig. 4 (associated with Fig. 4). Orthogonal expression is observed for *II6* and *II12b* with *Chil3* but not for *Tnf* and *Ccl5* with *Arg1*. Density scatter plots of scRNA-seq transcript counts across individual cells for *Chil3* vs. *II12b* (**a**, top) and *II6* (**a**, bottom); and for *Arg1* vs. *Tnf* (**b**, top) and *Ccl5* (**b**, bottom). Data is represented as In(transcript count +1).

Chi3l3 intensity, arcsinh(a.f.u.)


b LPS+IFN-γ LPS+IFN-y + IL-4 Control IL-4 60 TNF+/Chi3l3-4.53 0.0 1.92 0.36 26.34 0.21 5.63 3.46 TNF-/Chi3l3+ 40 of cells 20 % TNF+/Chi3l3+ 65.51 92.8 2.61 32.22 72.63 0.82 49.3 41.61 0 Control LPS+IFN-y IL-4 LPS+IFN-γ +IL-4 TNF intensity, arcsinh(a.f.u.) CCL5+/Chi3l3-801 0.27 1.2 4.25 1.08 2.06 2.94 CCL5-/Chi3l3+ . 00 of cells 40 % 20 20 CCL5+/Chi3l3+ -2 9.74 42.63 55.09 67.59 5.86 25.99 64.92 85.73 -4 0 _2 6 -4 -2 å -2 4 6 -4 -2 ò à 6

Control LPS+IFN-y IL-4 LPS+IFN-y

+11 -4

Supplementary Fig. 6. Gating strategy for flow cytometry experiments. Gating strategy for gating of live, singlet BMDMs.

Antibody Pair	Vendor	Catalog No.
TNF	eBioscience	88-7324-88
CCL17	R&D	DY529
IL-12p40	BD Biosciences	555165
IL-10	BD Biosciences	555252
MMP9	R&D	DY6718
IL-6	R&D	DY406
IGF-I	R&D	DY791
CCL2	R&D	DY479
CCL8	R&D	DY790
Chi3l3	R&D	DY2446
CCL3	R&D	DY450
CXCL1	R&D	DY453
GM-CSF	R&D	DY415
CCL22	R&D	DY439
CCL5	R&D	DY478

Supplementary Table 1. Capture and detection ELISA antibody pairs for secretion profiling.

Target	Forward Primer (5' to 3')	Reverse Primer (5' to 3')
Nos2	GTTCTCAGCCCAACAATACAAGA	GTGGACGGGTCGATGTCAC
Argl	CTCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC
Klf4	GACTAACCGTTGGCGTGAGG	GTCTAGGTCCAGGAGGTCGT
Nfkbiz	GAGTCCCGTCCCAGAGGTG	ACTCTGTGTCTTAAACTCATCCAC
Il6	TCCTCTCTGCAAGAGACTTCC	TTGTGAAGTAGGGAAGGCCG
Tnf	CCCTCACACTCAGATCATCTTCT	GCTACGACGTGGGCTACAG
Il12b	CGCCACACAAATGGATGCAA	TGTGTCCTGAGGTAGCCGTA
Chil3	CAGGTCTGGCAATTCTTCTGAA	GTCTTGCTCATGTGTGTAAGTGA
Ubc	ACCACCAAGAAGGTCAAACAGG	TAAGACACCTCCCCATCAC

Supplementary Table 2. Primers used for qPCR.